
Fast SAT-based Answer Set Solver ∗

Zhijun Lin and Yuanlin Zhang and Hector Hernandez
Computer Science Department

Texas Tech University
2500 Broadway, Lubbock, TX 79409 USA
{lin, yzhang, hector}@cs.ttu.edu

Abstract

Recent research shows that SAT (propositional satisfiability)
techniques can be employed to build efficient systems to com-
pute answer sets for logic programs. ASSAT and CMODELS
are two well-known such systems. They find an answer set
from the full models for the completion of the input program,
which is (iteratively) augmented with loop formulas. Making
use of the fact that, for non-tight programs, during the model
generation, a partial assignment may be extensible to a full
model but may not grow into any answer set, we propose to
add answer set extensibility checking on partial assignments.
Furthermore, given a partial assignment, we identify a class
of loop formulas that are “active” on the assignment. These
“active” formulas can be used to prune the search space. We
also provide an efficient method to generate these formulas.
These ideas can be implemented with a moderate modifica-
tion on SAT solvers. We have developed a new answer set
solver SAG on top of the SAT solver MCHAFF. Empirical
studies on well-known benchmarks show that in most cases
it is faster than the state-of-the-art answer set solvers, often
by an order of magnitude. In the few cases when it is not
the winner, it is close to the top performer, which shows its
robustness.

Introduction
Logic programming with answer sets semantics (Gelfond &
Lifschitz 1988), and propositional satisfiability (SAT) are
closely related. It is well-known that an answer set of a logic
program is also a model of its completion (Clark 1978). The
converse holds for tight programs (Fages 1994). For non-
tight programs, Lin and Zhao (2002) show that by adding
loop formulas to the completion, one can obtain a one-to-one
correspondence between the answer sets of a logic program
and the models of its extended completion. Lee and Lifs-
chitz (2003) generalize the concept of loop formula for logic
programs with nested expressions. As a result, two SAT-
based answer set solvers were implemented: ASSAT by Lin
and Zhao (2002) and CMODELS by Lierler and Maratea
(2004).

Both ASSAT and CMODELS look for answer sets of a
logic program from the full models of its completion. These

∗The research leading to the results in this paper was funded in
part by NASA-NNG05GP48G.
Copyright c© 2006, American Association for Artificial Intelli-
gence (www.aaai.org). All rights reserved.

models are generated by a SAT solver. Observing that, for
non-tight programs, during the model generation, a partial
assignment may be extensible to a full model but may not
grow into any answer set, we propose a new answer set solv-
ing procedure that initiates answer set extensibility checking
before a full model is generated. We find that some loop for-
mulas are responsible for the checking results, and they can
be further used to prune the search space. This new approach
has been proved very effective by our preliminary empirical
studies.

This paper is organized as follows. First we introduce ba-
sic definitions and notations. Then we present the new pro-
cedure, followed by the results on the connection between
the loop formulas and the answer set extensibility checking.
Finally we describe our implementation and report the ex-
perimental results before the conclusion.

Background
Given a set of atoms A = {a1, . . . , ak}, not(A) denotes
the set of literals {¬a1, . . . ,¬ak}. Given a set of literal
B = {b1, . . . , bk}, B+ denotes the set {b | b ∈ B} and
B− denotes the set {b | ¬b ∈ B}.

A logic program is a finite set of rules of the form

a0 ← a1, . . . , am, not am+1, . . . , not an (1)

where ai’s are atoms. We assume all programs are fully
grounded.

For a rule r of type (1), we denote {a0} by head(r), its
positive body {a1, . . . , am} by pos(r), and its negative
body {am+1, . . . , an} by neg(r). When head(r) is not
empty, we sometimes abuse it to denote a0. We use BC(r)
to denote the propositional formula

a1 ∧ · · · ∧ am ∧ ¬am+1 ∧ · · · ∧ ¬an.

