The Optimistic Principle and Optimistic
Pruning: A Preliminary Report *

Eugene C. Freuder and Yuanlin Zhang**

Cork Constraint Computation Centre,
University College Cork, Ireland
{e.freuder, y.zhang}@4c.ucc.ie

Abstract. In contrast to the deterministic and sound inference during
search, we propose to make inference in an optimistic way, to speed up the
solving of problems. Specifically, we examine optimistic pruning where a
value is excluded from consideration when it is close to arc inconsistent.
Our preliminary empirical study shows that under a proper level of opti-
mism, optimistic pruning improves the performance of a MAC algorithm
on the hard random problem instances close to (from the satisfiable side
of) the phase transition point.

1 introduction

Much human and computer search simplifies the search space by making assump-
tions, which can later be incrementally or totally retracted if they eliminate all
satisfactory solutions. Basic backtrack search, which underlies much of CSP solv-
ing, can be viewed in these terms. However, there the expectation is that failure
is likely and backtracking inevitable. Here we propose an important ’psychologi-
cal shift’. Rather than take the natural, conservative attitude 'we can’t do that,
it could lose solutions’, we propose a more ’optimistic’ approach: ’let’s try that,
it might work’. Once we have done this basic bit of ’lateral thinking’ a whole
new world of possibilities opens up to us.

More specifically, we can consider situations in which conditions C allow
us to conclude a useful property P, and ask: Suppose we can come ’close’ to
establishing C, might it prove profitable to assume P anyway? More specifically
still, we can consider properties like arc-inconsistency that allows us to prune
values from variable domains and ask: Suppose a value is ’close’ to being arc
inconsistent, might it be profitable to assume it is? At worst, we might prune
values that leave us without a solution, or without the best solution if we are
optimizing; but we can always ’go back’ and undo our assumption if need be. The
question, as with all heuristic methods, is whether the potential gains outweigh
the potential losses.

* This work has received support from Science Foundation Ireland under Grant
00/P1.1/C075.

** Current address: Department of Computer Science, Texas Tech University, Lubbock,
Texas.

2 Eugene C. Freuder and Yuanlin Zhang

It is actually rather curious that a field that emphasizes backtracking in
search more than any other has not explored more backtracking in inference.
Of course, choice and backtrack is forced on us for search. Inference is attrac-
tive in that it can be deterministic. However, embracing the risk involved in
voluntary choice, backstopped if necessary by backtracking, may prove powerful
as well. Stochastic approaches, such as local search and random restart, have
demonstrated that taking risks can be fruitful.

2 Optimistic pruning

Many methods have been developed to prune the search space. We restrict our-
selves to a specific and well studied pruning process: maintaining arc consistency
during search (MAC) [3]. In an optimistic MAC, a value is excluded from further
consideration if it is close to be arc inconsistent with respect to a constraint. The
optimism here is that if a value is close to be arc inconsistent, it stands a very
small chance to be supported in the future. How do we measure the closeness of
arc consistency?

Value ordering heuristics are frequently used to improve the efficiency of
solving a CSP problem. When instantiating a variable, a more promising value
is tried first. In other words, the less promising values are not likely to be a
correct assignment for the current variable. In optimistic MAC, the closeness to
arc inconsistency can be measured by any value ordering heuristic, and the less
promising a value is, the closer it is to arc inconsistency. When instantiating
a variable, it is cheap to calculate an ordering on its values, but it could be
expensive to maintain a value ordering on all variables during each invocation
of arc consistency. Here, we propose two ways to determine whether a value is
close to be arc inconsistent.

The first is to check the number of supports of a value with respect to each
constraint on it. When this number falls below a threshold, the value will be
removed from further consideration. The second depends on the proportion of
supports that a value has lost during a search procedure. If the proportion drops
below a certain percentage, the value will be deleted optimistically because it
loses supports “faster” than the other values.

