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Abstract is the number of constraints andthe maximum degree of
: : . . the constraint graph.
Many interesting tractable problems are identified In this paper, making use of the row convexity and connect-
under the model of Constraint Satisfaction Prob-  gqness of constraints, we propose a new algorithm to solve
lems. These problems are usually solved by forcing  cRrc constraints with time complexity @(no2d + ed?)
a certain level of local consistency. In this paper,  \yhereo is theelimination degreef the triangulated graph of

for the class of connected row convex constraints,  the given problem. We observe that the satisfiability of CRC
we propose a novel algorithm which is based on  copstraints is preserved when a variable is eliminated with

the ideas of variable elimination and efficient com- proper modification of the constraints on the neighbors of the
position of row convex and connected constraints.  gliminated variable. The new algorithm simply eliminates the
Compared with the existing work including ran- variables one by one until it reaches a special problem with
domized algorlthms, the new algorlphm has better only one variable.
worst case time and space complexity. A key operation in the elimination algorithm is to com-
pose two constraints. The properties of connectedness and
1 Introduction row convexity of the constraints make it possible to get a fast

} . ) ) ) _composition algorithm with time complexity @?(d).

Constraint satisfaction techniques have found wide applica- |n this paper, we present the elimination algorithm after
tions in combinatorial optimisation, scheduling, configura-the preliminaries on CRC constraints. The methods to com-
tion, and many other areas. However, Constraint Satisfactiopute composition of row convex and connected constraints
Problems (CSP) are NP-hard in general. One active researgfte then proposed. We examine the elimination algorithm on
area is to identify tractable CSP problems and find efficienproblems with sparse constraint graphs before we conclude
algorithms for them. the paper.

An interesting class of row convex constraints was iden-
tified by van Beek and Dechter (1995). It is known that if 2 Preliminaries

a problem of row convex constraints is path consistent, it isA bi . isfacti bl CSR -
tractable to find a solution for this problem. However, when inary constralnt Sat'.s action problem ( ) & triple
. D, C) whereV is a finite set of variabled) ={D, | = €

the problem is not path consistent, path consistency enforcin 4D is the finite d 0 of: dC is a fini f
might not lead to global consistency due to the possibility tha’. &1d Dz is the finite domain of:}, andC' is a finite set o
inary constraints over the variablesf As usual, we as-

the row convexity of some constraints is destroyed. Devill there i | traint ir of variables. W
et al. (1997) restrict row convexity to connected row convex->UMe tNETE IS only one constraint on a pair of variables. We

ity (CRC). In fact, the scene labeling problem and constraint/S€7: ¢, andd to denote the number of variables, the number
based grammar examples given[iran Beek and Dechter, of constraints, and the maximum domain size of a CSP prob-
1999 are CRC constraints. One can find a solution of CRCEM- Weh“SQ’J’ - andx,rgf, - tobtljenote variables in ”;"S
constraints by enforcing path consistency. Deville et al. alscp;?‘?]er' Tt eonstraljnt %rap aproblem{;, D, C) is agrap
provide an algorithm more efficient than the general path con'Vith verticesV” and edges = {{i, j} | c;; € C}. ACSP
sistency algorithm by making use of certain properties of rowS satisfiableif there is an assignment of values to variables

convexity. The algorithm has a worst case time complexitySUch that all constraints are satisfied. .
of O(n%)l/?) with sgpace complexity oD (n2d) wherenri)s ys Assume there is a total ordering on each domainDof

the number of variables] the maximum domain size. Re- When necessary, we introduisead andtail for each variable

cently, Kumar (2006) has proposed a randomized algorithnOMain such thahead (tail respectively) is smaller (larger
for CRC constraints with time complexity 6#(vn2d?) and respectively) than any other value of the domain. Func-

; ot tions succ (u, D;) (u € D; U {head}) and pred (u, D;)
space complexity)(ed) (personal communication) wheee ’ : \ U
P plexity)(ed) (p ) (v € D; U {tail}) denote respectively the successor and pre-

*The research leading to the results in this paper was funded iflecessor of: in the current domairD;U {head, tail}. The
part by NASA-NNGO5GP48G. domainD; is omitted when it is clear from the context.