In the special case when pos(r) ∪ neg(r) = ∅, BC(r) =
true.

A set of atoms M satisfies a rule r (denoted by M |= r),
if pos(r) 6⊆ M or neg(r) ∩ M 6= ∅ or head(r) ∈ M .
A logic program P is said to be positive if neg(r) = ∅
for every r ∈ P . A set of atoms A is an answer set of
a positive program P if A satisfies every rule in P and A
is minimal (under set inclusion). The reduct of a logic
program P w.r.t. a set of atoms M , written as PM , is the
positive program {head(r)← pos(r)| r ∈ P, neg(r)∩M =

∅}. A set of atoms A is an answer set of a logic program P
iff A is an answer set of PA.

We use Atoms(P) to denote the set of all atoms appeared
in a logic program P . The Clark completion of a logic
program P , denoted by Comp(P), is the set of the following
propositional clauses:

• For each atom a ∈ Atoms(P), let R = {r | r ∈
P, head(r) = a}.
– If R = ∅, (¬a).
– Otherwise, (a ≡

∨
r∈R BC(r)).

• For each rule r ∈ P such that head(r) = ∅, (¬BC(r)).
The dependency graph of a logic program P , denoted by

DG(P), is the directed graph (V, E) where V = Atoms(P)
and

E = {(a, b)| a, b ∈ V, r ∈ P, a = head(r), b ∈ pos(r)}.

A set of atoms L ⊆ V is called a loop of P if there is a
path between any two members of L without passing any
vertex outside L. We say P is tight if DG(P) has no loops;
Otherwise, we say it is non-tight. Given a loop L of P ,
a rule r ∈ P is called an external supporting rule for L
if head(r) ∈ L and pos(r) ∩ L = ∅. Let R be the set
of all external supporting rules for L. The loop formula
associated with L is the clause

∧

r∈R

¬BC(r) ⊃
∧

p∈L

¬p. (2)

The following theorem describes the relation between the
answer set of a logic program and the model of its comple-
tion extended by loop formulas.

Theorem 1. (Lin & Zhao 2002) Let P be a logic program,
Comp(P) its completion, and LF the set of loop formulas
associated with the loops of P . We have that for any set of
atoms, it is an answer set of P iff it is a model of Comp(P)∪
LF .

Finding a model for a propositional formula falls in the
domain of the propositional satisfiability (SAT) problem,
which is one of the most studied problems in computer sci-
ence. Most of the complete SAT solvers are based on the ba-
sic DPLL algorithm (Davis, Logemann, & Loveland 1962).
Recently, it has been shown that learning techniques play a
significant rule in improving the performance of SAT solvers
(e.g., MCHAFF(Moskewicz et al. 2001)). Figure (1) il-
lustrates a typical DPLL algorithm with learning which is
adapted from (Zhang et al. 2001).

Given an input propositional formula, the algorithm uses
a backtracking search to find a truth assignment to variables
such that the formula is evaluated to true. It returns satis-
fiable if such assignment exists, unsatisfiable if otherwise.
The function decide selects a free variable and a truth as-
signment for it based on some heuristics. It returns done if
all variables has been assigned a value. The function deduce
prunes the search space using unit propagation. It returns
conflict if a variable need to be both true and false. In this
case, the function analyze conflicts is invoked to analyze
the reasons for the conflict and find a proper decision level

(blevel) to backtrack to. These reasons are added to the input
formula in form of clauses, called conflict clauses, to prevent
the same conflict from happening in the future search. This
process is called learning, and the conflict clauses are some-
times called learning clauses. Note these conflict clauses are
redundant in terms of the correctness of the algorithm. In
practice, SAT solvers discard conflict clauses deemed less
useful to save space.