Example Consider three variables z, y and z that can take values from
a domain of {—5,—-2,—1,1,2,5}. The constraint between z and y is |z| = |y|
when z = +5 and otherwise is almost “|z| = |y| + 1 or |y| = |z| + 1”7 (except
for —2 of z and —1 of y) as shown in Fig. 1. The other constraints are |z| = |z|
and |y| = |z|. Since —2 of z has only one support in y, it can be removed
optimistically, resulting in the removal of {—1,1,—2, 2} from the domains of z,
y and z. Now, it is easy to find a solution for the problem.

In our experiments, the optimism defined above leads to too many values
to be deleted, resulting in no solution for many originally satisfiable problem
instances. As more variables are instantiated, the condition of optimism is easier
to be satisfied in the later stage of the search. To curb this tendency, one method

The Optimistic Principle and Optimistic Pruning 3

Fig. 1. A constraint between variables x and y

is to turn off the optimism at certain depth (i.e., the number of instantiated
variables) of search.

2.1 Optimistic pruning algorithm

In this section, we present an optimistic MAC algorithm that removes a value
optimistically in terms of the number of its supports. In the algorithm we need
to maintain the number of supports of a value, implying that the techniques
developed in AC-4 [2] are a good choice for this optimistic algorithm.

For each value with respect to a constraint incident on it, AC-4 maintains
not only the number of, but also a list of, all supports for the value. At the
initialization stage of AC-4, all the values that have zero support will be put
into a queue so that later we are able to propagate the removal of them to all
their supports. Specifically, when a value is taken from the queue, for each of its
supports a, decrease the number of supports of a by one. The optimism comes in
now. When a’s number of supports falls below a threshold, a will be put into the
queue, waiting to be deleted. At the same time, we can also check whether we are
beyond certain depth of search and if so turn off the optimism. The propagation
continues until no value is left in the queue.

The kernel of a preprocessing AC algorithm or MAC [3] is the propagation
algorithm. Given a queue of removed values, the propagation algorithm of the
optimistic MAC, listed in Fig. 2, popagates the values optimistically. The algo-
rithm needs the following data structures. For any value a of a variable ¢ and
a constraint between ¢ and j, counter(i,a,j) and supports(i,a,j) are the
number, and the list respectively, of all supports of a with respect to the con-
straint between 7 and j. A list of values to be removed, each of which is denoted
by (i,b) (a value b of variable i), are put in the queue Q.

The algorithm opti-propogate(Q) in Fig. 2 propogates the deletion of the
values in Q and removes an affected value optimistically in terms of the optimistic
condition implemented by the procdure removable-optimistically(j, a, i).

Line 1 in Fig. 3 ignores the optimism when the variable 4 is instantiated or
has only one value left in its domain. In this case, any value of j has only one

4 Eugene C. Freuder and Yuanlin Zhang

algorithm opti-propogate(Queue Q)
begin
while @ not empty do
select and delete a value (i,b) from Q;
for each neighboring variable j of ¢ do
for each value a in supports(i,b,j)
if removable-optimistically(j, a, i)
delete (i,a);
Q+ QU{ G,a) };
endif
endfor
endfor
endwhile
end

Fig. 2. The AC-4 propagation algorithm

procedure removable-optimistically(j, a, i)
begin
counter(j,a,i) = counter(j,a,i)-1;
if counter(j,a,i) is zero
return true;

1. if domain of i has only one value left
return false;
2. if counter(j,a,i) is smaller than a threshold

and the current search depth is shallower than a threshold
return true;
else return false
end

Fig. 3. procedure to check whether a value is optimistically removable

support in ¢ and the optimism is turned off because otherwise all values of j will
be excluded optimistically, resulting in a search failure. Line 2 is to apply the
optimistic removal criteria to the value a of variable j.