Given a constraint;; and a valuez € D;, the extension

(V—{z},D,C")whereC’ = CU{cyj0¢CizN¢ij | Cjzs Ciz €

sete;jlal is{b € D, | (a,b) € ¢;;}. ¢;j[a] is also called the R, andi # j} — R,. In the elimination, when composing

imageof a with respect ta;;. Clearlyc;;[head] = ¢;;|tail] =

Cig @nd cg;, if ¢;; ¢ C we simply taker;; as a universal

(. Standard operations of intersection and composition canonstrainfi.e., D; x D;.

be applied to constraints. The compositioncgf and c,;
is denoted byc,; o ¢;,. It is convenient to use a Boolean
matrix to represent a constraigf;. The rows and columns
are ordered by the ordering of the valuedgfandD;.

A constraintc;; is arc consisten{(AC) if every value of
D; has a support itD; and every value oD; has a support
in D;. A CSP problem isarc consistentf all its constraints

Theorem 1 Consider an arc consistent problém(V, D, C)
of CRC constraints and a variable ¢
P'=(V’, D', C") be the problem after is eliminated. P is
satisfiable iff P’ is satisfiable.

V. Let

Proof We first prove if P is satisfiable, so i$”’. Lets be

are arc consistent. A path, ...,y of a constraint graph is a solution ofP, s, an assignment aof by s, andsz be the

consistenif for any assignments = « andy = b such that

(a,b) € cgy, there is an assignment for each of other variables;

by the assignments. A constraint graptpath consistenif
every path of the graph is consistent. A CSpath consistent

restriction ofs to VV'. We only need to show that; satisfies

e C' for all ¢;,¢,; € C. Sinces is a solution ofP, sz
in the path such that all constraints over the path are satisfieshtisfies:;, c;, andc;;. Hence,s; satisfies;;.

Next we prove ifP’ is satisfiable, so i#. Lett be a solu-
tion of P’. We will show thatt is extensible consistently to

if the completion of its constraint graph is path consistent. A, iy p. et V, be{i | ¢;, € R,}. For eachi € V,, let the
CSP ispartially path consisterif its constraint graph is path - assignment of in t bea;. Let S = {cizlai] | 1 € Vz}. Since

consisteni{Bliek and Sam-Haroud, 1999

all constraints ofP are row convex and is arc consistent,

A constraintc;; is row convexf there exists a total order-  the sets ofS are convex and none of them is empty.
ing on D; such that the 1's are consecutive in each row of consider any two sets;, [a:], cjzla;] € S. Sincet is a

the matrix ofc;;. Thereduced fornof a constraint;;, de-
noted byc;;, is obtained by removing from®; (and D; re-
spectively) those values whose image with respeet;t¢c;;
respectively) is empty. For a row convex constraift the
image ofa € D, can be represented as amerval [u, v]
whereuw is the first andv is the last value ofD; such that
(a,u), (a,v) € ¢;;. Arow convex constraint;; is connected

if the images|a, b] and [a/, '] of any two consecutive rows
(and columns respectively) ef; are not empty and satisfy
[a,b]N [ pred (a’), b'] # 0 or |a,b]N [@, succ (V)] # 0.
Note that, for our purposes, the definition of connectednes,
here isstrongerthan that by Deville et al. (1997). If a con-
straint is row convex and connected, it is arc consistent. A

solution of P/, (a;, a;) € c;; wherec;; is a constraint of”’.
The fact thate,, = c;; o ¢;z N ¢;5, Whereg;; is either inC
or universal, implies that there exists a value D, such
that a;, a; andb satisfy ¢;,, c;, andc;;. Hence,cig[a;] N
¢jzla;] # 0. By the property on the intersection of convex
sets, the intersection of the sets®fis not empty. For any
v € NgesE, itis easy to verify that¢, v) is a solution ofP.
Therefore,P is satisfiable. O
Based on Theorem 1, we can reduce a CSP with CRC con-
straints by eliminating the variables one by one until a trivial
Broblem is reached.

constraintc;; is connected row convekits reduced form is
row convex and connected. The constraints obtained from the

Algorithm 1: Basic elimination algorithm for CRC con-
straints

intersection or composition of two CRC constraints are still
connected row convex. The transposition of a CRC constraint
is still connected row convex. Enforcing path consistency on
a CSP of CRC constraints will make the problem globally
consistentDeville et al,, 1997.

