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Summary

This thesis focuses on two kinds of important constraints� n�ary� linear constraints

and binary� functional constraints over �nite domains�

n�ary integer linear constraints have been actively used to prune search space by propa�

gating bounds of domain of variables� In this thesis� we formalize this idea to bound con�

sistency� Under the new formalism� we present several consistency enforcing algorithms

and give their complexities� Our study shows that in some cases� algebraic manipula�

tion will help to prune search space signi�cantly� Our investigation also shows that by

transforming a binary equation system into its solved form� the least �xed point and an

e�cient consistency enforcing algorithm can be achieved�

Algorithm enforcing arc�consistency on functional constraints with optimal time com�

plexity has been invented� Our research shows that n�consistency can be enforced on

such constraints with each functional constraint checked only once� The algorithm en�

forcing n�consistency on functional constraints has optimal space complexity and under

some conditions� it also has optimal time complexity�
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Chapter �

Introduction

��� Introduction

The Constraint Programming CP� paradigm combines the power of constraints and

constraint solving� and programming language for general problem solving� Under this

new paradigm� programming is enhanced by the expressiveness of constraints and ben�

e�ts from a wealthy of constraint solving techniques from AI� Operations Research and

other mathematical area� The most prominent example of constraint programming is

constraint logic programming CLP� which greatly advances the development of CP�

CLP is not only an elegant framework for a class of constraint programming languages

based on Horn clause logic� but also has gained great success in many real�life applica�

tions� The commercial versions of CP like CHIP and ILOG have been spread widely

in such applications as production planning� scheduling and resource allocation �vH���

Kum�� etc�� Speci�cally� CHIP and ILOG are representatives of constraint programming

over �nite domains which employ Constraint Satisfaction Problem CSP� its underlying

model� and embed CSP solving techniques in the constraint solvers�

The computation of CLP over �nite domain usually involves solving integer linear

�
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equations and inequalities� dis�equations over natural number terms� ad�hoc symbolic

constraints and user�de�ned constraints� The basic constraint solving techniques adopted

by the constraint solver of CLP over �nite domain involves mainly the consistency tech�

niques inherited from CSP� The task confronting a constraint solver is how to e�ectively

deal with those constraints� For the sake of e�ciency� constraints are classi�ed into basic

constraints and non�basic constraints� Speci�cally� the basic constraints are a special

class of binary constraints� that is functional constraints�anti�functional constraints and

monotonic constraints� All the other constraints fall into the category of non�basic con�

straints� Actually the non�basic constraints can be further classi�ed� The well�known

n�ary integer linear equations and inequalities are treated separately in most constraint

programming languages�

In this thesis� we will address the following two problems�

� How far can we go for the basic constraints�

� How to deal with n�ary integer linear constraints�

For arc�consistency enforcing on basic constraints� a special algorithm �VHDT��� with

optimal time complexity has been proposed� However� under the same time complexity

we �nd that n�consistency can be enforced on functional constraints� and furthermore�

each functional constraint is checked only once� Our algorithm for consistency enforcing

has optimal space complexity and under some condition has also optimal time complexity�

A brief review on consistency techniques can be found in chapter � and chapter 	�

n�ary integer linear constraints have been actively used to prune search space by

propagating bounds of domains of variables� In this thesis� we formalize this idea as

bound consistency� Under the new formalism� we present several consistency enforcing

algorithms and give an estimate of their complexities� The relationship between local

consistency and global consistency is always an interesting and important topic in CSP�
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We give a thorough study on properties of bound consistency for the case of a special

linear system�binary equation system� We also give preliminary study on the in�uence of

algebraic transformation of n�ary linear constraints on bound consistency and the solving

of linear constraint system�

��� Organization of the Thesis

This thesis is organized as follows�

In chapter � we brie�y describe how constraints are incorporated into rule�based

programming languages� the fundamentals of Constraint Satisfaction Problem� the solver

of a CLP over �nite domain and other related work�

In chapter 	� after an overview of arc consistency techniques� we give detailed analysis

of functional constraints and present algorithms for consistency enforcing on them�

Chapter 
 reviews the related area of bound consistency� gives the formal de�nition

of bound consistency and consistency enforcing algorithms� analyses their complexities�

and studies property of bound consistency on equivalent binary equation systems�

In chapter � we give a general view of bound consistency in a wider setting� Ex�

periments are carried out to study the impact of Gaussian�Jordan elimination on bound

consistency and the whole constraint solving process�

Chapter � summarizes the results in this thesis and discusses the future work and

related research�
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Preliminaries on CLP over Finite

Domain

��� Constraint Logic Programming

The constraint logic programming �JL��� JM�
� de�nes a class of languages based upon

the paradigm of rule�based constraint programming� All the languages of this class are

based on a uniform framework of formal semantics� Each logic�based constraint program�

ming language� its declarative semantics� its operational semantics and the relationship

between these semantics could all be parameterized by a choice of domain of computation

and constraints� The parameters can be characterized by a quadruple 
P
�D�L� T �� Here

P
is a signature� D is a

P
�structure� L is a class of

P
�formula� and T is a �rst�order

P
�theory�Intuitively�

P
is the set of the prede�ned predicate and function symbols and

their arities� D is the structure over which computation is performed� L is the class of

constraints� and T is an axiomatization of properties of D�A constraint domain can be

understood as a tuple D�L��

An instance of CLP can be obtained by specifying the constraint domain� The fol�
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lowing are some CLP systems over di�erent constraint domains� The traditional logic

programming �Llo��� can be viewed as CLP over the constraint domain of �nite trees�

CLPR� �JMSY��� has linear arithmetic constraints and computes over real numbers�

Nonlinear arithmetics is treated by delay mechanism� Prolog III �Col��� involves several

constraint domains including the two valued boolean algebra� linear arithmetic over ra�

tional numbers and a domain of strings� CHIP �DVHS��� also has several domains among

which the most prominent is �nite domains linear arithmetic constraints and some ad

hoc constraints over bounded subsets of integer�� There are now several languages deal�

ing with �nite domain� ccFD� �VHSD�	�� CLP FD� �CD���� Echidna �HSSJO��� and

Flang �Man�	��

Let
P

denote the set of function and predicate symbols de�ned in the constraint

domain� and � the set of predicate symbols de�ned by a program�A primitive constraint

has the form of qt�� � � � � tn�� where t�� � � � � tn are terms over
P

and p �
P

is a predicate

symbol� An atom has the form of pt�� � � � � tm�� where t�� � � � � tm are terms and p � � is

a predicate symbol� A CLP program is a collection of rules of the form

a� c�B

where c is the conjunction of constraints in the body� B is the conjunction of atoms in

the body� and a which is called head of the rule is an atom� A goal G is a rule without

head� A fact is a rule with only constraints in its body�

The operational semantics�based on the top�down execution� of a CLP program can

be described by a transition system on states� Each state is a triple � A�C� S �� where

A is a multi�set of atoms and constraints� C and S are multi�sets of constraints which are

also referred to constraint store upon which a constraint solver acts� A goal G initiates a
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transition sequence by giving the starting state � G� �� � �� Here we assume there exists

a computation rule which selects a transition type and an appropriate element of A for

each state� In order to de�ne a transition� we also assume a predicate consistent and a

function infer which can be considered as two aspects of constraint solving�

The transitions of the transition system are �

� A � fag� C� S ��r� A �B�C� S � a � h� �

if a�an atom� is selected by the computation rule� h � B is a rule of P � and h and a

have the same predicate symbol� a � h means the conjunction of equations between

corresponding arguments of a and h�

� A � fag� C� S ��r fail

if a is selected by the computation rule� and there is no rule of P whose head does not

have the same predicate as a�

� A � fcg� C� S ��c� A�C� S � c �

if c is a constraint and it is selected by the computation rule�

� A�C� S ��i� A�C �� S� �

if C �� S�� � inferC�S��

� A�C� S ��s� A�C� S �
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if consistentC��

� A�C� S ��s fail

if �consistentC��

A derivation is a sequence of transitions

� A�� C�� S� �� � � � �� Ai� Ci� Si �� � � �

A state is called �nal state if it can not be further rewritten� A derivation is successful if

it is �nite and the �nal state has the form of � �� C� S �� If a goal G with free variables

�x initiates a successful derivation whose �nal state is � �� C� S �� ���xC 	 S is called

the answer constraint of the derivation�Given a goal G� program P and the computation

rule� the search space of all possible derivations starting from � G� �� � � can be thought

of as a computation tree� The problem of �nding answers to a query can be seen as the

problem of searching the computation tree to obtain a successful derivation�Most CLP

systems employ a depth��rst search with chronological backtracking �JM�
��

In the view of the operational semantics� there are several operations on constraints to

be implemented� They are satis�ability test to implement consistent and infer� entailment

test to implement guarded goals�and the projection of constraint store onto a set of

variables to compute the answer constraint from the �nal state� The constraint solver

must be able to undo the e�ects of newly added constraints when the inference engine

backtracks�

Here we are mainly concerned with satis�ability test � consistent and infer�The

consistent�C� is a test of satis�ability of C�consistent�C� i� D j� ��C� Function infer

computes from the current set of constraints a new set of active constraints and passive

constraints� It varies widely from system to system� In general� there is a tradeo� be�
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tween a complete consistent and an incomplete consistent� and between a weak infer and

a strong infer in order to achieve satisfactory e�ciency� The implementation of CLP

requires that the algorithm for constraint solving must be incremental�

��� Constraint Satisfaction Problem

A large number of problems in Arti�cial Intelligence AI� and other areas of Computer

Science can be expressed as constraint satisfaction problems� Some example applications

are machine vision�belief maintenance� scheduling� temporal reasoning�graph coloring�

circuit design�boolean satis�ability and logic puzzle solving� CSP has been extensively

studied in the area of AI �Wal���� �Mon�
� and �Mac����� �Tsa�	� gives a detailed

description on this relatively new area� The de�nitions in this section follow �Mac����

De
nition � A Constraint Satisfaction Problem CSP� is a triple V�D�C�� where V �

fx�� � � � � xmg is a �nite set of variables of the problem� D � fD�� � � � � Dmg is a collection

of �nite set of objects and xi can only take values from Di� and C � fC�� � � � � Ceg is a

�nite set of constraints each of which is de�ned over a subset of V �

An instantiation of a variable xi is to assign a value in Di to xi� A solution of

a constraint Cixi� � � � � � xik� is a tuple of instantiations vi� � � � � � vik� of variables such

that Civi� � � � � � vik� is true� A constraint Ci normally takes two forms� One form is

represented by explicit tuples of instantiations of subject variables which is a subset of

Cartesian product Di� 
 � � � 
 Dik � Another one is represented implicitly� for example�

by mathematical expressions�

The domain Di in fact is a unary constraint on xi� It is singled out because for any

CSP� there always exists such a constraint on each variable� It is this feature together

with the �nite number of constraints that makes a general solving strategy for CSP
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possible� The simplest one is the generate�and�test paradigm in which each possible

combination of instantiations of all variables is systematically generated and then tested

to see if it satis�es all the constraints� An immediate improvement over that paradigm

is the backtracking paradigm in which the basic idea is that if an instantiation of some

variables can not satisfy the constraints all the extensions of the partial instantiation

to the whole set of variable can not satisfy the constraints and thus those extensions

need not be explored� Given a CSP V�D�C��an illustrative algorithm for backtracking

paradigm is as follows

�� k � ��

�� If all variables in V are instantiated� a solution has been found and the algorithm

terminates�Otherwise pick an uninstantiated variable x� Set Sk to be the set of all

values of x which are compatible with instantiations so far�

�� If Sk is empty� go to step 	� Otherwise�pick one value for x and remove it from Sk�

k � k � �� and go to ��

	� k � k � �� If k � �� there is not solution and algorithm terminates�Otherwise go

to ��

Although the backtracking paradigm is better than a generate�and�test method� its run�

time complexity is still exponential� However�the backtracking paradigm is useful because

most CSPs are NP�complete� There are many techniques �Mac���� �Fre���� �Nil����

�HE��� and �DP��� etc�� which have been developed to improve the practical e�ciency

of the backtracking paradigm� Among those we are interested in the following two ap�

proaches�

One way to improve the e�ciency of a backtracking�based searching procedure is to

prune the search space a priori� The combination of pruning techniques with a basic
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searching procedure can be distributed on a wide spectrum from one extreme that there

is no pruning at all to the other extreme that no backtrack is needed�

Another way is to �nd a good ordering of variables to be instantiated and the values

to be chosen for a variable� which has been proved very useful in practical problems

�HE��� Tsa�	��

����� Basics of Consistency

A CSP is called binary CSP if each constraint in C is either unary or binary� A CSP with

constraints not limited to unary and binary is referred to general CSP or n�ary CSP� The

pruning of searching space is achieved by various levels of consistency �Wal���� �Mon�
��

�Mac���� �Fre���� �Fre���� �MF��� and �Dec����� In this section we will present basic

concepts of consistency in the context of binary CSP where the constraint over variables

xi� xji � j� is denoted by Cij for clarity� A binary CSP V�D�C� can be depicted by

a constraint graph N�E� where N � V�E � fxi� xj� j Cij � Cg� Generally� the edge

xi� xj� is understood as two directed arcs � xi� xj � and � xj � xi � in most consistency

enforcing algorithms�

Intuitively� the consistency techniques are used to remove those instantiations on

variables� which lead to no solution by making an active use of constraints�

De
nition � A CSP V�D�C� is node�consistent i� for each variable xi all values in

its domain Dxi satisfy all the unary constraints on xi�

De
nition � An arc � xi� xj � is arc�consistent i� for every value a � Di satisfying

all the unary constraints on xi� there exists a value b � Dj such that b satis�es unary

constraints on xj and Cija� b� holds�

A CSP is arc�consistent i� every arc in its constraint graph is arc�consistent�
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De
nition � Given a path p � xi� � � � � � xik��an instantiation tuple � vi� � vik � for

xi� and xik is path consistent with regard to p i� there exists vi� � � � � � vik��� such that

vil � Dil� � l � k � �� and Cili�l���vil � vil���� � l � k��

A path p � xi� � � � � � xik� is path consistent i� for all vi� � Di� and vik � Dik with

Ci�ikvi� � vik�� � vi� � vik � is path consistent with regard to p�

A CSP is path consistent i� every path in the associated constraint graph are path con�

sistent�

The ideas of node� arc and path consistency are generalized by Freuder �Fre��� as

k�consistency�

De
nition � A CSP is ��consistent i� for any variable xi and any value vi � Di the

unary constraints on xi hold�

A CSP is k�consistent i� given any instantiationv�� � � � � vk��� of any k � � variables

which satis�es all constraints over those variables� there exists an instantiation of any

k�th variable such that v�� � � � � vk� satis�es all constraints over the k variables�

A CSP is strongly k�consistent i� it is j�consistent for all j � k�

Node�arc and path consistency correspond to ��� ��� and 	�consistency respectively�

Generally speaking� the stronger the level of consistency one achieves� the more compu�

tation one requires and the more useless searching space one can prune� It is obvious that

when a CSP is strongly m�consistent a solution can be found without backtrack �Tsa�	��

Numerous algorithms have been invented to enforce certain level of consistency over a

CSP� The theme is how to improve the e�ciency of the consistency enforcing algorithms

generally and speci�cally� In chapter 	 we will give more details on consistency enforcing

algorithms�
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����� Variable and Value Ordering

