Building Software

- Process in software development:
 - define problems (specify requirements, I/O)
 - develop (design and analyze) algorithms
 - implement, test and evaluate software

Software Engineering

Programming

Core of Software: Algorithms

- Algorithm ~ a sequence of computer instructions to solve a given problem
- A problem may have none or more than one algorithmic solution
- Some algorithmic solution may take far too long to compute

Data Structures

Input

Algorithm

Output

Theory of Computation

Analysis of Algorithms

Why learn about algorithms?

- Core of computation \(\rightarrow\) to solve problems using computers
 - CS areas:
 - Hardware/System - ?
 - Security - ?
 - Software - ?
 - Network/AI/DB - ?
 - Non-CS areas:
 - Biology - ?
 - Other engineering - ?
 - Manufacturing - ?

Why analyze algorithms?

- To know if algorithm is **correct**
 - *What does “correct” really mean?*
- To understand when finding algorithmic solutions with certain properties can be infeasible
- To understand resources required
 - *What are types of resources?*
- To be able to compare performance among algorithms so that we can select the most appropriate solution
 - *Do we always pick the most efficient algorithm?*
Why learn about algorithm design?

- Different designs result in different algorithms
 → Different performances
- You may need to solve new problems that require brand new design

Example 1: Power of SW vs. HW

- Problem: To sort \(n \) numbers
- Algorithm \(A \): requires \(2n^2 \) instructions
 Algorithm \(B \): requires \(50nlgn \) instructions
- Super computer \(S \): executes \(100x10^6 \) instructions/sec
 PC \(P \): executes \(10^6 \) instructions/sec

\[\text{Which is Faster: } A \text{ or } B \? \]
\[\text{Which is Better: } A&S \text{ vs. } B&P \? \]

Say, \(n = 10^6 \) numbers

\[A&S \text{ Time} = \frac{2(10^6)^2 \text{ instrs}}{10^6 \text{ instrs/sec}} \approx 2x10^4 \text{ sec} \approx 5.56 \text{ hours} \]

\[B&P \text{ Time} = \frac{50x10^6xlg10^6}{10^6} \approx 50x6x3 \approx 10^3 \text{ sec} \approx 16.7 \text{ mins} \]

Lesson learned

- Total performance depends on choosing efficient algorithms just as much as choosing fast hardware!!!
Cosmic Time Scale

- 0 sec: Big bang
- GUT freezing: strong forces separate out
- Electromagnetic force separate from weak force
- Quark \rightarrow Protons \rightarrow Nuclei \rightarrow Atoms \rightarrow Stars, Planets

- Now
- 10^{10} sec: Stars lose planets
- 10^{24} sec: All stars burned out
- 10^{39} sec: Protons decay, solid matter vanishes
- 10^{71} sec: Black hole starts to vanish
- 10^{100} sec: End of everything – last black holes vanish

- 10^{100} sec is a very long time!
- Even if we could get each operation done faster, say 10^{40} operations/sec (each operation takes less time than light travels in one angstrom unit ~ 10^{-10} meters - which you can’t)
- B still takes $\sim 10^{100}/10^{19} = 10^{81}$ sec by then your computer will disintegrate
- But A takes only 10^4 operations $\sim 10^4$ sec which is fine

Lesson learned

- Don’t underestimate the power of SW
 \Rightarrow The importance of this course!

Understanding your problems

Computational Problems

Tractable problems
- Realistically computable
 - Polynomial time
 - Example: Sorting problem

Intractable problems
- No algorithmic solution
- Theoretically computable but not realistically computable
 - Exponential time or no algorithm
 - Example: Traveling Salesman problem

Problems Characteristics

- Knowledge intensive
- Incomplete data
- Uncertain situations
- Combinatorial explosive choices that may lead to solutions

Can we understand Algorithmic Solution before Implementing it?