The consistency property on row convex constraints is due
to some nice property on convex sets. Given alseind a
total ordering< on it, a setd C U is convexf its elements
are consecutive under the ordering, that is

A={veU|mnA<v<maxA}.

Consider a collection of set$ = {F1,..., Ex} and an or-
dering< onU,;—; 1 E; where evenyt; (1 < i < k) is convex.
The intersection of the sets 6fis not empty if and only if
the intersection of every pair of sets 8fis not empty[van
Beek and Dechter, 1995; Zhang and Yap, 4003

eliminate (

©oO~NO U1 AWNE

inout(V, D, C), out consistent, s)
Il (V, D, C) is aCSP problens is a stack
enforce arc consistency ¢V, D, C)
if some domain ofD becomes emptthen

| consistent < false return

consistent «— true

¢ —C,C" — 0L~V

while L # ( do

select and remove a variabtefrom L

Cl — {cyz | cyz € C'}
foreachc; g, ¢ € C, wherei < j do
/
ifc;j € C’ then c;j
’ ’ ’
C" = (C" = {ci P U {ci;}
collect toQ the values not valid unde:’ij

 Cxj O Cig

— c;j I"Icij

remove from the domains the values@hand propagate the removals
if some domain becomes emphen
L consistent < false return
c'—c' -l
¢’ —c’ucy
s.push (z)

C « O, consistent « true

3 \Variable elimination in CRC
Consider a problemi{, D, C) and a variable: € V. Therele-

The procedureliminate
gorithm 1 eliminates the variables ¢¥, D,C’). When it

((V, D, C), consistent, s) in Al-

vantconstraints of;, denoted byR,, are the set of constraints returns,consistent is false if some domain becomes empty

{ ¢yz | ¢y € C}. Toeliminatez is to transform ¥, D, C) to

and true otherwise; the eliminated variables are pushed to the



stacks in order andC' will contain only the “removed” con- of connectedness is stronger than the original definition. The

straints associated with the eliminated variables. Most partfllowing property is clear and useful across this section.

of the algorithm are clear by themselves. The body of the

while loop (lines 7 — 20) eliminates the variabte Line 18  property 1 Given two row convex and connected constraints

discards fromC” the constraints incident an, i.e.,C;. and .. and czj» let c;; be their composition. For any € D;,

Line 19-20 push: to the stack and put the constrainis, cij[u] is not empty.

which are associated to, into C”. After eliminate , the ‘

stacks, D (revised in lines 2, 15), an@' will be used to find To compose two constraints, and c;;, one can simply

a solution of the original problem. multiply their matrices, which amounts to the complexity of
On top of the elimination algorithm, it is rather straightfor- O(d®) . We will present fast algorithms to compute the com-

ward to design an algorithm to find the solutions of a prob-position in this section. Constraints here can uséngrval

lem of CRC constraints (Algorithm 2)L (line 5) represents representatiordefined below. For every;; € C andu € D;,

the assigned variables?, in line 8 contains only those con- ¢;;[u].min is used formin{v | (u,v) € ¢;;}, ande;;[u].max

straints that involve: and an instantiated variable. In line 10, for max{v | (u,v) € ¢;;}.

whenC,, is empty, the domai®,, is not modified. . . »
4.1 Basic algorithm to compute composition