Assuming tree search with chronological backtracking is used� the possible gains of a

special ordering of variable could be

�� Failures could be detected earlier than other orderings�

�� With some consistency technique� larger portion of the search space can be pruned

o� than other orderings�

Many heuristics for variable ordering have been accumulated �Tsa�	�� Among them are

minimal width ordering MWO� heuristic�minimal bandwidth ordering MBO� heuristic

and �rst fail principle FFP�� MWO �Fre��� orders variables before search by exploiting

the topology of the nodes in its associated constraint graph� MBO �Zab��� obtains the

variable ordering by exploiting the structure of the associated constraint graph� FFP

�HE���BP��� is a very general heuristic for searching� It suggests that the task which is

most likely to fail should be performed �rst� It may be used to produce both dynamic

and static variable ordering� Chapter � will present a heuristics based on this principle�

In practice� a good ordering of variables can drastically improve the e�ciency of the

search procedure�

It has long been suggested that the e�ciency of a search procedure for general search

problems can be greatly a�ected by the ordering in which the branches denoting possible

values for each variable are explored �Nil���� In choosing a value to assign to the chosen

variable� a good general strategy is to choose� if possible� a value which is likely to lead

to a solution and thus reduce the possibility of having to backtrack on this variable and

try an alternative value�
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��� CLP Over Finite Domains

Constraint Logic Programming over �nite domains has been investigated in �DVHS����

�vH���� �CD��� and �VHSD�	� etc�� The paradigm of CLP over �nite domains provides

a perfect language to describe and solve constraint satisfaction problems� It has been

shown that many real�life CSPs can be solved with an e�ciency comparable to procedural

programs� yet with a much smaller development time �DVHS����

The intended application area of CLP over �nite domain is to solve those problems

which can be modeled by CSPs� Typical constraints in such a language include lin�

ear arithmetic constraints and ad hoc symbolic constraints �VHD���� Each variable in

this language is associated with a subset of integers� which is called the domain con�

straint� The essential computation step involves checking the satis�ability of the con�

straint store � C�S �� Obviously�there exists a complete constraint solver to determine

consistent�C�S� as is shown in section ���� However such an approach on one hand is

too time consuming exponential in time complexity� to be a�orded by the solver� on the

other hand is not appropriate for a large class of problems which require di�erent solu�

tions and have special properties which can be exploited to e�ciently solve the problems

at hand� An alternative is to employ an incomplete solver which is equipped with some

consistency technique �vH����

In the constraint store � C�S �� let C be the set of domain constraints� and S be

the set of all the other constraints� The predicate consistentC� is true if and only if no

domain in C is empty� The function infer can be implemented as consistency enforcing

to achieve certain level of consistency� In order to improve e�ciency and �exibility� the

constraint store can be classi�ed into di�erent categories for each of which there is an

e�cient algorithm to implement infer� Without considering the symbolic constraints� the

linear constraints can be separated into basic constraints and non�basic constraints� The



CHAPTER �� PRELIMINARIES ON CLP OVER FINITE DOMAIN �


basic constraints include

ax � b� ax � b� ax � by � c� ax � by � c� ax � by � c�

where a� b� c � � and a � �� All the other binary constraints and n�ary constraints fall

into the class of non�basic constraints�

For basic constraints� the arc�consistency combined with consistent�� is su�cient to

guarantee a complete solver �VHDT���� In this case inferC�S� � C �� S�� The role of

infer is twofold� One is to help test the satis�ability and the other one is to prune the

search space of the problem at hand� In order to achieving more pruning� the path even

k�consistency can be used to implement infer� Chapter 	 gives an implementation of arc�

consistency which achieves optimal space and time complexity and higher consistency for

a special class of constraints�

The arc�consistency of an n�ary constraints �MM��b� can be obtained by a natural

generalization of that of binary constraint� However� for n�ary non�binary� constraints�

such a generalization is too expensive to be a�orded� Here� the semantics of the constraint

has to be considered to obtain a relaxation of arc�consistency� The basic idea is to relax

the domain of the variable to real number and at the same time keep the bounds of the

domain integer� We call such a relaxation bound consistency� Chapter 
 gives a formal

discussion on bound consistency and related consistency enforcing algorithms�

Arc�consistency enforcing algorithms are incremental in nature� Once a constraint is

added to store� the infer will be triggered and sequentially the consistent�� is invoked

to check the satis�ability� Generally� the function infer deals with di�erent levels of of

consistency corresponding di�erent constraints� The new store C �� S� satis�es all the

consistency requirements�
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A methodology of solving constraint satisfaction problem in CLP is

P � � �� ��

� � � Primitive constraints � � ��

� � � Constraints expressed with predicates � � ��

� � � Generators for the variables�

A CLP language normally provides built�in generators so that heuristics such as variable

and value ordering can be fully exploited�

��� Other Related Work

The linear constraints considered in the previous section actually can be described as an

integer programming problem as follows

Ax�b

A � Zm�n� x � Zn� b � Z �
� � ���

A typical technique to solve the above problem is to relax integer domain of variable to

real domain so that standard linear programming techniques can be used� An interesting

observation is that if the relaxed problem does not have solution the original problem

will not have solution too� and if an feasible solution of the relaxed problem is integral

it is also the solution of the original problem� The disadvantage of such a relaxation is

that satis�ability of linear constraints over real domain does not mean its satis�ability

over integer domain� The following section will show the linear programming techniques

incorporated in CLPR��
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����� CLP�R�

The constraint domain of CLPR� is linear constraints over real numbers Non�linear

constraint is also allowed in CLPR� but it is omitted here because of it is irrelevance to

our concerns�� The success of CLPR� has shown that the linear programming techniques

can be e�ciently implemented in a CLP language�

The satis�ability test of linear constraints over real domain in CLP is a special case

of the linear problem

min cx

s�t�Ax � b� x � Rn�

which will minimize the objective function cx where x is subject to linear constraints

Ax � b�

The basic idea of solving the problem �Dan�	�� is as follows� The set of linear

constraints de�nes a polyhedron� An optimal solution to the linear program is located

on one of the vertices of the polyhedron� The simplex method �nds an optimal solution by

moving from a vertex to an adjacent one with a smaller value for the objective function�

An adaption of �rst phase simplex method is used in CLPR� �JMPY��� to test the

satis�ability of a set of linear constraints�

Speci�cally� the linear constraints in CLPR� are partitioned into two classes� one

for equations and the other for inequalities� Gaussian elimination is used to solve the

equations and the adapted �rst phase simplex method is employed to solve the inequal�

ities� A mechanism is provided to coordinate the two di�erent solvers� In addition to

achieving satis�ability test� the constraint solvers can also detect �xed variables which

are grounded� as soon as possible and always maintain a feasible solution for the current

active constraint store�

Note the di�erence between constraint solving techniques used in CHIP and CLPR��
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The arc�consistency techniques consider each constraint individually and the interaction

between di�erent constraints is achieved through the domain of shared variables�� In

linear programming� linear constraints are treated as a whole and a global solution can

be obtained� Consider example

x� � x� � 	

x� � x� � �

�	 � x�� x� � 	

Unsatis�ability can not be detected by arc consistency� but can be detected by simplex

methodfor the above system Gaussian elimination can help us �nd the satis�ability eas�

ily�� The combination of these two approaches of CSP and linear programming obviously

detects unsatis�ability earlier and thus achieves more pruning of search space� As usual�

such a combination incurs an overhead which is not negligible�

����� Combining Consistency Techniques and Linear Programming

�RWH��� proposes a system which employs the �nite domains solvers of ECLiPSe and

a mixed integer programming solving system CPLEX� The system still uses CLP as its

language because of the ease of CLP to model combinatorial optimization problems�

Because CPLEX uses only linear programming as its input� a CLP program has to be

transformed to the standard form recognized by CPLEX�

The kernel of the new system is a hybrid algorithm� Essentially the hybrid algorithm

is a backtracking algorithm combined with consistency enforcing at each search step and

simplex based satis�ability test at certain steps� A CLP language ECLiPSe is employed

to implement the backtracking mechanism and consistency enforcing� At certain search

node CPLEX is triggered to check the satis�ability of the constraint store and if constraint
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store is satis�able� provides a relaxed solution for the constraint store� Note that CPLEX

may not be incremental�

Their experiment results show that for some di�cult problems� for example the Pro�

gressive Party Problem� which cannot be solved in reasonable time by CLP or CPLEX

alone� can be e�ciently solved by the combined system�

Another work is done by Beringer and Backer �BDB���� Motivated by the constraint�

called mixed constraint� which spans over integer domain and real domain�they imple�

mented both �nite domain solver and a revised simplex based linear solver in ICE� Those

mixed constraints are sent to both solvers� The authors� concern is how to make full use

of the linear solver and �nite domain solver� Their strategy is that when the bound of a

variable is changed by �nite domain solver�� the new bound will be sent to linear solver�

The intuition behind this is that the �nite domain solver has done some rounding on

some bounds such that the new bounds can help linear solver to make a more accurate

decision� As soon as a CLP employs both �nite domain solver and linear solver� the idea

of �RWH��� can be easily implemented in such a language by allowing programmer to

put one �nite domain constraint to both solvers when necessary�

In addition to abovementioned advantages of the combination� we are specially con�

cerned with the in�uence of the algebraic transformation of a system on consistency

techniques and the searching procedure�Speci�cally� Chapter � and part of chapter 
 give

an rudimentary study about the in�uence of Gaussian�Jordan elimination on consistency

techniques and searching e�ciency�

The most related work to us is CIAL �CL�
�� From the point view of constraint solv�

ing�CIAL incorporates the consistency techniques and Gaussian elimination tightly�which

means that the consistency is enforced on the transformed linear constraints rather than

the original ones� However� no further analysis on such a combination is given �



Chapter �

Consistency on a Special Class of

Constraints

��� Background

As a key technique in solving constraint satisfaction problem� consistency technique

has been studied extensively in past two decades� In particular� originating from the

Waltz �ltering algorithm �Wal���� a number of arc consistency algorithms have been pro�

posed� Among them are AC�� to AC�	� which are summarized and re�ned by Mackworth

�Mac���� AC�
 �MH����which is an optimal algorithm� AC�� �VHDT���� which is a generic

algorithm and can be specialized to AC�	 and AC�
 separately �and AC�� �BC�	��which

improve the space complexity of AC�
� All these algorithms are designed for general

CSPs� AC�	 has the optimal space complexity of Oe�nd� �MH���� and AC�
 and AC��

have the optimal time complexity of Oed��� where e is the number of constraints and

d the size of the greatest domain� There are also some specialized algorithms �Lau���

�MM��� �VHDT��� that are designed by considering the semantics of constraints and

thus more e�cient�

��
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In this chapter� we are specially interested in algorithms for a class of binary con�

straints� precisely the functional constraint FC�� anti�functional constraint AFC� and

monotonic constraint MC�� Actually these three kinds of constraints correspond to linear

constraint and dis�equation which play an important role in a CLP language� A special�

ization of AC�� �VHDT��� for FCs� MCs and AFCs achieves optimal time complexity

Oed� with space complexity Oe� nd�� In �Liu���� a new kind of constraint�increasing

functional constraint IFC�� is identi�ed and an e�cient algorithm with optimal space

complexity for IFC�MC and AFC is proposed� In this chapter we will present an algo�

rithm for FC� AFC and MC which can be optimal in both time and space complexity

and all the functional constraints need to be checked only once as in �Liu��� for IFC�

Furthermore� the algorithm achieves strongly n�consistency on functional constraints�

Hereafter� the CSP is restricted to binary CSP and we assume that there is only

one constraint over a pair of variables� that is in the associated graph of a CSP there is

only one edge two directed arc� between two nodes� arcG� is used to denote the set

of directed arcs in G� For simplicity� the variable xi is denoted by i� We further assume

that there is a total ordering on the domain�

De
nition 	 �VHDT��� A constraint Cij is functional with respect to domain Di and

Dj i� for all v � Di �respectively w � Dj� there exists at most one element w � Dj

�respectively v � Di� such that Cijv� w��

If Cij is functional� for any v � Direspectively w � Dj� if there exits w � Djrespectively

v � Di� such that Cijv� w� holds� we use fijv� respectively fjiw�� to represent

wrespectively v�� An example of functional constraint in CLP is an equation x � �y

with x � f�� �� 	g� y � f�������	g�

De
nition � �Liu��� A functional constraint Cijis increasing with respect to domain
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Di and Dj i� for any u� v � Di such that fijv� fiju� exist in Dj � u � v implies

fiju� � fijv��

The equation x � y is an increasing functional constraint�

De
nition � �VHDT��� A constraint Cijis anti�functional with respect to domain Di

and Dj i� �Cij is functional with respect to Di and Dj �

�VHDT��� The dis�equation x � y in CLP is anti�functional because x � y is functional�

De
nition � A constraint Cijis monotonic with respect to domain Di and Dj i� there

exists a total ordering on Di and Dj such that for all v � Di and w � Dj� Cijv� w�

implies Cijv
�� w�� for all v� � v and w� � w�

The inequality x � y in CLP is monotonic� Note x � �y is not monotonic�

Before we give special techniques to attack functional constraints� we recall the algo�

rithms for IFC�FC�AFC and MC in next section�

��� Review of the Algorithms

����� A Generic Algorithm

All algorithms for arc�consistency employ a queue as basic structure� The queue contains

the necessary information for consistency enforcing� The queue of AC�	 contains the arc

� i� j � which need to be rechecked� The queue of AC�
 constraints i� v� � where i is

a node and v is a value� which has an associated support set� The element of queue of

AC�� is of i� j� w� where � i� j � is an arc and w is a value that has been removed from

Dj and justi�es the need to reconsider arc � i� j �� In AC���� the element of the queue

takes two forms� one is of i� j� w�� and the other is of � i� j ��

One important observation about AC�� and its specialization is that for AFCs and

MCs� value w is not used and only the minimum and maximum values and the domain size
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are used�As for functional constraints� w plays a key role in achieving an Oed� algorithm

in �VHDT���� Our observation is that without the help of w� an Oed� algorithm can still

be achieved�For FC� AFC and MC� the form � i� j � is enough and i� j� w� is reserved

for other general constraints� Due to the � i� j � structure� for FCs� AFCs and MCs� the

algorithm can also achieve the optimal space complexity� Because we are only concerned

with FC� AFC and MC� we use only queue element structure � i� j � in our description�

The basic operations on the queue are Enqueue� which add elements� to the queue�

and Dequeue� which remove an element from the queue�

Procedure Enqueuein i�inout Q�

begin

Q� Q � f� k� i � j � k� i �� arcsG�g

end

Procedure Dequeueinout Q� out i� j��

begin

delete � i� j � from Q

end

Corresponding to the change of queue structure� AC�� is slightly changed as shown in

�gure 	��� AC�main is parameterized by two open procedures InitialCheck and ReCheck�

Intuitively� InitialCheck will check the consistency of each constraints once and pre�

pare necessary data for ReCheck� ReCheck will check the necessary constraints according

to the data provided by InitialCheck� � is the set of values in Di which are not sup�

ported by Dj under constraint Cij�Remove�� i� removes those invalid values � from
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Algorithm AC�main
� begin

� Q� ��
	 for each� i� j �� arcG� do

 begin

� InitialChecki� j����
� Enqueuei�Q��
� Remove��Di��
� end�
� while Q � � do
�� begin