1 while (true){
2 if (decide() 6= done) {
3 while (deduce() == conflict){
4 blevel = analyze conflicts();
5 if (blevel == 0)
6 return unsatisfiable;
7 else backtrack(blevel);}}
8 else return satisfiable; }

Figure 1: DPLL algorithm with learning

SAT-based answer set solving
From Theorem 1, we can envision a straightforward proce-
dure to compute answer sets for a logic program P : First
compute all loop formulas and add them to Comp(P), then
use a SAT solver to generate the models for the extended
completion. However, this approach is not feasible for gen-
eral programs since they may have exponential number of
loops. For this reason, the existing SAT-based answer set
solvers (e.g., ASSAT and CMODELS) use a “generate and
test” approach, which can be summarized by the procedure
illustrated in Figure(2). It first finds a model for the comple-
tion of the input program. If no such model exists there is no
answer set. Otherwise, if the model is an answer set it out-
puts the model. If it is not an answer set then the procedure
computes some loop formulas and add them to the comple-
tion. Then this process is repeated until it finds an answer
set or reports no solution. When the answer set test fails,
to find a new model, ASSAT has to start the underlying SAT
solver from scratch (black-box approach), while CMODELS
just initiates a backtrack within the SAT solver(clear-box ap-
proach). For ASSAT, the loop formulas added at the end of
each iteration are critical to the correctness of the algorithm,
but for CMODELS they are added as learning clauses solely
to speed up the search. Therefore, CMODELS’ approach
reduces the time cost to find a new model and eliminates
the needs of space to keep all loop formulas which can be
exponential in number.

Both ASSAT and CMODELS look for answer sets from
the full models for the completion, extended with some loop
formulas, of the input program. We observe that during the
model generation, it is possible to detect that a partial as-
signment is not extensible to an answer set, long before it
grows into a full model. For example, consider the program

{a← b. b← a. a← not c. c← not a. c← b.}. (3)

Its completion is {(a ≡ (b ∨ ¬c)), (b ≡ a), (c ≡ (¬a ∨
b))}. The partial assignment {b, c} is extensible to a model

Input: Logic program P
1 C = Comp(P);
2 while (true){
3 Find a model M for C using a SAT solver ;
4 if (no such M exists)
5 return false;
6 else{
7 if (isAnswerSet(P,M)) {
8 Output M as an answer set;
9 return true; }
10 else {
11 Compute loop formulas F
12 that were not satisfied by M ;
13 C = C ∪ F ; }}}

Figure 2: Existing SAT-based answer set solving procedure

{a, b, c} for its completion, but cannot be extended to any
answer set.

Based on the above idea, we develop a new SAT-based
answer set solving procedure listed in Figure 3. At first,
it computes the completion of the input program P (line
1). The functions decide, deduce, analyze conflicts, and
backtrack are the same as those in Figure 1, which are re-
sponsible for generating a model for the completion. Dur-
ing the model generation, if deduce does not return con-
flict (line 10), ASP deduce will check if the current par-
tial assignment is extensible to an answer set of P (line
11). It returns conflict if the current partial assignment
cannot be extended to any answer set, implication if some
free variables are required by the answer set semantics
to take particular truth values, or nil if no new informa-
tion is obtained. If nil is returned, the procedure contin-
ues with the model generation (line 12). If conflict or
implication is returned, the procedure then invokes the
function gen inferred clause (line 14) to derive clauses
to explain the occurrence of the conflict or implication situ-
ation. We call these clauses inferred clauses. They are ad-
dded to the completion clauses to facilitate the conflict learn-
ing (line 6) and backjumping (line 9, 20), can be removed
when they are no longer relevant. In case of conflict, the
function resolve ASP conflict (line 17) uses the inferred
clauses to determine the decision level to backtract to.

In the following two sections, we show how to implement
ASP deduce and how to generate the inferred clauses.

Implement ASP deduce
Currently we use the Atmost operator (Simons, Niemelä,
& Soininen 2002) of SMODELS to implement the
ASP deduce function.