Algorithm 2 Find a solution of CRC constraints Wlth the. interval representation, we have procedrpmpose
: : in Algorithm 3. For any values € D; andv € D, lines 6-8
solve ( in (V, D, C), out consistent) .
1 1/(V, D, C)is a CSP problem compute whethefu,v) € c;; o ¢;z. By Property 1 min <
create an empty stask . max is always true for line 10.
eliminate  ((V, D, C), consistent, s)

2

3

4 if not consistent then return
5 L0
6
7
8
9

while not s.empty () do Algorithm 3: Basic algorithm for computing the composition
@ < spop ( . of two constraints
Cyp — {ciz |ciz € C,i € L} -
foreachi € L, letb; the assignment aof compose (N ciz,cqj, OUt c;j5)
10 Dy — N, eCyp Cixlbil 1 w < succ (head, D;)
11 choose any value of D, as the assignment of 2 while u # tail do
12 L« LU{z} 3 v —succ (head, D;)
. . 4 min « tail, max < head
13 output the assignment of the variableslof 5 while v # tail do
6 if not disjoint (¢ [u], ¢z [v]) then
7 if v > maxthenmax — v
8 if v < minthenmin « v

9 v «succ (v, Dj)
Theorem 2 Assume the time and space complexity of the 10 ciz[ulmin — min, ¢; ; [u].max — max
composition (and intersection respectively) of two constraints 11 [ w «succ (u, D;)
areO(a) andO(1). Further assume the time and space com-  disioint (i cig [u], cja[v])

plexity of enforcing arc consistency af@(ed?) and O(3). 12 (L”’iéiﬂ;? in > cja[v]max) of (cig [ul.Max < ejq [v].min) then
Given a CRC problenP=(V, D, C), a solution of the prob- 14 else return false

lem can be found i© (n®«) with working spaceO(n + 3).

Assume the constraint graph 6fis complete. For every
variable, there are at most neighbors. So, to eliminate a Proposition 1 The procedure ofompose has a time com-
variable (line 10-14) take®(n?«). Totally, n variables are plexity of O(d?) and space complexity 9(1).
removed. So, the complexity efiminate  is O(n3«a). The _ _ _ _ _
procedureeliminate  dominates the complexity afolve The two while loops (lines 2, 5) give a time complexity of
and thus to find a solution aP takesO(n3a + ed?) where ~ O(d?). _ _ 0
ed? is the cost (amortizable) of removing values and its prop- We emphasize that, due to the interval representation of
agation. Working spacéereexcludes the space for the rep- constraints, for any;, andc,; we need to calcompose
resentation of the constraints and the new constraints createfjVice to computer;; andc;; separately. This does not af-
by elimination It is useful to distinguish the existing non- fect the complexity of those algorithms usiogmpose . For
randomized algorithms. Throughout this paper, space conxample, forliminate  to usecompose we need to change
plexity refers to working space complexity by default. A ¢ < j (line 10 of Algorithm 1) to: # ;.
stacks and a setl. are used byolve andeliminate to .
hold variables. They nee@(n) space. The total space used 4.2 Remove values without support
by solve isO(n+ () wheres is the space cost (amortizable) Although composition does not lead to the removal of values

of removing values and its propagation. a under our assumption, the intersection will inevitably cause
the removal of values. In this case, to maintain the row con-
4 Composing two CRC constraints vexity and connectedness, we need to remove values without

support from their domains. The algorithemoveVvalues ,
In this section, we consider only constraints that are row conlisted in Algorithm 4, makes use of the interval representation
vex and connected. These constraints are arc consistent fline 6-11) to propagate the removal of values. If a domain
accordance with our definition. Remember that our definitiorbecomes empty (line 13), we let the program involving this
procedure exit with an output indicating inconsistency.



Algorithm 4 : Remove values row that contains at least a &,;./+ thefirst valueu of D;

removevaiies ( n (V.D.0)_O) such thatcij_[u].mi‘n:mz’n, cij-l1 thelastvaluev of D; such
% I %isaque;zofvalues to be removed thatc;;[v].min=min, c;;.rt thefirst valueu of D; such that
2 whie Q 0 c?e;eteavama(x) from @ ¢ijlu].max=maz, andcij_.r , thelastvaluewv of D; such that
4 foreachvariabley such thatey» € C do cij[v].max=maz. If ¢;; is row convex and connected;;.t

5 foreach valuev € D, do _ _ . .