�� DequeueQ� i� j��
�� ReChecki� j����
�	 Enqueuei�Q��
�
 Remove��Di��
�� end

��end

Procedure InitialCheckin i� j� out � �
�� fv � Di j �w � Dj �Cijv� w�g

Procedure ReCheckin i� j� out � �
�� fv � Di j �w � Dj �Cijv� w�g

Procedure ReCheckin i� j� w�� out � �
�� � � � ��

where�� � fv � Di j Cijv� w� �w� � Dj �Cijv� w
��g

�� � fv � Di j �w
� � Dj �Cijv� w

��g

Figure 	��� Generic algorithm AC�main�

the domain of i� Note lines ��� may be integrated in one procedure as shown in later

implementation of functional constraints�

As for AC�main� we have following results�

Proposition � �VHDT���

��� the AC�main is correct�

��� If the time complexity of InitialCheck is Od�� and the time complexity of ReCheck

is Od�� then the time complexity of AC�main is Oed���

�	� If the time complexity of InitialCheck is Od� and the time complexity of ReCheck is
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O��� then the time complexity of AC�main is Oed��

Proof�

�� refer to �VHDT����

�� the proof can be obtained from the proof of 	� in the above proposition�

Here� we give an alternative proof of 	� which will be useful in later analysis of the

complexity of the proposed algorithms�

a� The algorithm can terminate�

b� Obviously� the complexity of �rst loop for loop� is Oed�� Consider the while loop�

After rearrangement of the expansion of the while loop almost all proofs in this chapter

follow this way�� we have the following sequence R for ReCheck and E for Enqueue��

� � � Ri� �� j��

ith nodez �� �
m�i�j�z �� �

Ri� j��� � � � � Ri� j�� � � �Ri� jdi� � � �Ri� jdi� Ri� �� j��� � � �

� � � Ei� �� Ei� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �Ei�� �z �
ni

Ei� �� � � �

Assume total number of iterations of while is �� for arc � i� j � ReCheck is invoked

m�i�j� times� and for each invocation of ReCheck for � i� j � there are j �k j elements

deleted and the complexity of ReCheck is �k�where

�k �

�����
����

� if j � jk � ��

j �k j otherwise

	���

m�i�j�X
k��

j �k j � d 	���

X
�i�j��arc�G�

m�i�j� � � 	�	�

m�i�j� � d 	�
�

Let ni be the number of times Enqueue is invoked for node i and �k be the complexity



CHAPTER �� CONSISTENCY ON A SPECIAL CLASS OF CONSTRAINTS ��

of Enqueue�We have

ni �
diX
l��

m�i�l���k �

�����
����

di if some element has been deleted�

� otherwise

	���

where di is the degree of the node i in graph G�

Enqueue can cause at most ddi arcs enter Q for node i because each invocation of

Enqueue di arcs will be entered the Q� For all nodes� there are at most
P

i�V ddi � �ed

arcs entering Q� That in each iteration Dequeue will remove one arc from Q implies

� � �ed�

The total time consumed by ReCheck for � i� j � is

CR�i�j� �

m�i�j�X
�

�k � d�m�i�j��

So� for G�by 	��� the time spent on ReCheck is

X
�i�j��arc�G�

CR�i�j� � ed� � � 	ed�

For Enqueue� the time consumed for i is

CEi �
niX
�

�k � ddi � ni�

So� the complexity of Enqueue is
Pm

� CEi � 
ed� Therefore� the AC�main is Oed��

For general constraints� Oed�� is the optimal time complexity� Intuitively� it has to

take d� step to check the consistency of each constraint and totally we have e constraints�

One way to further reduce the complexity is to exploit the semantics of constraints�

In �VHDT���� FC� AFC and MC are identi�ed and specializations of InitialCheck and
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ReCheck for FCs� AFCs and MCs have been implemented in Oed� see also �MM��a���

�Liu��� proposes an InitialCheck for IFCs so that IFCs need not be considered in ReCheck�

In addition� �Liu��� achieves optimal space complexity for IFCs� AFCs and MCs� Here�

we further develop the idea of �Liu��� so that all FCs need to be considered only in

InitialCheck and the optimal space complexity can be achieved for FCs� AFCs and MCs�

The challenge here is how to implement InitialCheck for functional constraints without

help of the removed value w and the implementation should not a�ect the time complexity

of treatment of other constraints�

����� Domain Structure

Because of three di�erent kinds of constraints� the domain structure and operations are

more involved than those usually required by arc�consistency algorithms�

The implementation of InitialCheck and ReCheck requires such operations on domain

as shown in �gure 	���

The function Size is used by anti�functional constraints� Functions Min�Max�Succ�and

Pred are used by monotonic constraints� In order to achieve the goal that all the oper�

ations above should take constant time or reasonable time�� �VHDT��� gives following

domain data structures see �gure 	�	� for sparse domains�

All �elds of domain are maintained by RemovElem�� It is obvious that all the

primitive operations on domain take constant time under the above data structure for

domain the expected time of domain membership test� under reasonable assumption� is

constant �CLR�����

����� Algorithms for AFC and MC

An AFC is consistent as long as none of Di and Dj has less than two values  see
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Function Sizein D�� Integer
begin

Size � jDj�
end

Procedure RemovElemin v� inout D�
begin

D � D � fvg
end

Function Memberin v�D��Boolean
begin

Member � v � D�
end

Function Minin D�� Value
begin

Min � min fv � Dg
end

Function Maxin D�� Value
begin

Max � max fv � Dg
end

Function Succin v�D�� Value
begin

if �v� � D v� � v
Succ � min fv� � D j v� � vg

else

Succ � ��
end

Function Predin v�D�� Value
begin

if �v� � D v� � v
Succ � max fv� � D j v� � vg

else

Succ � ��
end

Figure 	��� Domain operations�
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Let the initial domain be Di� � fv�� � � � � vlg with vk � vik��
Let current domain be Di � fvi� � � � � � vipg with vik � vik�� and ik � ik��

Syntax

Di�size�f�� � � � � lg
Di�min�f�� � � � � lg
Di�max�f�� � � � � lg
Di�element�set of couplese� index� with e � Di� and index � f�� � � � � lg�

organized as a hash table on key e�
Di�value�array ����l� of elements of Di�

Di�succ�array ����l� of integers of f���lg
Di�pred�array ����l� of integers of f���lg

Semantics

Di�size� p
Di�min� i�
Di�max� ip
Di�element v�� ik� if �k v � vik

�� otherwise
Di�value�ik� � vik
Di�succ�ik� � ik�� � � k � p
Di�succ�ik� � � �
Di�pred�ik��� � ik � � k � p
Di�pred�ik��� � � �

Figure 	�	� Domain structure�

�gure 	�
��

For MC� we associate each arc � i� j � with three functions fij � lastij and nextij �

and a relation �ij to de�ne an ordering of values for the domains Di and Dj � Given a

constraint Cij � for arc � i� j � the functions and relations are de�ned as�

fijw� � maxfv j Cijv� w�g�

lastij � Max� nextij � Pred�

�ij � �
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Procedure InitialCheckin i� j �out ��
begin

s� SizeDj��
w� �MinDj��
if s��
� � ffjiw��g 	Di

else

� � �
end

Procedure ReCheckin i� j �out��
begin

InitialChecki� j���
end

Figure 	�
� Algorithm for AFCs�

while for � j� i � they are de�ned as

fjiv� � minfw j Cijv� w�g�

lastij � Min� nextij � Succ�

�ij � � �

The point here is that the check always starts from the Min or Max which guarantee

the complexity of InitialCheck is proportional to the number of deleted values� In the

following procedure �gure 	���� all the subscripts are omitted for simplicity�

Now� we are ready to present the implementation of functional constranits�

��� Functional Constraints

����� Priliminaries of Functional Constraints

Given a CSP� let G be the associated graph as before� and G� be the subgraph of G which

is associated with all the functional constraints and involved variables of the CSP� V G�
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Procedure InitialCheckin i� j �out ��
begin

�� ��
v � last Di��
while v � flastDj��
begin

�� �� fvg�
v � next v�Di�

end

end

Procedure ReCheckin i� j �out ��
begin

InitialChecki� j���
end

Figure 	��� Algorithm for MCs�

denotes the set of nodes of G and EG� the set of arcs of G�

De
nition �� Given a CSP� each connected subgraph of G� is called a functional block�

Without loss of generality� we assume G� is connected in the following presentation

and thus G� is a functional block�

De
nition �� The coordinate of a value w � Dj with regard to Di under f where

f � Di � Dj is a bijection � is f��w� � Di� The domain Di is called the reference

domain of Dj with regard to f � The variable i is called the reference variable�

Property � The reference domain is re
exive� symetric and transitive�

De
nition �� A domain Di is oriented by Dj under f if Dj is selected as the reference

domain of Di with regard to f �

Because of our assumption that there is only one relation between any two variables�

hereafter when it is not confusing� we say �Di is oriented by Dj� by omitting f �

After arc�consistency enforcing on G� we have the following result�
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Property � Each functional constraint will be a bijection� and thus domains in the same

functional block have the same size�

If there is a path from i to j� the domain Dj can be oriented by Di under the composition

of functions along the path� and thus all domains in the block can be oriented by the same

domain�

De
nition �� We can always designate a reference domain for all domains in a func�

tional block� This domain is called the origin of the block�

Once the origin of a block is determined� sometimes we abuse the origin to represent the

block�

In an arc consistent graph G�� from node i to j there may exist more than one

path� which means that domain Dj can be oriented by the same domain under di�erent

functions� The coordinate of value of Dj may be di�erent with di�erent functions� For

that case� we have following proposition�

Proposition � An instantiation vi of xi can be extended to a solution of G� if and only

if vi has a unique coordinate with regard to the origin of G��

Proof

We give the proof of the necessity by contradition� The su�ciency can be proved

similarly� Assume vi � Di has two di�erent coordinates w�w� with regard to reference

domain Dj � There must exist two di�erent paths p� and p� from Di to Dj in G��Assume

f� � Di � Dj and f� � Di � Dj are composition of functions along p� and p� respectively�

We have f�v� � w and f�v� � w�� which implies that given v� constraints on p� and p�

can not be satis�ed simutaniously� So� vi will never be able to be extended to a solution

of G� and thus a contradiction is obtained�
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According to the above proposition� values with di�erent coordinate under di�erent

functions will not appear in any solution of G� and thus the solution of G�Such values

should be removed in arc�consistency enforcing� Of course� without the help of special

techniques� those values can not be removed by the normal arc�consistency enforcing

algorithms�

Corollary � For G�� if for each domain Dj � each value of Dj has unique coordinate with

regard to the origin of G�� G� is strongly n�consistent�

The origin plays threefold role in our algorithms� The �rst is to achieve n�consistency�

the second is to save space and the third is to make it possible to check each functional

constraint once�

De
nition �� An arc � i� j �� G is called a related arc of a functional block G� i�

j � V G�� and � i� j �� EG�� EG���

Example�

Given �ve variables f�� �� 	� 
� �g� Let the domain of the variables be the same fa� b� cg

and four constraints be

C�� � fa� c�� c� a�g� C�� � fa� a�� b� c�g� C�� � fa� a�� a� b�g� C�	 � fa� a�� a� b�g�

The functional block G� has f�� �� 	g as its nodes and f� �� � ��� �� � ��� �� 	 ���

	� � �g as its arcs� Let i�c denote the value c of the domain of variable i� Supposing D�

be the origin of G�� ��a and 	�a have the same coordinate ��c� Arcs � �� � � and � 
� 	 �

are related arcs of G�� Any removal of values with coordinate ��c will cause the check of

of the set of related arcs of G��f� 
� 	 ��� �� � �g�
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����� Domain Structure

In terms of the property of functional block� the domain structure of AC�� is modi�ed so

that all domains in one block share such attributes as Di�size� the origin of the block� and

the set of related arcs of the functional block� In the domain structure all values with the

same coordinate share the same structure coordinate so that once coordinate�indicator

is false all the values will be considered being removed from corresponding domains�

The modi�ed domain structure is listed in �gure 	��� �gure 	�� and �gure 	���

Let the initial domain be Di� � fv�� � � � � vlg with vk � vik��
Let current domain be Di � fvi� � � � � � vipg with vik � vik�� ik � ik��

Syntax

Di�min�f�� � � � � lg
Di�max�f�� � � � � lg
as a hash table on key e�

Di�succ�array ����l� of integers of f���lg
Di�pred�array ����l� of integers of f���lg
Di�element�set of couplese� index� with e � Di� and index � f�� � � � � ag�
organized as a hash table

Di�value� array ����l� of elements of Di�

Di�coordinate� array ����l� of coordinate str structure
Di�common� common str structure

Semantics

Di�min� i�
Di�max� ip
Di�succ�ik� � ik�� � � k � p
Di�succ�ik� � � �
Di�pred�ik��� � ik � � k � p
Di�pred�ik��� � � �
Di�elementv�� ik� if �k v � vik

�� otherwise
Di�value�ik� � vik
Di�coordinate�ik� � the pointer to a coordinate str structure
Di�common � the pointer to a commonstr structure

Figure 	��� Modi�ed domain structure�

Unlike �Liu���� here we only let domain structure share essential information such as
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Syntax

coordinate str�indicator�boolean
Semantics

coordinate str�indicator � true if vik � Di

false otherwise

Figure 	��� coordinate structure�

Sytax

common str�origin�integer
common str�size�integer
common str�arcs�a set of arcs

Semantics

common str�origin� o if Di has been oriented�
� otherwise�

where o is the origin of the functional block to which domain of Di belongs�
common str�size� p
common str�arcs� the set of related arcs of current block

Figure 	��� common structure�

size� origin� and arcs� The structure loc in �Liu��� is also replaced by a more general

structure coordinate because loc heavily depends on the stored order of values of a

domain�

����� Implementation of Consistency Enforcing on Functional Con	

straints

This section discusses the algorithm for functional constraints see �gure 	���� The

implementation is still based on the traditional arc�consistency techniques as used in

AC�	�One minor di�erence is that we will consider a functional constraint as one arc

rather than two directed arcs�For ease of presentation� we merge the three procedures

InitialCheck � Remove and Enqueue into one procedure which is still called InitialCheck�
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Procedure InitialCheckin i� j� inout Q�
�begin
� if Dj �common�origin � �
	 OrientAndChecki� j�Q��

 else

� if Di�common�origin � �
� OrientAndCheckj� i�Q��
� else

� ReorientAndChecki� j�Q��
�end

Figure 	��� InitialCheck for FCs�

In addition to removing those inconsistent values� the main task of InitialCheck is to

orient all the domains and obtain coordinate of each value of each domain involved in a

functional block� There are two di�erent operations in InitialCheck� OrientAndCheck is

applied when either Di or Dj has not been oriented� ReorientAndCheck is applied when

both Di and Dj have been oriented�

The OrientAndChecki� j� see �gure 	���� accomplishes two things� orienting and

checking the domain� In OrientAndCheck� the Dj is oriented by Di which is implemented

by sharing the common structure with Djline ��� if Di is not oriented too� it is oriented

by itself at line �� under the arti�cial identity function� and the coordinates of values ofDj

is obtained in line ��� Before the sharing of common structure� the related non�functional

arcs of variable j should be added to the set of related arcs of the functional block

Di�common�origin see line �
�� Line � removes those inconsistent values in Di� If the

domain Di changes� the set of related arcs of current functional block Di�common�origin

will be enqueued� Lines �	 to �� check the consistency of arc � j� i � the constraint