Given a set of literals M and a rule r, the generalized
reduct of r, denoted by r(M), is

1. ∅, if head(r) ∩M− 6= ∅ or pos(r) ∩M− 6= ∅
or neg(r) ∩M+ 6= ∅;

2. head(r)← pos(r), otherwise.

Given a logic program P and a set of literals B, P (B) is
defined as {r(B) | r ∈ P}. Atmost(P, B) is the minimal
model for P (B).

Input: Logic program P
1 C = Comp(P);
2 while (true) {
3 if (decide() 6= done) {
4 while (true) {
5 if(deduce()== conflict){
6 blevel = analyze conflicts();
7 if (blevel==0)
8 return false;
9 else backtrack(blevel); }
10 else {
11 status = ASP deduce();
12 if (status == nil) break;
13 else {
14 IC = gen inferred clauses();
15 C = C ∪ IC;
16 if (status == conflict) {
17 blevel = resolve ASP conflict();
18 if (blevel==0)
19 return false;
20 else backtrack(blevel); }}}}}
21 else {
22 Output answer set;
23 return true; }}

Figure 3: New SAT-based answer set solving procedure

Figure 4 illustrates an implementation of the
ASP deduce function.

Now consider program (3) and the partial assignment
B = {c}. We have P (B) = {a ← b. b ← a. c.},
Atmost(P, B) = {c}, N = {a, b}, N ∩ B+ = ∅ but
N 6⊆ B−. Hence, ASP deduce returns implication: a
and b should be set to false.

Input: Logic program P , partial assignment B
1 N = Atoms(P) - Atmost(P, B);
2 if (N ∩ B+ 6= ∅) status = conflict;
3 else if (N ⊆ B−) status = nil;
4 else status = implication;
5 return status;

Figure 4: Function ASP deduce

Computing inferred clauses
We discover that there is a close connection between the re-
turn states of ASP deduce and loop formulas.
Definition 2. A loop LF associated with a loop L is active
on a partial assignment B if B satisfies the antecedent of LF
and L ∩B− = ∅.

In the new procedure, the active loop formulas are used
to generate the inferred clauses when ASP deduce returns
conflict or implication.

In the following we present our main results on
ASP deduce and active loop formulas, followed by an al-
gorithm for the gen inferred clauses function.

Proposition 3. Given a positive program P and a set of
atoms L such that, for any rule r ∈ P , if its head is in L

then its body contains an atom of L, the minimal model for
P does not contain any atom of L.

Proof. Prove by contradiction. Assume M is a minimal
model for P and M contains some atom from L. Let
M ′ = M − L. For every rule r ∈ P , either the body
of r contains some atom of L or not. In the former case,
pos(r) 6⊆ M ′ and therefore M ′ |= r. In the latter case
head(r) /∈ L. Since r does not have any atom from L,
M ′ = M −L and M |= r, we have M ′ |= r. Therefore, M ′

is a model for P , contradicting to the minimality of M .

Theorem 4. Given a logic program P and a partial as-
signment B, if there is a loop formula active on B, then
ASP deduce on B results in either conflict or implication.

Proof. Let LF be a loop formula active on B, and L =
{L1, . . . , Ln} be the associated loop. For any rule r ∈ P
such that head(r) ∈ L and pos(r) ∩ L = ∅, r(B) = ∅
because B falsifies BC(r), i.e., pos(r) ∩ B− 6= ∅ or
neg(r) ∩ B+ 6= ∅. Therefore, for any rule r in P (B), if
the head of r is in L then its body must contain an atom
from L. By Proposition 3, the minimal model M of P (B),
i.e., Atmost(P, B), does not contain any atom of L. Let
N = Atoms(P)−M . L ⊆ N because L ⊆ Atoms(P) and
L∩M = ∅. If B+ contains an atom of L, N ∩B+ 6= ∅, and
thus ASP deduce returns conflict. Otherwise, N 6⊆ B−

since L ∩ B− = ∅ (by the definition of the active loop for-
mula) and L ⊆ N . Hence, ASP deduce returns implica-
tion.