6 if Cyg [v]Min = u = ¢y [v].max then = succ (head, D;) andc;;.b = pred (tail, D;). The fields are
7 L e=Quity} related as follows.

8 else ifu = cyq [v].min then

9 L eyaz[v].min—succ (u, Dg) . . .
10 else ifu = ¢y o [v].max then Proposition 3 Given a row convex and connected cor_lstralnt
1 | cyz[v].max «— pred (u, Dg) Cij, forallu € D; such thatij.l‘r <u< Cij~lLa Cij [u].mln:
12 deleteu from D, o _ min; for all u such thate;;.r+ < u < ¢;5.r1, ¢j[u].max=
13 if D, = 0 then output inconsistencgxit

L max; and the relation betwees;;.IT (c;;.01) and ¢;;.r1
(cij.r1) can be arbitrary.

Proposition 2 Given a CSP probler{V, D, C') of CRC con- bl ( -----------------------------------------
straints with an interval representation, the worst case time lo —m—=—- b shape

complexity of removeVvalues is O(ed?) with space com- _ - o _
plexity of O(nd). 2 \ \

Let §; be the degree of variable € V. To delete a value ls \ shape o shape / shape
(line 4-12), the cost i8;d. In the worst casepd values are Iy ————~ ——_—
removed. Hence the time complexity¥s, ., , did xd =~ oo ) """ K """"""""" la
O(ed?). The space cost fap is O(nd). m| b —=77777 qshape ~~ pshape

Given a problem of CRC constraints that are represente
by matrix, for each constraint;; andu € D;, we setup
¢;j[u].min ande; ;[u].max and collect the values ab; with-
out support. Let) contain all the removed values during the  Consider a row convex and connected constraint Let
setup stage, we then caimoveVvalues to make the prob- [i,ls,!3,14 be the sorted values of;.l7, ¢;;.r1, ¢;;.11, and
lem arc consistent. This process has a time complexity of;;.r1. The matrix ofc;; consists of the following strips. 1)
O(ed?) with working space complexit®) (nd) (due toQ). Top stripdenotes the rows fromy; .t to [, 2) middle stripthe

By the above process, Theorem 1, and Proposition 2, itows froml, to I3, and 3)bottom stripthe rows fromis to
is clear that the procedumslve equipped withcompose ci;.b (b in the diagram).
andremoveValues has the following property. Note that  The row convexity and connectednesscgf implies that
the time and space cost afmoveValues are “amortized” the 1'sinits top strip can be of only b’ shape or 'd’ shape, the

iiigure 2: The possible shapes of the strips of a constraint that
is row convex and connected

in eliminate . 1'sin its middle strip of only\ ’ shape, ‘0’ shape, or '/’ shape,
and the 1's in its bottom strip of only 'q’ shape or 'p’ shape
Corollary 1 Given a problem of CRC constraintsplve (see Figure 2). Note that these shapesastractshapes and
can find a solution in time& (n®d?) with space complexity ~do not have the ordinargeometricalproperties. The strips
O(nd). and shapes are characterised by the following properties.
4.3 Fast composition of constraints Property 2 Top strip: for everyu,,us € [cij.t,l2] where
As one may see&ompose makes use of the row convexity to 1 < u2, cjlur] C ejzuz].  Middle strip: for ev-
the minimal degree. In fact, we can do better. ery uy,us € [la,1l3] whereu; = pred (u2), shapeX’ im-
plieS Cij [ul].mingcij[uz].min and Cij [ul].maxgcij [uz]max,
t t shape "o’ impliesc;;[u1] = ¢;;[uz]; and shape /" implies
l+—= rT cij[ug}.mingcij[ul].min andcij[ug].maxgcij[ul].max. Bot-
tom strip: for everyu;,us € [l3,¢;;.b) whereu; < wuo,
L— T Cij[ug} - cij[uﬂ.
b b

) _ . . . Assumec;, andc,; are row convex and connected. The

Figure 1: The area of 1's in the matrix of a CRC constraint gy algorithm to compute,; o c;,, listed in Algorithm 5,
The 1's in the matrix of a CRC constraint form a- is based on the following two ideas. 1) We first compute

stract shape (the shaded area in Figure 1) where the slant;[u].min for all w € D; (line 2-21), which is callednin

edges mean monotonicity rather than concrete boundariephase and then compute;;[u].max for all v € D; (line

It is characterised by the following fields associated with22—41), which is callednax phase 2) In the two phases,

¢ij. Letmin = min{c¢;;[u].min | v € D;} andmaxr =  the properties of the shapes and strips;ofare employed to

max{c;jlul.max | v € D;}. The field¢;;.t denotes the speed up the computation.

value of D, corresponding to the first row that contains at In the min phase, the algorithm starts from the top strip of

least a 1,c;;.b the value of D; corresponding to the last c¢;;. Letu = ¢;;.t. Find¢;;[u].min (line 5) and let it bev.



Algorithm 5. Fast algorithm for computing the composition
of two constraints

Algorithm 6 : Search methods for computing the composition
of two constraints

fastCompose ( in cjy,cej, OUL cij)
1 letlq,...,l4 bethe ascendingly sorted valuesgf,l , 1,7, Of cip
2 /I min phase
3 /I process the top strip af; ;.
4 < ciy.b
5 find fromhead to tail the firstv € D suchthatc; g [u] N ¢z [v] # 0
6 c;j[u).min — v
7 searchToLeft (ciz,cqj,u,l2, v, )
8 Il process the middle strip
9 if the middle strip is of ‘0’ shapthen
10 u — lg
L while w < 13 do {c;;[u].min «— v, u «succ (u, D;)}
12 if the middle strip is of \’ shapethen
13 if v # cjp.tandciy[u]l.max < c;z[pred (v)].minthen
L searchToLeftWrap  (ciz, Cajs u, 13, v, ¢;5)
elsesearchToRight  (ciz, czj, u, 13, v, ¢;5)
16 if the middle strip is of '/’ shapéhen
17 if v # cjq-tandciq[ul.min> cj;;[pred (v)].maxthen
| searchToLeftWrap  (cig, Cajs us 13, v, ¢ij5)
elsesearchToRight  (c;z, ¢z, u, 13, v, ¢;5)
20 // bottom strip
21 searchToRight  (ciz, Caj,u, ¢ij5-b, v, i)
22 /I max phase
23 [/ process the top strip
24 w «—ciy.b
25 findthelastv € D suchthac;, [u] N cjq [v] # 0
26 c;j[u]l.max — v
27 searchToRightMax  (cig, czj, u,l2, v, ¢i;)
28 Il process the middle strip
29 if the middle strip is of ‘0’ shapthen
30 u < lg
L while u < 13 do {c;; [u].max < v, u «succ (u, D;)}

32 if the middle strip is of \’ shapethen

33 if v # cjq.band ey, [u]l.max < cjz[succ (v)].minthen
34 | searchToRightWrap  (ciz, Czj,u, 13, v, cij)
35 elsesearchToLeftMax  (ciq, caxj, u, 13, v, ¢45)

36 if the middle strip is of '/ shapéhen
37 if v # cjq.bandcig [u]l.min > cj . [succ (v)].maxthen
| searchToRightWrap  (ciz, czj,u, 13, v, cij)

elsesearchToLeftMax  (ciz, czj, u, I3, v, ¢ij)
40 // bottom strip

searchToLeft ( inout c;z, cypj,u,l, v, cqj)
1 //search to the left o
2 while v <l do

3 find firstvy from v down tohead of D ; such that
ciolu] N ejolpred (v1)] = 0
4 L cijlulmin=vy, v « v, u «succ (u, D;)

searchToLeftWrap ( inout c;y, cqj,u,l, v, cij)
5 [/l search to the left of

6 wrapToRight < false

7 while u <l do

8 find firstvy from v down tohead of D ; such that
ciglu] Nejglpred (vi)] = Oandc;y[u] Nejp(vi] # 0
9 if vy does not existhen {wrapToRight < true, break }
10 else{c;j[u]l.min < v1,v < vy, u < succ (u, D;)}

11 if wrapToRight is true and « <! then

12 L searchToRight (¢, cxj, w, I, succ (head, D), ¢;;)

searchToRight ( inout c;z, cpj, u,l, v, cij)

13 /I search to the right of

14 while v <l do

15 find firstvy from v totail of D ; such that
cig[u] Nejglpred (vi)] = @ and ;g [u] N ejg[vi]
cijlulmin — vy, v «— vy, u < succ (u, D;)

16
searchToRightMax ( inout c;g, cqj, u, 1, v, c;j)
17 I/ search to the right of

18 while v <ido

19 find lastvy from v totail of D; such thate;, [u] N cj, [v1] # O
20

searchToRightWrap ( inoutc;g, cqj, u, 1, v, c4j)

21 /I search to the right o

22 wrapToLeft + false
23 while v <1 do

cijlu]lmax < vy, v« vy, u «succ (u, Dy)

24 find lastv; from v to tail of D; such that

Cig[u] N cjgplsuce (v1)] = Pandcip[u] Ncjp[vi] # 0
25 if v1 does not existhen {wrapToLeft < true, break }
26 else {c¢;j[ulmax=wvy,v « v1,u «succ (u, D;) }

27 if wrapTolLeft is true then

28 | searchToLeftMax (ciz,czj,u, !, pred (tail, Dj), ci;)
searchToLeftMax ( inout c;u, cqj, u,l, v, c4j)

29 // search to the left ofr

30 while v <l do

Ciz[u] Ncjplvi] # 0
32

31 L find firstvy from v down tohead of D ; such that

c;ilu]l.max «— vy, v < vy,u < succ (u, D;)
41 searchTolLeftMax  (Ciz, caj, u, Cij-b, v, Ci5) i) ¢

42 setthefields ot;;: ¢, b, 17,1, 7,7

. . . The max phase is similar. Finally, according to the rgw
Due to the property of the top strip, we can finglu].min for  we set the attributes ef; in a proper way (line 42). Clearly,

allu € [C,‘j.t, ZQ] in order by scannin@ncefrom v down to for each phase, we on|y need a time COSDQﬂ).
head of D;, i.e., searching to the left ef(line 7). The search

proceduresearchToLeft is listed in Algorithm 6 where one
needs to note that is replaced byv; in line 4. Similarly,
we can process the bottom strip by searching to the right
v € Dj (line 21). For the middle strip, we have three cases for
the three shapes. By Property 2, lines 9-11 are quite straighg- Y xn s :

forward for the '0’ shape. For the\” shape (line 12-15), é CSP’s with sparse constraint graphs

if v is not the first column ot,; andc;,[u] is “above” the  The practical efficiency oéliminate s affected by the or-
interval of the column before of ¢,; (line 13), we need to  dering of the variables to be eliminated. Consider a constraint
search to the left of to be sure we do not miss any value graph with variable§1,2, 3, 4,5} that is shown in the top left

of D; that is smaller tham but is a support ot € [u,[3]. corner of Figure 3. In the first row, we choose to eliminate
Due to the property of the,’ shape, after we hit theead of  first and ther8. In this process, no constraints are composed.
D; and no support is found, we need to search to the righHowever, if we first eliminate and therd as shown in the
until tail if necessary (line 14). This process is implementedsecond roweliminate  needs to make 3 compositions in
assearchToLeftWrap  (line 5-12 of Algorithm 6). The cor- eliminating each of variabl2 and4.