Cji��

The ReOrientAndCheck see �gure 	���� is more complicated than OrientAndCheck�
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Procedure OrientAndCheckin i� j� inout Q�
begin

� DELETE � false�
� for each v � Di

	 if fijv� �� Dj


 begin

� RemovElemv�Di��
� DELETE � true

� end

� else Dj �coordinate�elementfijv��� Di�coordinate�elementv��
� if DELETE
�� Q� Q �Di�common�arcs�
�� DELETE � false�
�� for each w � Dj

�	 if fjiw� �� Di

�
 begin

�� DELETE � true�
�� RemovElemv�Dj��   Dj �elementw�� �
�� end

�� if DELETE
�� Q� Q �Dj �common�arcs�
�� if Di�common�origin � �
�� Di�common�origin � i�
�� Di�common�arcs� Di�common�arcs �Dj �common�arcs�
�	 Dj �common� Di�common�

end

Figure 	���� Algorithm OrientAndCheck�

The problem here is that both Di and Dj have been oriented�Here� we have two cases�

The �rst case occurs when both Di and Dj are oriented by the same reference domain

lines � to ����where it is only necessary to check if the pair of values v� w�� v � Di� w �

Dj � which have the same coordinate� is consistent under functional constraint Cij � If

v� w� does not satisfy Cij � both v and w will be deleted� The reason is as follows� If for

each v � Di there does not exist w� � Dj such that Cijv� w
�� holds� v should be deleted

and thus w will be deleted automatically because they have the same coordinate� If there

exists w� � Djw
� � w� such that Cijv� w

�� holds� v will have the same coordinate with
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Procedure ReorientAndCheckin i� j� inout Q�
begin

� if Di�common�origin � Di�common�origin
� begin

	 DELETE � false


 for each v � Di

� if fijv� �� Dj

� begin

� RemovElemfvg�Di��
� DELETE � true

� end

�� else

�� if not Di�coordinate�elementv�� � Dj �coordinate�elementv���
�� begin

�	 RemovElemv�Di��   Di�coordinate�elementv��� � indicator� false

�
 DELETE � true

�� end

�� end

�� else

�� begin

�� if Checki�j� then Q� Q �Di�common�arcs�
�� if Checkj�i� then Q� Q �Dj �common�arcs�
�� Di�common�arcs� Di�common�arcs �� j� i �
�� Dj �common�arcs� Dj �common�arcs �� i� j �
�	 end

end

Function Checkin i� j�
Begin

DELETE � false�
for each v � Di

if fijv� �� Dj

begin

RemovElemfvg�Di��
DELETE � true

end

Return DELETE�end

Figure 	���� Algorithm ReorientAndCheck�
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w� whose coordinate must be di�erent from w� In other words� the coordinate of v is not

unique� So� v should be deleted according to proposition � � An interesting point here is

that checking is only needed for either Di or Dj � Because they are oriented by the same

reference domain� Di and Dj have the same size and further if one value in e�g� Di is

deleted� a corresponding value in Dj is automatically deleted and if the value is valid�

a corresponding value in Dj will be kept� Note also that Di and Dj actually share the

same structures coordinate and common and thus there is no need to adjust them�

The second case is that Di and Dj are oriented by di�erent domains� which is called

con�ict of orienting� The constraint causing the con�ict is called the con�ict �nder�

Acutually� because of the existence of functional constraints Cij � the functional block

Di�common�origin and functional block Dj �common�origin are two part of one func�

tional block� The problem now is that one functional block has two origin ! The direct

consequence is that coordinate of value no longer makes sense� One approach is to take

these two sub�blocks as seperate parts and thus the constraint Cij will be treated as a

general constraint lines �� to �	��

As pointed by �Liu���� the con�ict of orienting can be avoided in some circumstance�

If G� is known a piori� the domain can be oriented in a special order which is the same

as the order of traversing a spanning tree of G�� However� in an incremental computing

context� such as the constranit solver of CLP� con�ict of orienting can not be avoided�

Refer to the section after next section for further discussion on con�ict of orienting�

In our fashion to deal with the FC� the RemovElem does not maintain

Di�succ� Di�pred� Di�min� Di�max

for all domains in a functional block however it can maintain the common�size for all
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domains in constant time �� Actually� these four attributes are supplied uniquely for

implementation of monotonic constraints�The maintenance of these attributes of Di has

to be shifted to InitialCheck and ReCheck for MCs� The algorithm for MCs can be

implemented as follows see �gure 	����� Precisely� only the Di�min and Di�max need to

be maintained see lines from 	 to �� thanks to the special property of MCs�

Procedure InitialCheckin i� j �out��
begin

� �� �
� while lastDi� �� Di

	 lastDi�� nextlastDi���

 while lastDj� �� Dj

� lastDj�� nextlastDj���
� v � last Di�
� while v � flastDj��
� begin

�� if v � Di

�� �� �� fvg�
�� v � next v�Di�
�� end

end

Procedure ReCheckin i� j �out��
begin

InitialChecki� j���
end

Figure 	���� Modi�ed algorithm for MCs�

����� Properties of Algorithms for FCs
 AFCs and MCs

Proposition � The algorithm for FC achieves strong n�consistency on G� if there is no

con
ict of orienting�

The immediate usefullness of the above property is that given a binary CSP with only

functional constraints the InitialCheck actually implicitly obtains all solutions� which can
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not be achieved in both �VHDT��� and �Liu���� For example� consider

��������������
�������������

C� � x� y � ��

C� � y � z � ��

C� � x� z � ��

x� y� z � f����g

For the above constraints� both ordinary arc�consistency enforcing algorithm and our

special implementation for FCs will terminate with each constraint checked once� After

the application of normal consistency enforcing algorithm� no value will be removed

from any domain� Assuming the origin of the functional block is the domain of x our

implementation works as follows�

For C� each pair connected by the vertical line has the same coordinate�

x � � � � � � � � �

j � � � j � � � j

y � � � � � � � � �

For C��

x � � � � � � � � �

j � � � j � � � j

y � � � � � � � � �

j � � � j � � � j

z � � � � � � � � �

For C�� both x and z have been oriented by the same origin� Under the functional

constraint C�� the value z�� has a new coordinate x�� while its old coordinate is x��� So�

both x�� and z�� will be removed� After the ReOrientAndCheck of C�� only value � is
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left in the domain of x�y and z�

Proposition � If it has been involved in an orienting� any functional constraint will

need not to be checked in ReCheck�

Proof

In orienting a domain� this function is employed to obtain the coordinate of the

domain� As long as the coordinate is kept for this domain� the functional constraint will

be automatically satis�ed� In following computation the coordinate either is deleted or

kept and is never changed by other constraints as is shown by the algorithm and the

example for example� an attempt by any constraint to change the coordinate of a value

will cause the deletion of all values with the same coordinate��

Corollary � If con
ict of orienting can be avoided� all functional constraints need to be

checked only once�

Proposition � The algorithms for FCs� AFCs and MCs has optimal space complexity

Oe� nd� for a priori known �G��

This property is not achieved by �VHDT��� and partially by �Liu����

Proposition 	 If there is no con
ict of orienting� the time complexity of implementa�

tions for FCs� AFCs and MCs is Oed� which is optimal�

Proof�

We only need to prove the while loop of AC�main is Oed�� For ReCheck for MCs

see �gure 	���� we have three loops� �rst loop from line � to line 	�� second loop from

line 
 to �� and third loop from � to ���� Replace the body of ReCheck to the expansion

of AC�main� Using the similar method of analyzing the total complexity of ReCheck in

proof of proposition � � we obtain that the total complexity of each loop in ReCheck is
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Oed��Note� in third loop� once v is checked� it will not be checked any more If v � Di

v will be deleted� Otherwise� it will be swept out of consideration by the �rst loop in

the next invocation of ReCheck�� Similar proof can be obtained for implementations for

AFCs�

This property is achieved by �VHDT��� and partially achieved by �Liu����

From the proof above� the time complexity will remain the same even if the mainte�

nance of Di�succ and Di�pred is done in InitialCheck for MCs� Whether the maintenance

should be included depends on practical issues� If the Di is frequently checked� it may

be worth of maintaining them�

����� Further Issues

On Domain Structure

Actually� the data structures and algorithms presented in previous sections are not the

only choice to achieve the results of last section� If other constraints than FC� AFC and

MC heavily depends on the attributes�

Di�succ� Di�pred� Di�min� Di�max�

for the sake of generality� RemovElem still should be responsible for maintaining the four

attributes� In that case� an auxiliary link list� called value link list� whose size is n�d� is

needed to link all values with the same coordinate see �gure 	��	��
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Syntax

Di�link�array ����l� of structure nextv
Semantics

Di�link�ik��domain � j
Di�link�ik��value � jk
next node Dj � jk� after Di� ik� in the value link list�

Syntex

coordinate�last� structure of nextv
Semantics

coordinate�last�domain � j
coordinate�last�value � jk
the last node Dj � jk� of value link list of this coordinate�

Syntex

nextv�domain�integer
nextv�value� integer

Semantics

nextv�domain � j
nextv�value � jk

the node is the value jk of domain Dj � denoted by j� jk��

Figure 	��	� Structures required by the value link list�

The newly introduced �elds is used by RemovElem and maintained by InitialCheck

for FCs� The link list can be maintained in constant time� Speci�cally� line � of Orien�

tAndCheck� will be modi�ed as follows here we abuse the value vik and its hash value

ik��
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Procedure OrientAndCheckin i� j� inout Q�
begin

���
	 if fijv� �� Dj

���
� else

begin

j� � Di�coordinate�v��domain�
i�k � Di�coordinate�v��value�
Dj� �link�i

�
k�� j� fijv���

Di�coordinate�v��domain� j�
Di�coordinate�v��value� fijv��
Dj �coordinate�fijv��� Di�coordinate�v��

end
���

end

ReorientAndCheck can be modi�ed similarly� Once RemovElem assumes the duty to

maintain those four attributes the implementations for MCs in �VHDT��� can be adopted

without any alteration�

Proposition � Under the above implementation of RemovElem� the time complexity of

AC�main is Oed� with space complexity Oe� nd��

Consider the fact that the complexity of RemovElem is proportional to the number of

deleted values� By applying the same principle in proof of AC�main� we have the total

time complexity of RemovElem of On�d � ed� where n� � V G�� � e� Hence force the

above result holds�

Conict of Orienting

When con�ict of orienting occurs� the advantage of the method presented in last section

is its simplicity� The disadvantage is that the functional block is not exploited to the
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greatest extent� One extreme is that a functional block may be separated into many small

blocks and thus the strongly n�consistency does not make sense for so small functional

block� Another disadvantage is that the time complexity to deal with con�ict �nder Cij

will be Od��

Proposition � In the occurrence of con
ict of orienting� the complexity of the algorithm

AC�main is Oe� � n����d� � e� e��d� where e� � EG� and n� � V G��

Proof�

By expanding the while loop of AC�main� for a con�ict �nder Cij � we have

� � �Checki� j�� ���� Checki� j�� Checkj� i�� ���� Checkj� i�� � � � �

The worst case occurs when each deletion of an element of Dj causes an � i� j � entering

queue once as shown in the above expansion while every recheck on � i� j � does not

delete any element in Di� Under that case� the total time spent on � i� j � will be

Od��According the algorithm� � i� j � can enter the queue at most d times because

only when some elements� in Dj is eliminated is it possible for � i� j � to enter queue

once and an element of Dj will never deleted more than twice�� For FC� in the above

case� each rechecking of � i� j � will delete at least one value from Di� The time spent

on � i� j � should be d� ��d��� The number of such arcs are at most e� � n���� which

together with the complexity on one arc � i� j � implies the result�

If we use the queue element � i� j ��w� for con�ict �nder Cij � the algorithm can

achieve time complexity Oed� with space complexity Oe��n����d�e�e��n�����nd��

When con�ict of orienting can not be avoided� to implement ReorientAndCheck there

is an alternative which is to reorient one sub block by the origin of the other block�
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The advantage of re�orienting sub�block is that the functional block will not be sep�

arated and no functional constraints will be dealt with separately� The disadvantage is

that the implementation is more complicated The focus of this approach is how to main�

tain the common and coordinate structure in re�orienting� A natural way is to extend the

structure of common and coordinate to link lists� After each access of Di�common re�

spectively� Di�coordinate�ik��� the pointer ofDi�common respectively� Di�coordinate�ik��

will be adjusted to the last node of common respectively� Di�coordinate�ik�� list if it does

not point to the last node�For the above approach� we have

Proposition � The complexity of the above mentioned algorithm will be On� log n�d�

ed� with space complexity Oe� nd��

Proof�

We consider the for loop and while loop of AC�main separately� The main concern

here is that the membership test can not be implemented in constant time�

It is easy to verify that the length of link list of common and coordinate is less than

or equal to log n��

Consider for loop of AC�main for FCs�Di is checked d
�
i times � the degree of node i in

G��Let �k be the length of the coordinateresp� common� list at kth InitiCheck on Di�

For �k we have
dd�iX
�

�k � d log n��

Note� when �k � �� the membership test will take constant time� So� in the following

estimation we use �k �� to represent the complexity of each membership test� The time

consumed on Di by InitialCheck is

dd�
iX

�

�k � �� � d log n� � dd�i
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where n� � jV G��j� The total time spent on Di is

n�X
�

log n�d� d�id� � n� log n�d� �e�d

where e� � jEG��j� Similarly� we can obtain the complexity of for loop in algorithms for

AFCs and MCs�

Consider while loop of AC�main for MCs� Again we expand while loop in terms of

ReCheck� As for ReCheck itself� it is enough to consider only one loop� which we called

sub�loop� Now� we estimate the time spent on domain Di by ReCheck in the expansion�

Let �k be the same as that in the proof of for loop� The complexity of kth execution of

ReCheck on Di is as follows

�k �

�����
����

�k � ��j �k j if j �k j� �� elements� has been removed

�k � � Otherwise

The total number of times of execution of ReCheck on Di is less than or equal to ddi

where di is the degree of node i in G� The total time consumed on Di by ReCheck is

�i �
ddiX
�

�k �
ddiX
�

log n�j �k j� �k � �� � d log n� � d log n� � ddi�

The total time consumed on all domains in G� by ReCheck is

n�X
�

�i � n� log n�d� �ed�

Similarly� we can get the complexity of while loop of AC�main for AFCs�

So� the complexity of AC�main for FCs� AFCs and MCs is On� log n�d�ed�� The size

of the common list and coordinate list is On�� and On�d� respectively because both
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list can be thought of as a complete tree with n� leaves� and thus the space complexity

is Ond� e��

Another approach is to refresh the pointer to coordinate and common of all domains

of block common�origin each time some domain of the block is reoriented Of course� we

select to refresh the smaller one between two sub�blocks�� For this approach� we have

Proposition �� The complexity of this approach is On� log n�d� ed��

Proof

The refreshment happens in the check of functional constraints� The worst case occurs

when the domains in V G�� are re�oriented in an order of a complete binary tree� In this

case� each re�orienting causes n��� domains refreshed whose complexity is n�d��� After

dlog n�e� � times re�orienting� no con�ict of orienting will happen� The total complexity

of refreshment is n� log n�d��� So� the complexity of the algorithm is On� log n�d� ed��

In summary� for space complexity Oe� nd�

�� if there is no con�ict of orienting time complexity of Oed� can be achieved �

�� when there is con�ict of orienting

a� Oe� � n����d� � e � e��d� can be achieved with con�ict �nder treated as

general constraint�

b� On� log n�d� ed� can be achieved so that n�consistency can be achieved�

For space complexity Oed� nd�� we have the following conjecture�

Conjecture � For functional constraints� there exists an algorithm with space complex�

ity Oed� nd� and time complexity Oed� such that n�consistency can be achieved when

con
ict of orienting occurs�



Chapter �

Bound Consistency over n�ary

Linear Constraints

��� Introduction

In last chapter� we are mainly concerned with binary CSPs� Actually� in most constraint

programming languages� a class of n�ary constraints�specially linear equation and linear

in�equation� can be easily expressed �DVHS���ILOG��The modeling expressive� ability

and usefulness of this class of constraints have been shown by the great success of inte�

ger� Linear Programming �Dan�	� �NW��� in practice� These constraints have been fully

studied theoretically and practically in the community of integer� linear programming�

Unfortunately� those constraint solving techniques can not be directly used in the con�

straint solver of a constraint programming language because the constraint programming

language normally has to face a more general setting where linear constraints are not the

only constraints to be of concern and other requirements imposed on constraint solving

by the language �JM�
�� �VHD��� and �vH����� Because of the general purpose property

of a language� underlying most constraint programming languages over �nite domain


�
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is the CSP model �vH��� and �ILOG��� As is shown in previous chapter� general tech�

niquese�g� arc consistency� in CSP can be improved by considering special properties of

constraints the case for FC� AFC and MC�� The problem now is how to e�ciently deal

with the n�ary linear constraint in a constraint programming language�

Some work has been done in CSP to attack general n�ary constraints� A general

method is given by �RPD��� to convert a CSP with n�ary constraints to a binary one�

From the point of view of consistency� �MM��� generalized the arc consistency �Mac��� of

binary CSP and proposed an algorithm GAC�
 whose counterpart in binary CSP is AC�


�MH���� In GAC�
� a constraint is regarded as a set of explicitly known tuples�However�

for linear constraints�the tuples are not trivially explicit� Even they can be obtained� the

size of the set of tuples will be too large to be useful because an n�ary linear constraint is

generally weak� That is why GAC�
 is not practical to be used in the solver of a general

language� An important theoretical work in CSP is to study the relationship between

local consistency and global consistency �Fre��� �Fre��� �Dec��� �DP����� �DB��� presents

a new de�nition of consistency on n�ary constraints under which the results for binary

CSP can be easily generalized to n�ary CSP� However� the new de�nition and related

algorithms mainly serve as conceptual tools� Algorithms presented in �DB��� are not

practical to deal with linear constraints�

Actually� linear constraints have been dealt with in �Lau���� �vH���� �CC�	� and

�Cod��� by propagating bounds of domains of variables� The essence of the idea is to relax

the traditional arc consistency to bound consistencysee next section�� As for bounds

of variables� the directly related area is interval constraint logic programmingICLP�

�Cle���� �OV���� �OV�	�� �OB�	�� �BHM�
�� �BO���� and �VHMD���� where the interval

lower and upper bounds� of a variable is the basic operand� The strength of ICLP comes

from interval arithmetic �Moo�	��The theme of ICLP is to generalize functional interval
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arithmetic to relational interval arithmetic and consistency techniques in CSP� Because

constraints of interest in ICLP are so general that although CLPBNR� �BO���� can

deal with integer constraints� no special attention is paid to linear constraints� �Lho�	�

de�nes a special class of CSP�which is called numerical CSP� where the interval arithmetic

is employed as the foundation of problem solving and consistency techniques similar to

ICLP are de�ned� Like ICLP�the domain of variable in numerical CSP is continuous� We

also note the treatment of real linear constraint in CIAL �CL�
�� where a generalized

Gaussian elimination method is employed to speed up the solving of linear equation

systems�

The topic of this chapter is motivated by how to e�ciently deal with linear constraints

over �nite domains in the context of constraint programming�

��� Bound Consistency

����� Basics of Interval Arithmetic

We use the usual mathematical notations to represent intervals� In interval arithmetic�

a variable always takes an interval as its value� For convenience to present� we introduce

two kinds of notations for the bounds of the domain of a variable�

The �rst is

�x� � �Lb� Ub� 
���

where Lb and Ub is the lower bound and upper bound of the domain of x� We

use Lbx� and Ubx� to denote the lower bound and upper bound of x respectively�The
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interval arithmetic operations imposed on �x� are de�ned as follows�Moo�	��

�x� � �y� � �Lbx� � Lby�� Ubx� � Uby���

�x�� �y� � �Lbx�� Uby�� Ubx�� Lby���

�x�� a � �Lbx�� a� Ubx�� a��

a�x� �

�����
����

�aLbx�� aUbx��� a � �

�aUbx�� aLbx��� a � �

�

Additionally�

�x� 	 �y� �

�
���	
maxLbx�� Lby��

minUbx�� Uby��



���� �

The other notation is the vector form of the bounds of a variable�

hxi �


BBB�

Lb

Ub

�
CCCA 
���

all the operations on hxi will be considered as vector ones�For example�

hxi � hyi �


BBB�

Lbx�� Lby�

Ubx�� Uby�

�
CCCA

We also abuse operator � � and h i� Applying �� to hi means to change the vector to

an interval and vice versa�

����� Bound Consistency on An n	ary Linear Constraint System

In this section we give the de�nitions of bound consistency on n�ary linear constraint

over �nite domains�



CHAPTER �� BOUND CONSISTENCY OVER N �ARY LINEAR CONSTRAINTS�	

De
nition �� A linear constraint csx�� � � � � xn� is

a�x� � a�x� � � � � � anxn� b

xi� ai� b � Z � � f�����g�

We use varscs� and jcsj to denote respectively the set and the number of variables that

occur in cs�

De
nition �	 A linear constraint system is a triple V�D�C� where V � fx�� x�� � � ��

xmg denotes a set of variables� D � fD��D�� � � � � Dmg a set of domains�Di being the

�nite integer domain of xi� and C � fcs�� cs�� � � � � cseg a set of constraints� csi being

linear constraint�

Hereafter� m� e� n and d refer to the number of variables�number of constraints�

maxfjcsij � csi � Cg the maximum number of variables in any constraints� � and

maxfjDij � Di � Dg the maximum domain size� respectively�

De
nition �� A Z�interval is

�a� b� � fr � Rja � r � b� a� b � Zg�

�x � �x��� � � � � �xn�� is a Z�interval vector if each �xi� is a Z�interval�

Let Z be the set of all Z�intervals on which � is de�ned as �� The arithmetic operations

on Z�interval is the same as those in last section�

De
nition �� The Z�interval representation of a set S � R is

�S � maxf�a� b� � Zj�a� b� � Sg�
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De
nition �� The projection function 	i of a constraint cs on xi is

	ics� �
��

ai
a�x� � � � �� ai��xi�� � ai��xi�� � � � � � anxn � b��

The natural interval extension of 	ics� is

�ics� �
��

ai
�a��x�� � � � � � ai���xi��� � ai���xi��� � � � �� an�xn�� b��

De
nition �� The projection of a constraint cs on variable xi is a set

fvi � R j �vk � �xk�� k � i such that csv�� � � � � vn� holdsg�

The projection of cs on variable xi is exactly

Projics� �

���������
��������

�ics� if �� is �

���� Ub�ics��� if �� is �

�Lb�ics������ if �� is �

where

�
� �

���������
��������

� if ai is negative and � is �

� if ai is negative and � is �

� otherwise

De
nition �� A constraint cs is balanced with respect to �x��� � � � � �xm�� i�

�xi � varscs� �xi� � Projics��

A constraint system is balanced with respect to �x��� � � � � �xm�� i� every csj � C is bal�

anced�

Note� In the above de�nition� �xi� may be a real interval�
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De
nition �� A constraint cs is bound consistent with respect to Z�interval vector

�x��� � � � � �xm�� i� �xi � varscs� �xi� � �Projicsj��

A constraint system is bound consistent with respect to Z�interval vector �x��� � � � � �xm��

i� every csj � C is bound consistent�

Property � Any linear constraint cs with initial domain ��x��� � � � � �xm�� is balanced with

respect to

�x�� 	 Proj�cs�� � � � � �xm� 	 Projmcs���

This can be easily proved by the intermediate value theorem� Note�this property remains

true in ICLP because approximation always rounds outward �BO���� However�the above

property is not applicable to bound consistency because of the requirement for the Z�

interval representation of the projection of a constraint�In this case� some real value are

removed by Z�interval representation� which may make the bound of some other variable

invalid and thus breaks the consistency of cs� An example is

	x � 
y

�x� � �y� � ��������

Because of the Z�interval representation of domain of variable� bound consistency can

not be described by the concept of narrowing function as de�ned in �BO���� By the way�

according to the idempotence property of narrowing function� the narrowing algorithm

in �BO��� can be improved as follows� Let
�

 be the narrowing function de�ned by a

constraint 
� When �xi� in vars
� is changed by
�

 � the constraint 
 need not to be

rechecked� If the narrowing algorithm remains untouched� the narrowing function can

be generalized to a projection function together with any rounding strategyinward or
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outward��

De
nition �� Given a constraint system V�D�C�� a Z�interval vector �x � �x��� � � ��

�xn��� where �xi� � �Di� is a �xed point of the system if the constraint system is bound

consistent with respect to �x� �x � �y if and only if �i � ���n �xi� � �yi�

Note�When any �xi� is empty� the �xed point �x is regarded as an empty vector� Any

two �xed point of a system V�D�C� is comparable�

����� Bound Consistency Algorithms and Their Complexities

There are two approaches to enforce bound consistency on a constraint system V�D�C��

One approach� as is shown in algorithm BC��see �gure 
���� is a natural extension of

AC�	 �Mac���� BC�� uses a generalized queue element structure of AC�	� The queue

element xi� xj� of AC�	 brings the information that the domain of xi will be re�ned

by the binary constraint between xi and xj � As for bound consistency� the bounds of

variable xi is re�ned by an n�ary constraint csj where xi occurs� So� in algorithm BC���

the queue element is xi� csj�� The other approach�as is shown in algorithm BC��see

�gure 
���� uses a new queue element structure� In algorithm BC��� the queue contains

constraints on which bound consistency will be enforced �Therefore the Revise has been

modi�ed to treat a constraint csj as a whole� The Revise here can be thought of as

a relaxation of bound consistency see property 	�� Both approaches make use of the

property of linear constraint that the valid interval of variables in a constraint csj can

be easily and e�ciently obtained by �icsj��

By the de�nition of bound consistency it is easy to prove the following two proposi�

tions �

Proposition �� Both algorithms BC�� and BC�� are correct�
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Algorithm BC��
begin

Q � f� xi� csj � j�csj � C� �xi �varscsj�g�
whileQ not empty�
begin

select and delete � xi� csj � from Q�
if Revise� xi� csj ��
Q� Q� f� xl� csk � j�l� csk xl� xi �varscsk�� l � ig

end

end

function Revise� xi� csj ��
begin

if not �xi� � �Projicsj��
begin

�xi�� �xi� 	 �Projicsj��
return true

end

else return false
end

Figure 
��� Algorithm BC���

Proposition �� Both algorithms always reach the maximal �xed point of constraint sys�

tem V�D�C��

Proposition �� For the constraint system V�D�C�� the worst case complexity of algo�

rithm BC�� is On�ed� �

Proof�

The total number of iterations of while� loop depends on the number of pairs that

have ever entered the queue� Two cases contribute to the growth of Q� One is the

initialization of Q and the other is the success of Revise�� that is Revise� returns true�

For initialization� Q has at most ne pairs because each constraint produces at most

n pairs and there is totally e constraints in the system�

Now consider maximum number of success of the function Revise�Each success of
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Algorithm BC��

begin

Q� fcsijcsi � Cg�
while Q not empty�
begin

select and delete csi from Q�
Revisecsi� Q��

end

end

procedure Revisecsj � Q�
begin

for each xi � vars csj�
begin

if �xi� � �Projicsj�
begin

�xi�� �xi� 	 �Projicsj��
Q� fcsk � C j xi � vars csk�g

end

end

end

Figure 
��� Algorithm BC���

Revise at least reduces the size of domain of some variable xi by �� So� at most Revise

will succeed md times� For each variable xi� if its domain is revised� we assume there will

be di pairs entering Q� Therefore� there are at most
Pmd

i�� di pairs ever entering Q�

Consider the graph G � N�E� of V�D�C� which is de�ned as

N � V

E � fxi� xj�k j �k xi� xj � varscsk�g�

It is observed that the di is exactly the degree of node i of G and the number of edges of

G is at most n�e� Therefore

mdX
i��

di � �n�ed�

The complexity of Revise procedure is obviously linear of n because of Projicsj��
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Hence forth the complexity of BC�� is On�ed��

The advantage of Algorithm BC�� is that when the constraint csj is treated as a

whole� much time can be saved by fully exploiting the property of the constraint�

Proposition �� The Revise procedure of BC�� can be implemented in linear time of n�

Proof�

Consider csj

aj�x� � aj�x� � � � �� ajnxn � bj �

Let

fjx� � aj�x� � aj�x� � � � �� ajnxn � bj

where

x � x�� � � � � xn�

and its natural interval extension be FjX� where X � X�� � � � �Xn� and each Xi is

interval variable�

Now� we have

�icsj� � �
�

aji
�hFj�X��i � haji�xi�i�

where

�X� � �x��� � � � � �xn���

Recall

Projicsj� �

���������
��������

�icsj� if �� is �

���� Ub�icsj��� if �� is �

�Lb�icsj������ if �� is �
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Therefore� Revisecsi� can be implemented in linear time of n�

The use of interval and vector greatly simpli�es the above proof� A motivating illus�

tration is as follows� Consider equation

a�x� � a�x� � � � � � anxn � b�

For the ease of presentation� All coe�cients are classi�ed into a positive set� fa�� � ���� a
�
k g�

and a negtive set�fa�k��� � � � � a
�
n g�

Let

"max �
j�kX
j��

a�j Ubx
�
j � �

j�nX
j�k��

a�j Lbx
�
j �� b�

"min �
j�kX
j��

a�j Lbx
�
j � �

j�nX
j�k��

a�j Ubx
�
j �� b�

For x�i � the least value of the projection function of cs on x�i is

Ilow �
"max

a�i
� Ubx�i ��

and the greatest value is

Iupper �
"min

a�i
� Lbx�i ��

The new bounds of x�i should be

�x�i � � �x�i � 	��Ilow� Iupper��

Similarly� for x�i � we have
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Ilower �

min

�a�
i

� Lbx�i �

Iupper �

max

�a�
i

� Ubx�i �

�x�i � � �x�i � 	��Ilow� Iupper��

Proposition �� Given a constraint system V�D�C�� the complexity of algorithm BC��

is Omned�

Proof�

As in proposition �	� we need to estimate the maximal length of the Q� The

Revisecsi� may success at most md times and each success will cause at most e con�

straints to enter Q� By proposition �
�the complexity of Revisecsi� is On� and thus

complexity of BC�� is Oemnd��

����� An Improved Version of BC	�

As implied by proposition �
� revising together the bounds of all variables in one con�

straint is more e�cient than revising them separately� The idea behind proposition �


can be employed to improve the e�ciency of BC���

For system V�D�C�� consider constraint csj � C�

aj�x� � � � �� ajnxn � bj ���

In BC��� Fj�X�� has to be evaluated each time� Here� we introduce an auxiliary variable

yj for csj and xji for variable xi so that the function Revise� of BC�� can be implemented

in constant time� The modi�ed algorithm BC�� is listed in �gure 
�	�

In order to emphasize that csj is no longer used in Revise� we use the queue elment
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Algorithm BC����
begin