3 Experimental results

Experiments are designed to examine the effectiveness of the optimistic MAC
and to characterise the problems on which optimistic pruning is effective. Uni-

The Optimistic Principle and Optimistic Pruning 5

formly randomized binary constraint satisfaction problems (based on model B)
serve these purposes well. To specify a set of problem instances, we need the
parameters of the number of variables n, the maximum domain size d of the
variables, the number of constraints e, and the tightness of the constraints ¢ (¢
is the number of disallowed tuples). A tuple < n,d,e,t > is used to distinguish
different classes of problem instances.

In our experiments, < n,d,e,t > is set in terms of the following rules. n,d
are chosen arbitrarily and independently. To locate the hardest problems, the
number of constraints is set to be about 93% of n(n — 1)/2, the number of all
possible constraints. Once n,d, e are fixed, we locate the ¢t at the peak of the
phase transition area. From the instances of < n,d,e,t > we choose only those
instances that are satisfiable. The reason to do so is to locate the problems
where optimistic pruning is promising. For unsatisfiable instances, due to the
incompleteness of optimistic pruning, finally we have to resort to a complete
search algorithm to prove the unsatisfiability and thus optimistic pruning could
not improve the performance of the hosting search algorithm.

After < n,d,e,t > is fixed, we vary e, the number of constraints, to generate a
sequence of classes of instances. In this way, we have hard problems in a relatively
large range of varying e’s, in contrast to generating instances by varying ¢ with
n,d, e fixed.

For example, after setting n and d to be 30 and 10 respectively, e should
be 405 (about 93% of all constraints). Through experiments on various t’s, we
find the phase transition point where ¢t = 15. With n, d, ¢t being 30, 10 and 15
respectively, experimental data shown in Fig. 4 (The diagram is colorful and
best viewed on a computer) are collected by setting e to be various values less
than 405.

The optimistic pruning algorithms are parameterized by the minimum num-
ber of supports a value should have with respect to any incident constraints, and
the threshold depth that is the search depth where the optimism is turned off. In
all the experiments reported here, we set the minimum support to be 2, and vary
the threshold depth from 2 to 4. In Fig. 4, optiMAC< 1,2 > means an algorithm
that removes a value if it has at most 1 support and employs a threshold depth
of 2. From this figure, it is observed that the optimistic algorithm with threshold
depth of 4 performs better than the non-optimistic MAC, especially on harder
problems close to the phase transition point.

To see whether this observation is applicable to other classes of random
problems, we explored the problems whose number of variables and domain size
are around 30 and 10 respectively. Fig. 5 shows the results on n = 27 and d from
9 to 13. The z axis is the sequence number of different settings and y axis is
the average number of constraint checks used for solving the instances in each
setting. The diagram contains five components. The leftmost is for d = 9, the
second for d = 10, and so on. The setting for each component varies only on
the numbers of constraints. For example, the left most component is obtained
by varying the number of constraints from 309 to 339 when n,d,t are 27, 8 and
12 respectively. It can be regarded as the miniaturized version of a diagram like

6 Eugene C. Freuder and Yuanlin Zhang

n=30, d=10, t=15
2.50E+07 -
/
2.00E+07
P
F

1.50E+07 - —+ MAC
= 7 = optiMAC<1,2>
g pi optiMAC<1,3>

1.00E+07 ra 7 optiMAC<1 4>

// - /.
e o 5
5.00E+06 p
0.00E+00 . . ' ’ ’ . .
375 380 385 390 395 400 405 410
Number of constraints

Fig. 4. Experimental results on problem instances

Fig. 4. Results on other settings are shown in Fig. 6-8 (they are colorful picures
and best viewed on a computer) that use the same legends given in Fig. 4.

From these results, we can see that under a proper threshold depth, the
search algorithm with optimistic pruning performs better in most cases than non-
optimistic algorithm on the problems close to the peak of the phase transition
area.

There are a few remarks on the data shown in the diagrams. First, the number
of settings in each component varies. This is due to the fact that we eliminate
settings where there exist unsatisfiable instances. This could be remedied in the
future experiments by selecting a slightly smaller tightness for those settings
generating unsatisfiable instances. Second, each component is supposed to be
increasing when the number of constraints increases. The reason this is not true
for our data might be that we did not use a sufficient number of instances for
each setting < n,d,e,t >. (Due to the large number of settings, we test only 5
instances for each setting. We believe larger number of instances could improve
the situation.)

4 Discussion

Tterative broadening reported in [1] is a search scheme under which for each vari-
able, there is only a fixed number of values will be tried and backtracking occurs
if these values fail to be consistently extensible to a solution. In this scheme, no
values in the domains of future variables will be excluded from consideration (if

The Optimistic Principle and Optimistic Pruning 7

n=27,d=9—13

Fig. 5. Experimental results on more problem instances

they have a support with respect to every incident constraint). In the case of
optimistic pruning, some values of future variables will be deleted optimistically
in terms of the search depth and the number of its supports. This leads to more
pruning than the iterative broadening scheme.

Some readers might have realized that the optimism MAC, especially through
our experiments, is very coarse grained. For example, the optimism is turned off
at a very shallow depth of 4. We had tried to increase the threshold depth of the
optimistic pruning but obtained answers of unsatisfiability for some originally
satisfiable instances. It seems necessary to develop more fine-grained optimism
to achieve better performance. For example, when considering removing a value
optimistically, we could use the information on its supports with respect to all
incident constraints, rather than one constraint. In our current algorithms and
implementation, the same optimism scheme is used during arc consistency after
each instantiation of a variable. In this case, the optimism could be applied to
the same domain repeatedly, possibly resulting in more values removed optimisti-
cally. To relieve this effect, we can either restrict the number of times we apply
optimism to the domain of each variable in one execution of arc consistency
algorithm or relate the invocation of the optimism to the size of the domain.

8 Eugene C. Freuder and Yuanlin Zhang

n=28d=9—13

n=29,d=10—13

57 62 67 72 77

Fig. 6. Experimental results on more problem instances (continued)

The Optimistic Principle and Optimistic Pruning 9

n=30,d=10— 13

83 88 93 98 103
n=31,d=8—13

105 110 116 120 125 130 13

Fig. 7. Experimental results on more problem instances (continued)

10 Eugene C. Freuder and Yuanlin Zhang

n=32,d=10—13

135 137 139 141 143 145 147 149 151
n=233,d =10—13

151 156 161 166 17 176

Fig. 8. Experimental results on more problem instances (continued)

The Optimistic Principle and Optimistic Pruning 11
5 Conclusion

We propose to make optimistic inference during search and examine a specific
optimistic pruning — optimistic MAC. Preliminary experiments show that there
exist problems for which optimistic pruning is very promising. With proper con-
trol of optimism (through number of supports and depth of search), this approach
improves the performance of a search procedure on most problem instances close
(from the satisfiable side) to the phase transition point. It is also observed that
optimistic pruning makes some easy problems harder to solve. In the future we
will explore the potential of optimistic pruning by designing more fine-tuned
types of optimism and more importantly identifying the problems in specific
application domains that can be efficiently solved by optimistic pruning.

6 Acknowledgement

We thank Barry O’Sullivan and Tudor Hulubei for many disscussions on the
material presented here.

References

1. Matthew L. Ginsberg and William D. Harvey. Iterative broadening. Artificial
Intelligence, 55(2):367—-383, 1992.

2. R. Mohr and T.C. Henderson. Arc and path consistency revisited. Artificial Intel-
ligence, 28:225-233, 1986.

3. D. Sabin and E. Freuder. Contradicting conventional wisdosdom in constraint sat-
isfaction. In Proceedings of the Second Workshop on Principles and Practice of
Constraint Programming, pages 10-20, Rosario, Orcas Island, Washington, 1994.