rectness of this method is assured by the connectedness asThe topology of a constraint graph can be employed to find
well as row convexity ofc;; andc,;. The details are not agood variable elimination ordering. Here we consider trian-
given here due to space limit. Otherwise (line 15), we onlygulated graphs. An undirected graghis triangulatedif for

need to search to the right offor values infu, I3]. The pro-  every cycle of length 4 or more i@, there exists two non-
cess for the '/’ shape is similar to that for the Shape with  consecutive vertices of the cycle such that there is an edge
some “symmetrical” differences (line 17). between them irG. Given a vertext € G, N(x) denotes

Proposition 4 The algorithmfastCompose is correct and
gomposes two constraints in time complexity @fd) with
%pace complexity b (1).



;kj 5 5 in contrast to the randomized algorithms, a deterministic al-
3 orithm needs spaa®( fd) to store newly created constraints
_ s 2 g p y
3%\4/ \4/ where f is the number of edges needed to triangulate the
sparse graph.
For problems with dense constraint graphs={ ©(n?)),

1 5 5 our algorithm Q(n3d + ed?) wheree = n?) is better than
;,k/ 2 4 the best Q(nd?)) of the existing algorithms.

3 3 4 3 For problems with sparse constraint graphs, the traditional

} o ) ) path consistency methd®eville et al,, 1997 can not make
Figure 3: Example on elimination variable ordering use of the sparsity. Bliek and Sam-Haroud (1999) proposed
i , to triangulate the constraint graph and introduced path con-
neighbors ofr: {y | {z,y} is an edge of+}. A vertexz  gistency on triangulated graphs. For CRC constraints, their
is simplicial if the subgraph of induced by N¢) is com-  (qeterministic) algorithm achieves path consistency on the tri-

plete. A nice property of triangulated graphs is that there isyngylated graph with time complexity 6f(3e’d?) and space

a simplicial vertex for _each triangulated graph_ a_nd at”angutomplexity of O(5¢’d) wheres is the maximum degree of

!at(_ad graph remains triangulated after a simplicial vertex angh,q triangulated graph and the number of constraints in
its incident edges are removed from the graptpeiect ver-  he triangulated graph. The randomized algorithm by Ku-

tex elimination ordeof a graphG=({z1, 22, ..., #n}, E) IS mar (2006) has a time complexity 6f(yn2d?) where is

an ordering(y1, y», - . ., yn) Of the vertices ofy such thatfor e maximum degree of the original constraint graph. Our

1 <i<n-—1,y; is asimplicial vertex of the subgraph of G algorithm can achiev®(no2d + ¢'d?) whereo is the max-

induced by{y;, yi+1- -, Yn}- imum elimination degree of the triangulated graph. Since
Given a perfect elimination ordefy:,ys,...,y,) of @ < 6,4 < 8,02 < ¢ < n? (o andy are not compara-

graphG, theelimination degre®f y;(1 < i < n), denoted by  pje), our algorithm is still favorable in comparison with the
o;, is the degree af; in the subgraph ofr that is induced by  gthers.

{yi,Yi+1,-..,yn}. We useo to denote the maximum elimi- It is worth mentioning that, in addition to “determinism”,
nation degree of the vertices of a perfect elimination order. 5 geterministic algorithm has a great efficiency advantage

_ Itis well known that, for a grapld- that is not complete,  over randomized algorithms when more than one solution is
it can be triangulated in tim&(n(e + f)) where f is the  needed.

number of edges added to the original graph artite num- We point out that we introduceemoveValues just for
ber of edges of7 [Bliek and Sam-Haroud, 1999A perfect  simplifying the design and analysis of the composition algo-
elimination order can be found i(n + e). rithms. It might be possible to design a refined propagation

For CSP problems whose constraint graph is triangulatecmechanism and/or composition algorithms to discarc:tite
the elimination algorithm has a better time complexity bound component from the time complexity and decrease the space
complexity of the elimination algorithm t@(n).

Theorem 3 Consider a CSP problen? whose constraint
graphG is triangulated. The procedueéminate  equipped References
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