� for each csj � C
� begin

	 �yj �� Fj�D�� � � � ��Dm��

 for each i � varscsj�
� begin

� �xji�� �Di�
� �xi�� �Di�
� end

� end

��Q � f� xi� j � j�csj � C� �xi �varscsj�g�
��whileQ not empty�
��begin
�	 select and delete � xi� j � from Q�
�
 Revise� xi� j ��Q�
��end
end

function Revise� xi� j ��
begin

���icsj�� � �
aji

�hyji � haji�xji�i�

��if not �xi� � �Projicsj��
�� begin

�� �xi�� �xi� 	 �Projicsj��
�� if �� � �
�� Q� Q� f� xl� k � j�l� k xl� xi �varscsk�� l � ig
�� else

�	 Q� Q� f� xl� k � j�l� k xl� xi �varscsk�� l � i k � jg
�
 for all k such that xi � varscsk�
�� begin

�� �yk�� �hyki � hai�xki�i� � ai�xi��
�� �xki�� �xi�
�� end

�� end

end

Figure 
�	� Algorithm BC�����
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xi� j�� Lines ��� intialize yj �s and xji�s� Lines �
��� modify corresponding yj that is

Fj�X��� whenever �xi� changes� Line �� makes use of yj to obtain the projection of csj

on xi� The invariant that

�yj� � Fj�xj��� � � � � �xjn��

is preserved in the algorithm� which guarantee the correctness of line ��� Lines ����	

enqueue all the a�ected pairs � xl� k � as a result of the change of �xi�� Line �� checks

whether there is rounding on the projection� If there is no rounding� csj remains consis�

tent property 	� and thus no pair � xi� j � needs to be considered again� This idea is

also applicable to re�ne the Revise in BC���

Proposition �	 For system V�D�C�� the complexity of algorithm BC���� is On�ed��

Proof�

From the proof of proposition �	�the complexity of the above algorithm is On�ed��

The total complexity of for loop lines �
���� can be proved by similar method used to

prove the total complexity of Enqueue in the last chapter�

Example�

Consider constraint

�x� � �x� � x� � ��

�x�� � �x�� � �x�� � ����� ����

Evaluate �y�� �rst

�y�� �

�
���	
���

��



�����

�
���	
���

��



�����

�
���	
���

��



����� � �

�
���	
���

��



���� �

�x��� � �x��� � �x��� � ����� ����

�x�� � �
�

�
�hy�i � h��x���i� 	 ����� ��� � ����� ����
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�x�� � �
�

�
�hy�i � h��x���i� 	 ����� ��� � ���� ���

Actually� because no rounding occurs here� there is no pair entering Q�

�x�� � �

�
���	


BBB�
���

��

�
CCCA�


BBB�
���

��

�
CCCA



���� 	 ����� ��� � ����� ����

����� On Simple Transformation of Constraint System

It is interesting to study the propagation on a simple equivalent system of linear system

V�D�C�� In CLPFD� �CD����� an n�ary constraint is translated into 	�ary constraints�

The constraint csj

aj�x� � aj�x� � � � �� ajnxn � bj

can be translated into the following system cs�j by introducing intermediate variables

fyj�� � � � � yjn��g �CC�	��

aj�x� � aj�x� � yj�

yj� � aj�x� � yj�

���

yjn�� � ajnxn � bj

Let the system obtained from V�D�C� by the above rule be

V ��D�� C ��
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where

V � � V � fyij ji � ���e� j � ���jvarscsi�j � �g

D� � D � fDyij ji � ���e� j � ���jvarscsi�j � �g

C � � fcs�iji � ���eg

Proposition �� The maximal �xed point of system V ��D�� C �� is the same as that of

V�D�C��

Proof�

Assume the �xed points of V ��D�� C �� and V�D�C� are �x���� � � �� �x
�
n�� �y���� � � ��

�ynn���� and �x��� � � �� �xn�� respectively�

For any #xi � �xi� and any constraint csj in which xi appears� there exists #x�� � � ��

#xi��� #xi��� � � �� #xn such that csj is satis�ed�that is

aj�#x� � � � �� ai��#xi�� � aji��xji�� � � � �� ain#xn � bj �

Obviously� �#yj�� � � � � #yjn�� such that each constraint of cs�j is satis�ed and thus #xi � �x�j �

and #yjl � �yjl� l � ���n� �� because of the continuity of the constraints� � So� �xi� � �x�i�

for any i�

For any #xi � �x�i� and any cs�j that contains xi� there exists #yji�� and #yji�� such that

the equation #yji�� � aji#xi � #yji�� holds� Because cs�j is bound consistent� there exist
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#x�� � � � � #xi��� #xi��� � � � � #xn such that #xl � �x�l� l � f���ng and

aj�#x� � aj�#x� � #yj�

���

#yji�� � aji��#xi�� � #yji��

#yji�� � aji��#xi � #yji��

#yji�� � aji#xi�� � #yji

���

#yjn�� � ajn#xn � b

Therefore

nX
i��

aji#xi � bj

and thus �x���� � � � � �x
�
n�� is a �xed point of V�D�C�� which implies

�x���� � � � � �x
�
n�� � �x��� � � � � �xn���

So� the two systems have the same �xed point�

Proposition �� Bound consistency can be enforced on V ��D�� C �� by Algorithm BC��

in Oned�� where

d� �max
j

min
nP�l�����

i�� jajijd�
Pl��

i�l�� jajijd
o
�

l � jvarscsj�j�

Proof�

The number of the constraints in C � will be ne� and each constraint has at most 	

variables� By proposition �	� the complexity is Oned���From the translation rule� it is

easy to obtain the size of the greatest domain in the new system�
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The proposition shows that d� is related to n and the magnitude of the coe�cients in

C� However� the introduction of intermediate variables simplify the relationship between

variables in one constraints� which helps make the estimation of time complexity more

accurate� For example� in constraint csj � x� is related to all the other variables� The

auxiliary variable yi� separate x� and x� from x�� � � � � xn�

����� Linear Equation System

De
nition �� A linear constraint system V�D�C� is called a linear equation system if

C constraints only linear equations�

De
nition �� Given a linear equation system V�D�C�� C is said in solved form if it

is of the form

bxB � axN � c

where a� b� c are constant vectors and xB � xN are variable vectors such that

xB � xN � V

xB 	 xN � �

The variable in xB is called subject variable while the variable in xF is called free variable�

For a linear equation system V�D�C�� we can always obtain an equation system

V�D�C �� where C � is in solved form by Gaussian�Jordan elimination� For the new

system we have following conclusion which is a direct corollary of proposition �� and

proposition ���

Corollary � Algorithm BC�� can achieve bound consistency on V�D�C �� in On��m�

e�d�� and algorithm BC�� can achieve bound consistency on V�D�C �� in Oem�e�n�d��
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where

n� � max
j
jvarscs�j�j

�

From the above result we can see that the e�ciency of consistency enforcing algorithm

on new system may not be better than on the old system� For example� let V�D�C� be

x� � x� � x� � x�

x	 � x�

x�� ���� x� � ����� ���

x	 � ����� ����

One solved form of C is

x� � x� � x� � x�

x	 � x� � x� � x�

Here� the consistency enforcing algorithm will take longer time on C � than on C� Fur�

thermore� the maximal �xed point of V�D�C �� is greater than that of V�D�C��

���� Issues on Constraint Solver of a CLP over Finite Domain

Naturally�for linear constraints�the infer function of the constraint solver of a CLP

language can be implemented as bound consistency enforcing� Actually� that is what

CLPFD� �CD���� does with linear constraints although in a di�erent implementation

fashion� Naturally� bound consistency can be generalized to integer� nonlinear con�

straints where the projection function can be numerically calculated by Newton meth�

odssee �VHMD�����
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��� Bound Consistency on Binary Equation System

Binary linear constraint system is an important case in �nite domain constraint program�

ming �DVHS���� E�orts such as �VHDT��� have been made to improve the e�ciency of

consistency enforcing algorithm on binary system� Here� we focus on binary equation

system�

A binary equation system may have many equivalent systems which have the same

solution set� It is desirable to �nd a system on which an e�cient consistency algorithm

can be constructed and a smaller �xed point can be achieved�

In this section we will study the impact of algebraic manipulation�especially the

Gaussian�Jordan elimination� on bound consistency on binary equation system�

����� The Euclidean Algorithm

In this section we will recall some necessary materials in solving an integer equation� The

Euclidean Algorithm plays an important role in a class of methods� For the sake of self

containment� the algorithm and some useful results are given below�Refer to �NW��� for

detailed discussion�

The Euclidean algorithm is to �nd the greatest common divisor gcd� of two integers�

Algorithm gcd �NW���

function gcdin a� b�

Precondition� integers a � b � �

begin

c��� c�� � a� b�� p��� p�� � �� ��� q��� q�� � �� ���

t� ��

dof
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t� t� �

dt � b ct��

ct��
c

ct � ct�� � dtct��

pt � pt�� � dtpt��

qt � qt�� � dtqt��

gwhile ct! � ���

T � t �

return cT��

end

Proposition �� �NW� The Euclidean algorithm is correct and

ct � ���t��pta� qtb� for t � ��� �� ���� T�

Proposition �� �NW� The Euclidean algorithm runs in polynomial time O�log a��

Now consider the solution of the following equation

ax� by � c 
�	�

where x�y� a� b� c are integers�

Proposition �� �NW� Let r � gcd�a�b� with r�pa�qb� where p and q are relatively

prime�Equation ��	 has a solution if and only if rjc� If rjc the general solution can be

described by 
BBB�

x

y

�
CCCA �

c

r


BBB�

p

�q

�
CCCA�

z

r


BBB�

b

�a

�
CCCA � z � Z� 
�
�
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r� p and q can be obtained from the Euclidean algorithm�

����� Bound Consistency on Solved Form

As is pointed in last section� the complexity of bound consistency enforcing on a single

equation may be related to the size of the domain of variable� Reconsider the example

given in last section

	x � 
y� �x� � �y� � ��� ����

To make the system bound consistent we have the following iteration sequences

�x�� � ��� ���� �y�� � ��� ��� �x�� � ��� ��� �y�� � ��� ��� �x�� � ��� ��� �y�� � ��� ���

The general solution 
�
 can be employed to improve the e�ciency in bound consistency�

for both equation and in�equation�

Proposition �� Given a constraint ax � by � c� it can be made bound consistent in

Olog a��

Proof�

The bound consistency can be achieved by two steps�

First we obtain the projection on x and y by projection function

�����
����

�x� � � c�b�ya � 	 �x�

�y� � � c�a�xb � 	 �y�

Next step is to adjust the changed bound of x and y such that no more iteration is

needed�
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Assume in the �rst step�the lower bound of x has been changed to Lb�x�� By propo�

sition �� x should satisfy

minx� x �
c

r
p� bz�

So the �nal lower bound of x is exactly

minx �
c

r
p� bz� 
���

where

z� � b
Lb�x�� c

rp

b
c�

Similarly� if upper bound of x has been changed to Ub�x�� it should be adjusted to

maxx �
c

r
p� bd

Ub�x�� c
rp

b
e

Example


x� 	y � �

�x� � �y� � ����� ���

By naive method� the iteration sequences are

�x�� � ���	� ���� �y�� � ����� ���� �x�� � ����� ���� �y�� � ����� ����

With the help of Euclidean algorithm� we have

a � 
� b � 	� c � �� r � �� p � �� q � �

�x�� � ���	� ����
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By 
��

�x� � ����� ����

and according to x and projection function we have

�y� � ����� ����

Of course� we may have iteration sequence

�y�� � ����� ���� �x�� � ���	� ���

Proposition �� The binary equation system V�D�C� with C in solved form can be

balanced in Oe��

Proof�

In this proof the resulting �xi� means a real interval rather than a Z�interval�

The single equation ax�by � c can be trivially balanced in constant time property 	��

For a system�a special order have to be employed to revise the domain of variable� We

decompose C into a set of subsystems fCSfig according to free variables in C� CSfi

contains all the equations that contain the same free variable xfi � Obviously�

varsCSfi� 	 varsCSfj � � � and

S
fi CSfi � C�

For each subsystem CSfi � we obtain �xfi � by intersecting the projections of each equation

in CSfi on xfi � The projection on subject variable of CSfi can be obtained by the

corresponding equation containing the subject variable� Under new bounds of variables�
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CSfi is balanced� Obviously the complexity to balance CSfi is linear of jCSfi j� Hence

force� the system is balanced in a
P
jCSfi j � ae�where a is a constant� the time to balance

a single equation�

Corollary � The binary equation system V�D�C� with C in solved form can be made

bound consistency in Oe log a� where a is the greatest coe�cient in C�

Proof�

As in the proof above� we only need to prove that each subsystem CSf can be made

bound consistent linearly� In order to evaluate projections of CSf on xf � Euclidean

algorithm has to be employed� rj� pj � qj� can be obtained for each equation in CSf in

Olog a�� where a� is the coe�cient of greatest magnitude in CSf � For each equation

ajxj � bjxf � cj �

we have

xjf � �
cj
rj
qj � aj

zj
rj
�

By making

x�f � x�f � � � � � x
jCSf j
f

and applying 
�
 jCSf j � �� times� the general solution of xf can be obtained� We

obtain �xf � as in the proof of last proposition and adjust the bounds of xf in terms

of its general solution to get the ultimate bounds of xf � At last� bounds of subject

variables are obtained according to the bounds of xf � So� the complexity to enforce

bound consistency on CSf is OjCSf j log ja
�j�� The whole system can be made bound

consistent in Oe log jaj� where a is the coe�cient of the greatest magnitude in C�
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We conclude this section by the following bound consistency enforcing algorithm on

an arbitrary binary equation system V�D�C��

� Transforming C into its solved form by Gaussian�Jordan elimination�

� Selecting a special order to revise the bounds of variables as proposed by corollary 
�

It is known that the complexity of Gaussian�Jordan elimination on a binary system

is Oe� �AS���� and thus we have

Corollary � The worst case complexity of the above algorithm is Oe log a�� where a is

the greatest coe�cient ever produced in Gaussian�Jordan elimination�

Note that the complexity of the above algorithm does not depend on the size of

domain any longer�

����� Better Fixed Point on Solved Form

By algebraic manipulation� not only an e�cient algorithm can be achieved but also a

better �xed point can be obtained� which implies that more invalid values will be pruned

on the solved form�

The following lemma says that if a constraint is bound consistent� the projection of

the constraint on any variable is exactly the bounds of the variable� Note this is not true

for n�ary equation n � ���

Lemma � The �xed point �x�� �y�� of a constraint cs

ax� by � c

satis�es �x� � �
a �c� b�y���

Proof�
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In order to construct a contradiction we assume �x� � �
ac� b�y���By the de�nition of

bound consistency� we have

�x� �
�

a
�c� b�y�� 
���

It is easy to verify that for any two interval I� and I�

I� �
�
aI� implies aI� � I�� and I� � c� I� implies I� � c � I��

From 
�� we have

�

�b
�a�x�� c� � �y�

which contradicts that the constraint is bound consistent�

Proposition �� The �xed point achieved by the bound consistency algorithm on a binary

system V�D�C� is not smaller than that achieved on system V�D�C �� where C � is a

solved form of C�

Proof�

The solved form C � can be obtained by a series of variable elimination� Assume� by