Given a directed graph G = (V, E) and a set of vertices
L ⊆ V , L is called a terminating loop if L is a strongly con-
nected component of G and there is no arc from any vertex
in L to any vertex outside L.

This definition of terminating loop is similar to the one
in (Lin & Zhao 2002). The following proposition on graph
property is needed in the proof of Theorem 6.

Proposition 5. Given a directed graph with finite vertices,
if every vertex has an outgoing arc, there is a terminating
loop in the graph.

Given a logic program P and a partial assignment B, B
is stable w.r.t. P if for any atom a ∈ Atoms(P), ¬a ∈ B
iff either there is no rule headed by a, or for any rule r ∈ P
headed by a, pos(r) ∩B− 6= ∅ or neg(r) ∩B+ 6= ∅.
Theorem 6. Given a logic program P and a stable partial
assignment B, let M = Atoms(P)−B−−Atmost(P, B).
If M 6= ∅, then there is a terminating loop, in the subgraph
of DG(P (B)) induced by M , whose loop formula is active
on B.

Proof. Let C = Atmost(P, B). Claim 1: For all a ∈ M ,
there exists a rule r ∈ P (B) such that head(r) = a and
pos(r) ∩M 6= ∅. Consider any a ∈ M . We know a /∈ B−

and a /∈ C. Since B is stable, a /∈ B− implies that there
exists a rule r ∈ P such that head(r) = a and pos(r) ∩
B− = ∅ and neg(r) ∩ B+ = ∅. Clearly r(B) 6= ∅ and
head(r(B)) = a. Therefore, r(B) is a rule in P (B) headed
by a. Since a /∈ C, and C is the minimal model for P (B),

pos(r) 6⊆ C, which, together with pos(r)∩B− = ∅, implies
pos(r) ∩ M 6= ∅. Claim 2: For every rule r ∈ P (B), if
head(r) ∈ M then pos(r) ∩M 6= ∅. The proof of Claim 2
is similar to that of Claim 1.

Let Q be the subgraph of DG(P (B)) induced by M . Q
is not an empty graph since M 6= ∅. Every vertex of Q has
an outgoing arc in accordance with Claim 1. By Proposition
5 there is a terminating loop L in Q. Let R be the external
supporting rules for L w.r.t P . For any rule r ∈ R, pos(r) ∩
L = ∅. We show that r(B) = ∅. Otherwise, since L is a
terminating loop and head(r(B)) ∈ L, pos(r(B)) ∩ (M −
L) = ∅. Since pos(r(B)) ∩ L = ∅, pos(r(B)) ∩ M =
∅, contradicting Claim 2. Since r(B) = ∅, either pos(r) ∩
B− 6= ∅ or neg(r) ∩ B+ 6= ∅. Hence BC(r) is falsified by
B. So the clause

∧
(r∈R) ¬BC(r) is true. Clearly L∩B− =

∅. Therefore, the loop formula associated with L is active on
B.

Given a program P and a stable partial assignment B,
if ASP deduce on B results in conflict or implication,
then M 6= ∅. By Theorem 6, there exist loop formulas that
are active on B w.r.t P . Such loop formulas can be com-
puted by identifying the terminating loops in the subgraph
of DG(P (B)) induced by M . Figure 5 lists the algorithm
for the function gen inferred clause.

Input: Logic program P , assignment B
1 M = Atoms(P) − B− − Atmost(P,B);
2 Find all terminating loops from the subgraph of

DG(P (B)) induced by M ;
3 Compute the loop formulas for all terminating loops;
4 Return the loop formulas as the inferred clauses.

Figure 5: Function gen inferred clauses

A full assignment obtained by the new procedure is a
model of the completion of the input program, and no loop
formulas are active on it. By Theorem 1, it corresponds to
an answer set.

An interesting result for tight programs can be inferred
from Theorem 6.

Corollary 7. If a program is tight, neither implication nor
conflict will be returned by ASP deduce on a stable partial
assignment.

This result can be used to improve the performance of
SMODELS on tight programs by eliminating the invocation
of the Atmost function.

Implementation
Based on the new procedure, we build an answer set solver
SAG on top of the state-of-the-art SAT solver MCHAFF1.
It uses LPARSE 2 to ground the input program which may
include cardinality rules and choice rules (Simons, Niemelä,
& Soininen 2002).

These rules can be handled following a procedure de-
scribed in (Ferraris & Lifschitz 2003), which is adopted

1http://www.princeton.edu/˜chaff
2http://www.tcs.hut.fi/Software/smodels/

by CMODELS. Our treatment of choice rules is equiva-
lent to that by CMODELS, but for cardinality rules, we use
a “guess and check” approach. We replace each carinal-
ity constraint in the input program by a new atom, called
constraint atom. In SAG, we periodically check the con-
sistency between the truth values of the constraint atoms and
the valuations of the corresponding cardinality constraints.

In the procedure of Figure 3, ASP deduce is invoked on
every decision level. In fact, to guarantee the soundness of
the procedure, it is sufficient to invoke it only on full assign-
ments. As far as efficiency is concerned, it is ideal to in-
voke ASP deduce only when it will return implication or
conflict. In practice, we can use some heuristics to decide
when to execute ASP deduce. In SAG, the ASP deduce is
invoked randomly with a probability set by the solver users,
called invocation probability.

Experimental results

SAG is tested against SMODELS2, CMODELS using
SAT solvers MCHAFF and ZCHAFF1, and ASSAT using
MCHAFF on a variety of benchmarks of non-tight pro-
grams. We do not include DLV because it is specially de-
signed for disjunctive programs. We do not experiment with
tight programs because all SAT-based solvers behave simi-
larly due to the fact that there is a one-to-one correspondence
between the answer sets and the completion models.

The experiments are carried out on a DELL Powerage
1850 (two 3.6 GHz Xeon CPUs) with Linux 2.4.21. All
solvers use LPARSE to ground the input programs and the
time used by LPARSE is counted in the statistics. The sys-
tems used are LPARSE-1.0.15, SMODELS-2.28, ASSAT-
2.02, CMODELS-3.50 and MCHAFF-spelt3. The results
reported are the CPU time in seconds for each solver to find
an answer set.

SAG
Graph SM CM CZ Assat p=0.5 p=0.1

2xp30.1 0.19 24.72 ** 36.15 0.29 0.61
2xp30.2 ** 58.65 ** 27.46 0.18 1.91
2xp30.3 ** 9.84 ** 17.18 0.34 0.24
2xp30.4 ** ** 463.4 469.6 76.97 73.03
rand2 ** 24.2 109.8 93.9 32.69 2.24
rand5 ** 3.94 ** 40.39 1.51 1.03
rand7 0.49 8.37 ** 19.98 1.5 0.87
jbr0.1 ** ** ** ** 1.95 2.7
jbr0.2 4.54 ** ** 191.6 8.26 5.23
jbr0.3 13.83 ** ** 484.1 3.71 8.66
jbr0.4 38.45 ** ** 25.95 7.87 4.58
sim7 513.2 14.22 0.87 7.27 0.06 0.06
sim8 ** 89.83 ** 86.23 0.22 0.23
sim9 ** ** ** 168.5 10.97 6.58

Table 1: HC problems encoded as normal programs.
Legends: SM – SMODELS; CM – CMODELS(MCHAFF);
CZ – CMODELS(ZCHAFF); p – invocation probability of
ASP deduce; ** – time greater than 600 seconds.

SAG
Graph SM CM CZ p=0.5 p=0.1

2xp30.1 0.08 35.92 498.88 0.06 0.16
2xp30.2 ** 156.25 10.8 0.35 0.65
2xp30.3 ** 156.33 10.86 0.39 0.65
2xp30.4 ** ** ** 26.47 28.97
rand2 ** 192.19 ** 12.85 18.66
rand5 ** 31.01 ** 0.66 6.16
rand7 0.16 398.17 ** 0.44 0.26
jbr0.1 0.17 ** ** 2.16 0.28
jbr0.2 0.48 51.03 ** 0.64 0.54
jbr0.3 0.9 21.1 ** 0.24 1.42
jbr0.4 1.57 575.5 ** 0.28 0.27
sim7 270.5 4.03 1.01 0.11 0.12
sim8 ** 11.07 472.53 0.41 0.98
sim9 ** 220.5 ** 0.06 0.05

Table 2: HC problems encoded as extended programs.
Legends: see table 1.

The first set of programs are those finding Hamilto-
nian circuit (HC) from the following graphs. Graphs
2xp30.1 – 2xp30.4 are hand-coded graphs3; rand2, rand5
and rand7 are random graphs4; jbr0.1 – jbr0.4 are ran-
dom graphs which are generated using ASP benchmark gen-
erator JBenge5, with 80 vertices and the probabilities of
the existence of an edge between any two vertices rang-
ing from 0.1 to 0.4; sim7 – sim9 are simplex graphs with
levels of 7 – 9 which are also generated by JBenge. Ta-
ble 1 lists the results on the normal program encoding in
(Niemelä 1999). Table 2 displays the results on the ex-
tended program encoding (with cardinality constraints) from
http://www.cs.engr.uky.edu/ai/benchmarks.html. ASSAT is
not in Table 2 since it does not support cardinality con-
straints.

From Table 1 and Table 2, we can see that, in most cases,
SAG is at least an order of magnitude faster than other sys-
tems. In the other cases, it is very close to the top performer.
SAG demonstrates its robustness in solving various problem
instances. The performance difference of SAG running with
the two ASP deduce invocation probabilities seems to be
marginal, compared to the differences between SAG and the
other solvers.

The second class of programs are those solving bounded
LTL model checking problems6 as described in (Heljanko
& Niemelä 2003). They are encoded as extended logic pro-
grams. The results are listed in Table 3. We can see that
SAG running with the ASP deduce invocation probability
of 0.1 performs better than that with 0.5, and it is the overall
winner.

The last set of programs are those solving problems re-
lated to checking requirements in a deterministic automaton
(http://www.fmi.uni-stuttgart.de/szs/research/projects/

3http://assat.cs.ust.hk/Assat-2.0/hc-2.0.html
4http://asparagus.cs.uni-potsdam.de/
5http://www.cs.uni-potsdam.de/˜konczak/JBenge/index.html
6http://www.tcs.hut.fi/ kepa/experiments/boundsmodels/

SAG
BMC SM CM CZ p=0.5 p=0.1

dp10io2b11 139.51 313.59 35.47 86.9 26.69
dp10so2b8 6.94 13.32 1.04 2.7 1.42
dp12so2b9 120.82 10.84 5 16.39 7.19
dp10io2b12 128.07 17.03 error 2.59 2.52
dp10so2b9 11.54 6.07 4.79 3 1.36
dp12so2b10 308.8 11.53 5.42 3.89 0.88
dp12io2b14 ** 78.12 ** 75.49 49.21

Table 3: Bounded Model Checking Problems.
Legends: error – program aborted due to runtime error;
See Table 1 for the others.

SAG
SM CM CZ Assat p=0.5 p=0.05

mutex4 16.76 4.6 4.1 4.11 5.44 4.66
phi4 0.21 27.28 error 5.22 0.39 0.34

mutex2 0.32 0.96 0.24 3.56 0.39 0.37
mutex3 146.19 ** error mem ** **

phi3 3.57 27.66 4.52 57.94 6.04 4.82

Table 4: Checking requirements in a deterministic automa-
ton.
Legends: mem - program aborted due to insufficient mem-
ory; Others are the same as in the previous tables.

synthesis/benchmarks030923.html)(Stefanescu, Esparza, &
Muscholl 2003). The results are listed in Table 4, where
problem mutex4 and phi4 are of type “IDFD”, and mutex2,
mutex3 and phi3 are of type “Morin”. As we can see, SAG
is comparable to the top performer for all problems except
for mutex3 where SMODELS is the only solver that finish
within the time limit of 600 seconds.

Conclusion
To build fast SAT-based answer set solvers, we propose to
add answer set extensibility checking on partial assignments
for non-tight programs. When the extensibility checking
returns implication or conflict, we propose to find loop
formulas active on the current assignment and use them to
guide the search. A new answer set solving procedure is pre-
sented based on these proposals. The empirical studies on
well-known benchmarks show that the new approach leads
to a significant performance boost to the SAT-based answer
set solvers.

The SAG system and the benchmarks used in this paper
can be found at http://www.cs.ttu.edu/∼yzhang/sag/ .

Acknowledgements
We thank Dr. Michael Gelfond for discussions and support
during this research work.

References
Clark, K. L. 1978. Negation as failure. In Gallaire, H., and
Minker, J., eds., Logic and Data Bases. Plenum Press, NY.
293–322.

Davis, M.; Logemann, G.; and Loveland, D. 1962. A
machine program for theorem proving. Communications
of the ACM (5):394–397.
Fages, F. 1994. Consistency of Clark’s completion and
existence of stable models. Journal of Methods of Logic in
Computer Science 1:51–60.
Ferraris, P., and Lifschitz, V. 2003. Weight constraints as
nested expressions. CoRR cs.AI/0312045.
Gelfond, M., and Lifschitz, V. 1988. The stable model se-
mantics for logic programming. In Kowalski, R. A., and
Bowen, K., eds., Proceedings of the Fifth International
Conference on Logic Programming, 1070–1080. Cam-
bridge, Massachusetts: The MIT Press.
Heljanko, K., and Niemelä, I. 2003. Bounded LTL model
checking with stable models. Theory and Practice of Logic
Programming 3(4&5):519–550.
Lee, J., and Lifschitz, V. 2003. Loop formulas for dis-
junctive logic programs. In Palamidessi, C., ed., ICLP, vol-
ume 2916 of Lecture Notes in Computer Science, 451–465.
Springer.
Lierler, Y., and Maratea, M. 2004. Cmodels-2: SAT-based
answer set solver enhanced to non-tight programs. In Lif-
schitz, V., and Niemelä, I., eds., LPNMR, volume 2923 of
Lecture Notes in Computer Science, 346–350. Springer.
Lin, F., and Zhao, Y. 2002. ASSAT: Computing answer
sets of a logic program by SAT solvers. In AAAI/IAAI,
112–118.
Moskewicz, M. W.; Madigan, C. F.; Zhao, Y.; Zhang, L.;
and Malik, S. 2001. Chaff: Engineering an Efficient SAT
Solver. In Proceedings of the 38th Design Automation
Conference (DAC’01).
Niemelä, I. 1999. Logic programs with stable model se-
mantics as a constraint programming paradigm. Annals of
Mathematics and Artificial Intellignece 25:241 – 273.
Simons, P.; Niemelä, I.; and Soininen, T. 2002. Extending
and implementing the stable model semantics. Artificial
Intelligence 138(1–2):181–234.
Stefanescu, A.; Esparza, J.; and Muscholl, A. 2003. Syn-
thesis of distributed algorithms using asynchronous au-
tomata. In CONCUR, 27–41.
Zhang, L.; Madigan, C. F.; Moskewicz, M. W.; and Ma-
lik, S. 2001. Efficient conflict driven learning in boolean
satisfiability solver. In ICCAD, 279–285.