Gaussian�Jordan elimination� we get a sequence of systems

C� � C�C�� � � � � Ck � C ��

where Ci is obtained by eliminating one variable from Ci��� Now we prove that the

maximal �xed point of CSh is not greater than that of Ch���

Let xi be the eliminated variable of Ch�� and the substitution for xi be

xi �
�

ai�
bi � ai�xk� 
���
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which is shared by both Ch�� and Ch� Let the maximal �xed point of Ch be

�xh � �x��� �x��� � � � � �xn���

Evidently�all the equations in Ch�� which are shared by CSh are bound consistent under

�xh�

Now consider equation in CSh��

ah��j� xi � ah��j� xl � bh��j 
���

where xi will be substituted out� After xi is substituted out� the resulted equation in Ch

must be one of the following forms

� � �

� � cc � ��

xk � �xed value

ahj�xk � ah��j� xl � bhj �

The �rst case implies l � kxk and xl are the same variable� and


BBBBBBB�

ah��j�

ah��j�

bh��j

�
CCCCCCCA

�
�

�


BBBBBBB�

ai�

ai�

bj

�
CCCCCCCA
� � R�

Therefore��xi� and �xk� being a �xed point of  
�� � implies that �xi� and �xk� is also a

�xed point of  
�� ��

The second case means that �xi� is empty and thus the maximal �xed point of Ch is

not greater than that of CSh���
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The third case implies l � k and xk is �xed�By  
�� � xi will also take a constant

value�Naturally� �xi� and �xk� satis�es  
�� ��

In last case� substituting out xi in  
�� � gives

ah��j� 
�

ai�
bi � ai�xk�� � ah��j� xl � bh��j 
���

whose simpli�ed form in Ch is

ahj�xk � ah��j� xl � bhj 
����

It is easy to verify that the �xed point �xk�� �xl�� of  
��� � is also the �xed point of

 
�� �� By lemma and  
�� �� we have

�

ai�
�bi � ai��xk�� � �xi�

and thus by  
�� ���xi� and �xl� is a �xed point of  
�� ��

In a word�the �xed point �x��� � � � � �xn�� is also a �xed point of Ch��� Therefore it is

smaller than or equal to the maximal �xed point of Ch���

De
nition �	 A solution of V�D�C� is an assignment of values to all variables in V

such that all domain constraints and C are satis�ed�

A system V�D�C� is consistent if there exists a solution for it�

Proposition �� A binary equation system with solved form is consistent if it is bound

consistent�

Proof�

A solution can be obtained as following� Assign each free variable the lower bound�
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Each subject variable will take either upper bound or lower bound according to the

constraint imposed on it�

Corollary 	 For a binary equation system �the bound consistency algorithm achieves the

same �xed point on any solved form of C� Furthermore� that �xed point is the smallest

one that can be achieved on all possible equivalent systems�

It is interesting to observe that for a binary equation system with C in solved form�

arc consistency actually n�consistency� can be easily obtained on the base of bound con�

sistency� After bound consistency enforcing�the general representation of a free variable

of C is of the following form

xf � Lbxf � � i� 
����

where i is an integer greater than or equal to � and � is the step sizesee 
�
�� Any

value satisfying 
��� can be extended to a solution of the system�

The nature of the bound consistency enforcing algorithm and Gaussian elimination

is incremental� So� all algorithms discussed above is applicable to the solver of a CLP

over �nite domain�
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On Solving of n�ary Linear

Constraints

Given an equation system V�D�C�� we will give in this chapter a discussion on the

in�uence of Gaussian�Jordan elimination on solving the system� Precisely� we want to

know if consistency algorithm is faster on the solved form than the original form �if the

consistency algorithm can obtain a better �xed point on the solved form than on the

original form� and the in�uence of the solved form on the searching procedure� As is

shown in the last chapter� the answer is positive for binary system� However� for n�ary

system� there is not a simple answer of yes or no� Here� we only discuss the �rst and

the last issue� Section � gives a mathematical view of bound consistency� Section � gives

some preliminary experimental results on the impact of Gaussian�Jordan elimination on

the solving of n�ary system�

��



CHAPTER �� ON SOLVING OF N �ARY LINEAR CONSTRAINTS ��

��� Mathematical view of bound consistency

����� Fourier elimination

Fourier elimination �Koh�	���Koh��� and �Duf�
�� is a useful tool in linear programming�

The principle of Fourier elimination can be illustrated by the following example� Consider

the following linear inequalities�

x� � �

x�� �x� � �

x�� x� � �

x�� x� � 	

x� � �

����

In order to obtain the range of x�� we need to eliminate x� as follows� We divide the � in�

equalities with respect to x� into three classes� The �rst class contains all the inequalities

in which x� can be expressed as greater than certain linear terms� the second contains

those in which x� can be expressed as less than other linear terms� and the third class

includes those where no x� occurs� By eliminating x��the new constraint system includes

the third class of constraints and those constraints by adding up any two constraints

from �rst class and second class�For the example� after classifying we have

x� � �� �x�

� � x�

�� x� � x�

	 � x� � x�

x� � �

����
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And the new system is

� � �� �x�

�� x� � �� �x�

	 � x� � �� �x�

x� � �

��	�

by which we have x� � �� The Fourier elimination can be used to obtain a solution

of linear program �Dan�	� and applied to integer programming�DE�	�� It has also be

applied to obtain a projection of a constraint system on a set of variables�JMPY��� in

the CLP community�

The greatest weakness of the Fourier elimination is that possibly exponential number

of constraints will be generated� However� by removing those redundant constraints

in each elimination step� the number of new generated constraints can be signi�cantly

reduced�Cer�	��Koh�����

Consider the linear constraint system V�D�C�� The bound consistency actually can

be interpreted as follows�

While V�D�C� is not bound consistent

For each constraint ci � C

For each variable xik � varsci�

Apply Fourier elimination to fcig �D to obtain the projection of ci on xik �

round the bound of xik to integer�

An immediate generalization of bound consistency is to obtain the projection of a
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subset�rather than a single constraint ci� of C on xi � One extreme is to apply Fourier

elimination on C to obtain the projection on each variable xi and then round bounds of

xi to integers This kind of generalization of the bound consistency is somewhat similar

to �DB����� In that case�bound consistency enforcing algorithm can reach the �xed point

which is a subset of the cube evenly containing the feasible region of the relaxation of

linear systemD�C� to real�

Our concern here is how the Gaussian elimination of equations a�ect the bound

consistency� From the above view� Gaussian elimination itself can not guarantee to

achieve higher consistency� or achieve a smaller �xed point if we still adopt the bound

consistency de�ned in chapter �� However� it is itself interesting to study the in�uence on

bound consistency of algebraic transformation while in general CSP it is not convenient

to do so� Another reason is that Gaussian elimination is an e�cient algorithm and is

widely implemented in CLP system�such as CLPR�� CHIP� Prolog III etc� The third

reason is as indicated in chapter ��

Note��For��� transfers the control of Fourier elimination to users by providing some

built�in predicates which are used to choose a set of constraints and a set of variables to

which the Fourier elimination is applied�Some other kinds of generalization of bound con�

sistency appears in �Lho�	��But we will not discuss them here because of their irrelevance

to the current topic�

��� Algebraic Structure and Solving

Experiments in the section are based on the following puzzle which is a frequently used

benchmark�
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����� A Puzzle

Consider the crypt�arithmetic problem from the Mathematical Puzzles of Sam Loyd� The

owner of a general store� who is something of a puzzlist� has put up this sign to see if

any of his mathematical friends can translate it properly� Each di�erent letter stands for

a di�erent digit� The words above the horizontal linesee �gure ���� represent numbers

that add to the total of �ALL WOOL�� The problem is to change all the letters to the

correct digits �

C H E S S

� C A S H

� B O W W O W

� C H O P S

� A L S O P S

� P A L E A L E

� C O O L

� B A S S

� H O P S

� A L E S

� H O E S

� A P P L E S

� C O W S

� C H E E S E

� C H S O A P

� S H E E P

���������������

A L L W O O L

Figure ���� ALL WOOL

Obviously� this problem can be described by the constraints among characters� Here�

we model the problem as follows� All the characters occurring in the problem can be

thought of as variables whose range is over ����� The constraints over the variables are

S�H�W�S�S�E�L�S�S�S�S�S�S�E�P�P � L� ���C��� ����C��

S�S�O�P�P�L�O�S�P�E�E�E�W�S�A�E� C�� � O� ���C��� ����C��

E�A�W�O�O�A�O�A�O�L�O�L�O�E�O�E� C�� � C�� � O� ���C��� ����C��
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H�C�W�H�S�E�C�B�H�A�H�P�C�E�S�H� C�� � C�� � W� ���C��� ����C��

C� O�C�L�L� P� H�H�S� C�� � C�� � L� ���C	�� ����C	�

B� A�A� A� C�C � C	� � C�� � L� ���C
�� ����C
�

P � C
� � C	� � A

where Ci� and Ci� represent the two possible carries for ith column� One advantage

of this modelingwhich is not a straightforward description of the problem� is that more

pruning can be achieved with bound consistency techniques�

����� Variable Ordering in Linear Constraints

As indicated in chapter �� a general way to improve the e�ciency of searching procedure

is to employ a good ordering of variables� This method has been proved successful in

solving combinatorial problem by CLP languages like CHIP�ILOG� Generally� a dynamic

variable orderingDVO� is employed by such languages� One heuristics based on �rst fail

principle is to choose the variable with minimum domain �rst� Constraint solvers of CLP

languages over �nite domain are equipped with consistency techniques which prune the

search space in each computation step� In that case� the size of the domain of variable

more or less re�ects the constrainedness on the variable of the constraint system� The

fewer values left in the variable�s domain mean more active constraints on the variable

and thus it more possibly fails to instantiate this variable� Here the constrainedness is

approximated by the size of domain�

Given a linear constraint system V�D�C��Assume all variables have the same initial

domain� We give a characterization of a constrainedness according to the semantics of

the constraints�
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De
nition �� The constrainedness on a variable xik of a linear constraint ci is

�iik �
�

jaik j

il ��ikX
jail j�

Intuitively� the variable with the greater � will be more restricted than the other variables

in the constraint�

De
nition �� The constrainedness �ik on a variable xik of a linear system V�D�C� is

�ik �
X

ik�vars�cj�

�jik �

An ordering of variable of a linear constraint system can be easily obtained according

to the constrainedness of variables� An alternative is to get the constrainedness by

simulating the consistency enforcing� The idea is that once the most constrained variables

is decided� its coe�cient will be set to � and the constrainedness of the rest variables are

recalculated and this is repeated until no variable is left� For the puzzle� we have following

experiment results the entry in the following table is the number of backtracks�� V O�

RO DV O V O� V O�

C ����� ���� ��� ����

is the variable ordering obtained by the second approach while V O� is that obtained by

the �rst approach�The RO is an arbitrarily variable ordering� DV O refers to the variable

ordering obtained by the heuristics of choosing the variable with minimum domain �rst�

����� Algebraic Structure
 Consistency and Search

In this section� the domain of variable in the puzzle is generalized to range from � to d�



CHAPTER �� ON SOLVING OF N �ARY LINEAR CONSTRAINTS ��

C can be written as

Ax � b� A � Re�m� b � Re�

Let the solved form C � of C by Gaussian�Jordan elimination be

BxB � NxN � b�� B � Re��e� � N � Re��m�e�

where e� is the number of constraints left after the elimination�

When A is dense� the bound consistency enforcing algorithm on C � is faster than on

C� Obviously� after Gaussian�Jordan elimination� each constraint is shortened by e� and

when there are redundant equations in C e� will be smaller than e�

In our experiment to compare the maximal �xed point between the original system

and the solved form� we substitute out all the carries in the puzzle with correct values

and get a system which can be regarded as a dense system� The results are shown in

Table ����

d Fixed Point

C H E S A B O W P L

� C ���� ���� ���� ���� ���� ���� ���� ���� ���� ����
C � ���� 	��� ���
 ���	 ���� ���� ���� ���� ���� 
���

	� C ����� ���� ���� ���� ����� ���	� ����	 ����� ����� ���	�
C � ���� ���� ���
 ���� ���� ���	� ����� ���	� ���� 
����

Table ���� The �xed point achieved on di�erent system

Results show that for a dense matrix A� the maximal �xed point of the solved form

is better than that of the original system� The better here means most components of

a �xed point are smaller� Note that variable S in C has a smaller interval than in C ��

which shows that even C and C � are algebraicly equivalent� the �xed points of these two

system are not comparable�Actually� the bound consistency treats each constraint in C

separately and thus change of the syntactical form of individual constraint results in the
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change of the maximal �xed pointed�

Of course� more experiments need to be carried out to characterize what is dense and

better�

As for searching on the dense system� we have following results see following table��

V O� refers to variable ordering A�E�L� while V O� refers to variable ordering L�E�A��

NO� of Backtracks
V O� V O� V O� V O�

C �� �	� �� ���

C� � 	 	 	

Table ���� Searching on a dense system�

Actually we believe that Gaussian�Jordan elimination is de�nitely useful when A is dense�

When A is sparse� N is not necessarily sparse� So� we may exploit the special structure

as what has been done in the area of sparse matrix computation� For band and variable�

band matrices �DER��� the Gaussian�Jordan elimination is de�nitely useful� �DER���

also discusses algorithms and heuristics to ordering a sparse matrix to the special form

like band or variable�band matrices�

For an arbitrary sparse matrix A� experiment shows that solving the problem on the

original constraint system has almost the same performance as on the solved form�which

implies that in a tightly coupled solver the solved form can be shared by both real solver

and �nite domain solver� In the experiment four di�erent forms of the constraint system

are used� C represents the original constraint system�SS the solved form of C obtained by

Mathematica by default� and SO the solved form obtained by specifying subject variables

in terms of a special variable ordering�SM is obtained as follows� We attempt to obtain a

solved form by specifying the � least constrained variables as subject variables� Actually�

the � variables can not be subject variables simultaneously�So� we only obtain a mixture

which is composed of a solved subsystem and the rest equations� In table ��	�V O� refers
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d � � d�	�

V O� DV O V O�

C ��� ���� �
�

SS ��	 ��	� ���

SO ��� ��� ���

SM ��� ��� ���

Table ��	� Number of backtracks on di�erent form�

to the variable ordering C	�� C
�� C��� C��� C��� C��� C
�� A� P� C	�� C� S�

L� B� H� C��� O� E� C��� C��� W� C��� which is sorted decreasingly according to

constrainedness of variables in the original system�
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Conclusion and Future Work

��� Conclusion

The research work presented in this thesis focuses on two important class of constraints

�basic constraints and n�ary linear constraints�

Due to the nice property of functional constraints� we propose an e�cient algorithm

to enforce strong n�consistency on FCs whose space complexity is the same as that of the

optimal arc consistency enforcing algorithm and time complexity is almost the same as

that of the optimal arc consistency enforcing algorithm to enforce arc consistency� When

there is no con�ict of orienting� our algorithm is optimal in both time and space complex�

ity� Specially� the con�ict of orienting can be avoided for a CSP all of whose constraints

are known beforehand� Another characteristic of our algorithm is that all functional

constraints need to be checked only once� We also give a detailed discussion on how to

deal with the con�ict of orienting� The results show that even in the presence of con�

�ict of orienting�our algorithm has a good performanceOn� log n�d� ed��� As for worst

case complexity� our algorithm has great advantage over the general path consistency�

�For functional constraints� the path consistency implies strong n�consistency�

��
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algorithmstime complexity On�d�� space complexity n�d����MH����HL����

As for bound consistency� the most related work is �BO���� However� �BO��� does

not give enough attention to linear constraints over �nite domains� In this thesis we

give analysis of complexity of bound consistency algorithms� We propose an e�cient

algorithm whose worst case complexity is On�ed�� We also analyze �rst time the in�

�uence of algebraic transformation on bound consistency� Our study gives a nice result

that for binary equation system� the Gaussian�Jordan G�J� algorithm helps to obtain

a global consistency and a fast consistency enforcing algorithm� However� the result no

longer holds for n�ary linear constraints� Our empirical study shows that for problem

with dense coe�cient matrix� the G�J elimination greatly improves constraint solving

from consistency enforcing to the whole search procedure� For sparse matrix� although

the consistency enforcing algorithm can not be sped up� the performance of the search

procedure on the solved form is close to that on the original form� The above observa�

tion implies that the G�J elimination is not only useful as a relaxed global satis�ability

tester� but also can provide a better form of constraints which will bene�t the consistency

enforcing algorithm and the whole search procedure�

��� Future Works

This thesis presents a fast algorithm for achieving strong n�consistency on functional

constraints� As for monotonic constraints� we have the following conjecture� There exists

a fast algorithm for MCs which can also achieve strong n�consistency on MCs� The key

issue is how to deal with loops� Here loops is similar to those of functional constraints

while the detection of loops is fast� Once the conjecture is true� the algorithm for enforcing

strong n�consistency on both MCs and FCs can be easily obtained� However� the solving

of anti�functional constraints over two variables is NP �complete�
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It is still not clear about the role played by the syntactical form of constraints in

bound consistency enforcing and constraint solving� The intuition is that a more com�

pact form can improve constraint solving� Speci�cally� does there exist a compact form

for an arbitrary linear constraints such that bound consistency enforcing can both be

faster and achieving more pruningsmaller maximal �xed point�� We do not even know

how to describe the compact form accurately� A practical way is to carry out more

experiments to explore the in�uence of typical algebraic transformations on constraint

solving� Except for G�J elimination� there are other elimination methods�for example

the Gaussian elimination� BDB form �BSTY��� and other forms �Imb����

Some work can also be done to de�ne higher level of bound consistency and exam�

ine the impact of higher level of consistency on solving of linear constraints over �nite

domains�



Bibliography

�AS��� Aspvall� Bengt and Shiloach� Yossi A fast algorithm for solving systems of linear

equations with two variables per equation� Linear Algebra Appl� 	
� ������
� ����

�BC�	� Bessiere�C� and Cordier�M�� Arc�consistency and arc�consistency again� AAAI�

�	�������	����	

�BDB�
� Beringer� H�� and De Backer� B� Combinatorial Problem Solving in Constraint

Logic Programming with Cooperating Solvers� Logic Programming�Formal Methods

and Practical Applications� C� Beierle and L� Plumereds��� Elsevier Science Pub�

lishers B� V� ���
�

�BMH�
� Benhamou�F�� McAllester�D� and van Hentenryck� P� � CLPIntervals� Re�

visited� Proceedings of ���� International Symposium on Logic Programming���
�

�	�����


�BO��� Benhamou�F� and Older� W�� Applying Interval Arithmetic to Real� Integer and

Boolean Constraints�Journal of Logic Programming 	���������

�BP��� Brown� C�A�� and Purdom� P�W�Jr�� How to search e�ciently� Proceedings of �th

International Joint Conference on AI�������
�����

�	



BIBLIOGRAPHY �


�BSTY��� Burg�J�� Stuckey�P�J�� Tai� J� and Yap� R�� Linear Equation Solving for Con�

straint Logic Programming� Proceedings of the ��th International Conference on

Logic Programming�����

�CC�	� Carlson� Bjorn� Carlsson� Mats� Constraint Solving and Entailment Algorithms

for ccFD�� manuscript����	�

�CD��� Codognet�P� and Diaz�D�� Compiling Constraints in CLP FD�� Journal of Logic

Programming���	�� �������� �����

�Cer�	� Cernikov�S�N�� Constractin of Finite Systems of Linear Inequalities� Soviet Math�

ematics DOKLADY � ����	

�CL�
� Chiu�C�K� and Lee� J�H�M�� Towards Practical Interval Constraint Solving in

Logic Programming�Principles and practice of constraint programming � Second In�

ternational Workshop� PPCP ����������	� ���


�Cle��� Cleary�J�G�� Logical Arithmetic� Future Computing Systems ����� �����
������

�CLR��� Cormen�T�H�� Leiserson�C�E�� and Rivest�R�L�� Introduction to Algorithms�����

�Col��� Colmerauer� A�� Prolog III Reference and Users manual� Version ���� PrologIA�

Marseilles� �����

�Dan�	� Dantzig�G�B�� Liner Programming and Extensions����	

�DB��� Dechter� Rina and van Beek� Peter� Local and Global Relational Consistency�

Principles and practice of constraint programming �CP ��� � Cassis� France� ����

�DE�	� Dantzig�G�B��Eaves� B�C�� Fourier�Motzkin elimination and its dual� Journal of

Combinatorial Theory �A������������ ���	



BIBLIOGRAPHY ��

�Dec��� Dechter� R�� From Local to Global Consistency� Arti�cial Intelligence ��� �������

����

�DER��� Du��I�S�� Erisman�A�M� and Reid�J�K�� Direct Methods fro Sparse Matrices�

Clarendon Press� ����

�DP��� Dechter� R� and Pearl�J�� Structure Identi�cation in Relational Data� Arti�cial

Intelligence � �	����������

�DVHS��� Dincbas� M�� van Hentenryck�P�� Extending Equation Solving and Constraint

Handling in Logic Programming� Colloquium on Resolution of Equations in Algebraic

Structures� Texas� ����

�DVHS��� Dincbas� M�� van Hentenryck�P�� Simonis�H� and Aggoun� A�� The Constraint

Logic Programming Language CHIP� Proceedings of the �nd International Confer�

ence on Fifth Generation Computer Systems� �
����
� ����

�Duf�
� Du�n�R�J��On Fourier�s Analysis of Linear Inequality Systems� Mathematical

Programming Study �����������


�For��� Fordan� A�� Linear Projection in CLPFD�� manuscript� ����

�Fre��� Freuder� E�C�� Synthesizing Constraint Expressions� Communications of ACM

������� �������� ����

�Fre��� Freuder� E�C�� A su�cient condition for backtrack�free search� Journal of ACM�

Vol �������
�	������

�Fre��� Freuder�E�C��Complexity of K�tree Structured Constraint Satisfaction Problems�

Proceedings of National Conference on Arti�cial Intelligence�
�������

�Gol��� Golub� G�H�� Matrix computations� Johns Hopkins U P� ����



BIBLIOGRAPHY ��

�Han��� Hansen� E�R�� Global optimization using interval analysis� Marcel Dekker Inc��

����

�HE��� Haralick� R�M�� and Elliott� G�L�� Increasing tree search e�ciency for constraint

satisfaction problems� Arti�cial Intelligence � Vol��� ��	�	�	� ����

�HL��� Han� C� and Lee� C�� Comments on Mohr and Henderson�s Path Consistency

Algorithm� Arti�cial Intelligence 	�� �����	�� ����

�HSSJO��� Havens� W�� Sidebottom� S�� Sidebottom�G�� Jones�J� and Ovans�R�� Echidna�

A Constraint Logic Programming Shell� Proceedings of Paci�c Rim International

Conference on Arti�cial Intelligence�����

�ILOG� ILOG SOLVER Reference Manual Version 	���ILOG�����

�Imb��� Linear Constraint Solving in CLP�languages� Constraint programming � basics

and trends �LNCS����� ��������Springer�Verlag� ����

�JL��� Ja�ar� J� and Lassez� J��L�� Constraint Logic Programming� Proceedings �
th

ACM Symposium on Principles of Programming Languages� Munich������ ����

���� ����

�JM�
� Ja�ar� Joxan and Maher� M� J�� Constraint Logic Programming�Journal of Logic

Programming �� ��� ��	��������


�JMSY��� Ja�ar� J�� Michaylov� S�� Stuckey� P� J�� and Yap� R��The CLPR� language

and system� ACM Transactions on Programming Languages��
	�� 		��	��� �����

�JMSY�
� Ja�ar� J�� Maher�M�� S�� Stuckey� P� J�� and Yap� R�� Beyond Finite Domains�

�nd Workshop on the Principles and Practice of Constraint Programming� 	���	���

���




BIBLIOGRAPHY ��

�Koh��� Kohler� D�A�� Projections of polyhedral sets� Ph�D� Thesis� ����

�Koh�	� Kohler� D�A�� Translation of A Report by Fourier on His Work on Linear In�

equalities� Opsearch ���	��
�����	

�Kum��� Kumar�V�� Algorithms for Constraint Satisfaction Problems � A Survey� AI

Magazine �	���	��

�����

�Liu��� Liu�B�� Increasing Functional Constraints Need to be checked only once� Inter�

national Joint Conference on Arti�cial Intelligence ��� ����

�Liu��� Liu�B�� An Improved Generic Arc Consistency Algorithm and Its Specialization�

�th Paci�c Rim International Conference on Arti�cial Intelligence�����

�Lau��� Lauriere�J��Alanguage and a program for stating and solving combinatorial prob�

lems� Arti�cial Intelligence ��������������

�Lho�	� Lhomme� Olivier� Consistency Techniques for Numeric CSPs� Proceedings of

IJCAI��	�Chambery�France��	���	�� ���	

�Llo��� Lloyd�J�W�� Foundations of Logic Programming� Springer�Verlag� Second Edi�

tion�����

�Moo��� Moore� R�E�� Interval Analysis�Prentice Hall� ����

�Mac��� Mackworth�A� K�� Consistency in Networks of Relations� Arti�cial Intelligence

����������������

�Man�	� Mantsivoda�A�� Flang and its Implementation� Proceedings Symposium on

Programming Language Implementation and Logic Programming� LNCS ��
�����

�������	



BIBLIOGRAPHY ��

�MF��� Mackworth�A� K� and Freud�E�C��The Complexity of Some Polynomial Network

Consistency Algorithms for Constraint Satisfaction Problems� Arti�cial Intelligence

��� ����
� ����

�MH��� Mohr� R� and Henderson� T�C�� Arc and Path Consistency Revisited� Arti�cial

Intelligence �� �����		� ����

�MM��a� Mohr�R� and Masini� G�� Running e�ciently arc consistency�Syntactic and

Structural Pattern Recognition� Springer� Berlin� �����	�� ����

�MM��b� Mohr�R� and Masini� G�� Good Old Discrete Relaxation� Proceedings of ECAI�

�Munich�Germany�����

�Mon�
� Montanari� U�� Networks of Constraints� Fundamental Properties and Applica�

tions in � Information Science ���������	�����


�NW��� Nemhauser� G� L� and Wolsey� L� A�� Integer and Combinatorial Optimization�

New York� Wiley �����

�Nil��� Nilson� N�J�� Principles of Arti�cial Intelligence � Tioga�����

�OB�	� Older� W� and Benhamou�F�� Programming in CLPBNR�� Proceedings of

PPCP��	�Newport� ���	

�OV��� Older� W� and Vellino�A�� Extending Prolog with Constraint Arithmetic on Real

Intervals� Proceedings of the Canadian Conference on Electrical and Computer En�

gineering�����

�OV�	� Older� W� and Vellino�A�� Constraint Arithmetic on Real Intervals� Constraint

Logic Programming�Selected Research�Benhamou�F� and Colmerauer�A�eds��� ����

�������	



BIBLIOGRAPHY ��

�Per��� Perlin�M�� Arc Consistency for Factorable Relations� Proceedings of the ����

IEEE International Conference on Tools for AI�	
��	
�� San Jose�CA�����

�Pug�
� Puget�J�F��A C�� Implementation of CLP� Proceedings of Singapore Interna�

tional Conference on Intelligent System����


�RPD��� Rossi� F�� Petrie� C�� and Dhar� V� ����� On the equivalence of Constraint�

Satisfaction Problems� Technical Report ACT�AI�������� MCC Corp�� Austin�

Texas�

�RWH��� Rodosek� R�� Wallace� M� G� and Hajian� M T� A New Approach to Integrate

Mixed Integer Programming with CLP extended abstract�� Proceedings of the CP��

Workshop on Constraint Programming Applications� An Inventory and Taxonomy�


���
� Cambridge� Massachusetts� ����

�RWH��� Rodosek� R�� Wallace� M� G� and Hajian� M T� A New Approach to Integrating

Mixed Integer Programming with Constraint Logic Programming� An Extension�

to appear in Annals of Operational Research� Recent Advances in Combinatorial

Optimization� ����

�Sho��� Shoen�eld�J�R�� Mathematical Logic � Addison�Wesley�����

�Tsa�	� Tsang� E�� Foundations of Constraint Satisfaction� Academic Press����	

�vH��� van Hentenryck� P�� Constraint Satisfaction in Logic Programming� MIT Press�

Cambridge� ����

�vH��� van Hentenryck� P�� Incremental Constraint Satisfaction in Logic Programming�

Proceedings of Seventh International Conference on Logic Programming� ��������

����



BIBLIOGRAPHY ���

�VHD��a� van Hentenryck� P�� and Deville� Y�� Operational Semantics of Constraint

Logic Programming over Finite Domains�Proceedings of 	rd International Sympo�

sium on Programming Language Implementation and Logic Programming�����

�VHD��b� van Hentenryck and Deville� Y� The Cardinality Operator� A New Logical

Connective and its Application to Constraint Logic Programming� Proceedings of

International Conference on Logic Programming� �
������ �����

�VHDT��� van Hentenryck� P�� Deville� Y� and Teng� C��M�� A Generic Arc�Consistency

Algorithm and its Specializations� Arti�cial Intelligence �� ����	��� ����

�VHSD��� van Hentenryck� P�� Saraswat� V�� and Deville� Y�� Constraint Processing in

ccFD�� manuscript� ����

�VHSD�	� van Hentenryck� P�� Saraswat� V�� and Deville� Y�� Design� Implementations

and Evaluation of the Constraint Language ccFD�� Technical Report CS��	����

Brown University� ���	

�VHMD��� van Hentenryk� P�� Michel�L� and Deville�Y�� Numerica� A Modeling Lan�

guage for Global Optimization� MIT Press� Cambridge� ����

�Wal��� Waltz�D�� Generating Semantic Descriptions from Drawings of Scenes with Shad�

ows�Tech� Rept� AI���� MIT� Cambridge� ����

�Zab��� Zabih�R� Some applications of graph bandwidth to constraint satisfaction prob�

lems�Proceedings of National Conference on Arti�cial Intelligence�AAAI� ���������

�ZW��� Zhang� Yuanlin and Wu� Hui� Bound Consistency on Linear Constraints in Finite

Domain Constraint Programming� Proceedings of ECAI��� Brighton� UK� ����


