
Fast Algorithm for Connected Row Convex Constraints∗

Yuanlin Zhang
Texas Tech University

Computer Science Department
yzhang@cs.ttu.edu

Abstract

Many interesting tractable problems are identified
under the model of Constraint Satisfaction Prob-
lems. These problems are usually solved by forcing
a certain level of local consistency. In this paper,
for the class of connected row convex constraints,
we propose a novel algorithm which is based on
the ideas of variable elimination and efficient com-
position of row convex and connected constraints.
Compared with the existing work including ran-
domized algorithms, the new algorithm has better
worst case time and space complexity.

1 Introduction
Constraint satisfaction techniques have found wide applica-
tions in combinatorial optimisation, scheduling, configura-
tion, and many other areas. However, Constraint Satisfaction
Problems (CSP) are NP-hard in general. One active research
area is to identify tractable CSP problems and find efficient
algorithms for them.

An interesting class of row convex constraints was iden-
tified by van Beek and Dechter (1995). It is known that if
a problem of row convex constraints is path consistent, it is
tractable to find a solution for this problem. However, when
the problem is not path consistent, path consistency enforcing
might not lead to global consistency due to the possibility that
the row convexity of some constraints is destroyed. Deville
et al. (1997) restrict row convexity to connected row convex-
ity (CRC). In fact, the scene labeling problem and constraint
based grammar examples given in[van Beek and Dechter,
1995] are CRC constraints. One can find a solution of CRC
constraints by enforcing path consistency. Deville et al. also
provide an algorithm more efficient than the general path con-
sistency algorithm by making use of certain properties of row
convexity. The algorithm has a worst case time complexity
of O(n3d2) with space complexity ofO(n2d) wheren is
the number of variables,d the maximum domain size. Re-
cently, Kumar (2006) has proposed a randomized algorithm
for CRC constraints with time complexity ofO(γn2d2) and
space complexityO(ed) (personal communication) wheree

∗The research leading to the results in this paper was funded in
part by NASA-NNG05GP48G.

is the number of constraints andγ the maximum degree of
the constraint graph.

In this paper, making use of the row convexity and connect-
edness of constraints, we propose a new algorithm to solve
CRC constraints with time complexity ofO(nσ2d + ed2)
whereσ is theelimination degreeof the triangulated graph of
the given problem. We observe that the satisfiability of CRC
constraints is preserved when a variable is eliminated with
proper modification of the constraints on the neighbors of the
eliminated variable. The new algorithm simply eliminates the
variables one by one until it reaches a special problem with
only one variable.

A key operation in the elimination algorithm is to com-
pose two constraints. The properties of connectedness and
row convexity of the constraints make it possible to get a fast
composition algorithm with time complexity ofO(d).

In this paper, we present the elimination algorithm after
the preliminaries on CRC constraints. The methods to com-
pute composition of row convex and connected constraints
are then proposed. We examine the elimination algorithm on
problems with sparse constraint graphs before we conclude
the paper.

2 Preliminaries
A binary constraint satisfaction problem (CSP)is a triple
(V,D,C) whereV is a finite set of variables,D ={Dx | x ∈
V andDx is the finite domain ofx}, andC is a finite set of
binary constraints over the variables ofV . As usual, we as-
sume there is only one constraint on a pair of variables. We
usen, e, andd to denote the number of variables, the number
of constraints, and the maximum domain size of a CSP prob-
lem. We usei, j, . . . andx, y, . . . to denote variables in this
paper. Theconstraint graphof a problem (V,D,C) is a graph
with verticesV and edgesE = {{i, j} | cij ∈ C}. A CSP
is satisfiableif there is an assignment of values to variables
such that all constraints are satisfied.

Assume there is a total ordering on each domain ofD.
When necessary, we introducehead andtail for each variable
domain such thathead (tail respectively) is smaller (larger
respectively) than any other value of the domain. Func-
tions succ (u, Di) (u ∈ Di ∪ {head}) and pred (u, Di)
(u ∈ Di ∪ {tail}) denote respectively the successor and pre-
decessor ofu in the current domainDi∪ {head, tail}. The
domainDi is omitted when it is clear from the context.

Given a constraintcij and a valuea ∈ Di, theextension
setcij [a] is {b ∈ Dj | (a, b) ∈ cij}. cij [a] is also called the
imageof a with respect tocij . Clearlycij [head] = cij [tail] =
∅. Standard operations of intersection and composition can
be applied to constraints. The composition ofcix and cxj

is denoted bycxj ◦ cix. It is convenient to use a Boolean
matrix to represent a constraintcij . The rows and columns
are ordered by the ordering of the values ofDi andDj .

A constraintcij is arc consistent(AC) if every value of
Di has a support inDj and every value ofDj has a support
in Di. A CSP problem isarc consistentif all its constraints
are arc consistent. A pathx, . . . , y of a constraint graph is
consistentif for any assignmentsx = a andy = b such that
(a, b) ∈ cxy, there is an assignment for each of other variables
in the path such that all constraints over the path are satisfied
by the assignments. A constraint graph ispath consistentif
every path of the graph is consistent. A CSP ispath consistent
if the completion of its constraint graph is path consistent. A
CSP ispartially path consistentif its constraint graph is path
consistent[Bliek and Sam-Haroud, 1999].

A constraintcij is row convexif there exists a total order-
ing on Dj such that the 1’s are consecutive in each row of
the matrix ofcij . The reduced formof a constraintcij , de-
noted byc∗ij , is obtained by removing fromDi (andDj re-
spectively) those values whose image with respect tocij (cji

respectively) is empty. For a row convex constraintcij , the
image ofa ∈ Di can be represented as aninterval [u, v]
whereu is the first andv is the last value ofDj such that
(a, u), (a, v) ∈ cij . A row convex constraintcij is connected
if the images[a, b] and [a′, b′] of any two consecutive rows
(and columns respectively) ofcij are not empty and satisfy
[a, b]∩ [pred (a′), b′] 6= ∅ or [a, b]∩ [a′, succ (b′)] 6= ∅.
Note that, for our purposes, the definition of connectedness
here isstrongerthan that by Deville et al. (1997). If a con-
straint is row convex and connected, it is arc consistent. A
constraintcij is connected row convexif its reduced form is
row convex and connected. The constraints obtained from the
intersection or composition of two CRC constraints are still
connected row convex. The transposition of a CRC constraint
is still connected row convex. Enforcing path consistency on
a CSP of CRC constraints will make the problem globally
consistent[Deville et al., 1997].

The consistency property on row convex constraints is due
to some nice property on convex sets. Given a setU and a
total ordering≤ on it, a setA ⊆ U is convexif its elements
are consecutive under the ordering, that is

A = {v ∈ U | minA ≤ v ≤ max A}.

Consider a collection of setsS = {E1, . . . , Ek} and an or-
dering≤ on∪i=1..kEi where everyEi(1 ≤ i ≤ k) is convex.
The intersection of the sets ofS is not empty if and only if
the intersection of every pair of sets ofS is not empty[van
Beek and Dechter, 1995; Zhang and Yap, 2003].

3 Variable elimination in CRC
Consider a problem (V,D,C) and a variablex ∈ V . Therele-
vantconstraints ofx, denoted byRx, are the set of constraints
{ cyx | cyx ∈ C}. To eliminatex is to transform (V,D,C) to

(V −{x}, D, C ′) whereC ′ = C ∪{cxj ◦cix∩cij | cjx, cix ∈
Rx andi 6= j} − Rx. In the elimination, when composing
cix and cxj , if cij /∈ C we simply takecij as a universal
constraint, i.e.,Di ×Dj .

Theorem 1 Consider an arc consistent problemP=(V,D,C)
of CRC constraints and a variablex ∈ V . Let
P ′=(V ′, D′, C ′) be the problem afterx is eliminated. P is
satisfiable iffP ′ is satisfiable.

Proof We first prove ifP is satisfiable, so isP ′. Let s be
a solution ofP , sx an assignment ofx by s, andsx̄ be the
restriction ofs to V ′. We only need to show thatsx̄ satisfies
c′ij ∈ C ′ for all cix, cxj ∈ C. Sinces is a solution ofP , sx̄

satisfiescix, cjx andcij . Hence,sx̄ satisfiesc′ij .
Next we prove ifP ′ is satisfiable, so isP . Let t be a solu-

tion of P ′. We will show thatt is extensible consistently to
x in P . Let Vx be{i | cix ∈ Rx}. For eachi ∈ Vx, let the
assignment ofi in t beai. Let S = {cix[ai] | i ∈ Vx}. Since
all constraints ofP are row convex andP is arc consistent,
the sets ofS are convex and none of them is empty.

Consider any two setscix[ai], cjx[aj] ∈ S. Sincet is a
solution ofP ′, (ai, aj) ∈ c′ij wherec′ij is a constraint ofP ′.
The fact thatc′ij = cxj ◦ cix ∩ cij , wherecij is either inC
or universal, implies that there exists a valueb ∈ Dx such
that ai, aj and b satisfy cix, cjx and cij . Hence,cix[ai] ∩
cjx[aj] 6= ∅. By the property on the intersection of convex
sets, the intersection of the sets ofS is not empty. For any
v ∈ ∩E∈SE, it is easy to verify that(t, v) is a solution ofP .
Therefore,P is satisfiable. 2

Based on Theorem 1, we can reduce a CSP with CRC con-
straints by eliminating the variables one by one until a trivial
problem is reached.

Algorithm 1 : Basic elimination algorithm for CRC con-
straints
eliminate (inout(V, D, C), out consistent, s)

// (V, D, C) is a CSP problem,s is a stack1
enforce arc consistency on(V, D, C)2
if some domain ofD becomes emptythen3

consistent← false, return4

consistent← true5
C′ ← C, C′′ ← ∅, L← V6
while L 6= ∅ do7

select and remove a variablex from L8
C′x ← {cyx | cyx ∈ C′}9
foreachcix, cjx ∈ C′x wherei < j do10

c′ij ← cxj ◦ cix11
if cij ∈ C′ then c′ij ← c′ij ∩ cij12
C′ ← (C′ − {cij}) ∪ {c′ij}13
collect toQ the values not valid underc′ij14

remove from the domains the values inQ and propagate the removals15
if some domain becomes emptythen16

consistent← false, return17

C′ ← C′ − C′x18
C′′ ← C′′ ∪ C′x19
s.push (x)20

C ← C′′ , consistent← true21

The procedureeliminate ((V,D,C), consistent, s) in Al-
gorithm 1 eliminates the variables of(V,D,C). When it
returns,consistent is false if some domain becomes empty
and true otherwise; the eliminated variables are pushed to the

stacks in order andC will contain only the “removed” con-
straints associated with the eliminated variables. Most parts
of the algorithm are clear by themselves. The body of the
while loop (lines 7 – 20) eliminates the variablex. Line 18
discards fromC ′ the constraints incident onx, i.e.,C ′

x. and
Line 19–20 pushx to the stack and put the constraintsC ′

x,
which are associated tox, into C ′′. After eliminate , the
stacks, D (revised in lines 2, 15), andC will be used to find
a solution of the original problem.

On top of the elimination algorithm, it is rather straightfor-
ward to design an algorithm to find the solutions of a prob-
lem of CRC constraints (Algorithm 2).L (line 5) represents
the assigned variables.Cx in line 8 contains only those con-
straints that involvex and an instantiated variable. In line 10,
whenCx is empty, the domainDx is not modified.

Algorithm 2 : Find a solution of CRC constraints

solve (in (V, D, C), out consistent)
// (V, D, C) is a CSP problem1
create an empty stacks2
eliminate ((V, D, C), consistent, s)3
if not consistent then return4
L← ∅5
while not s.empty () do6

x← s.pop ()7
Cx ← {cix | cix ∈ C, i ∈ L}8
for eachi ∈ L, let bi the assignment ofi9
Dx ← ∩cix∈Cx cix[bi]10
choose any valuea of Dx as the assignment ofx11
L← L ∪ {x}12

output the assignment of the variables ofL13

Theorem 2 Assume the time and space complexity of the
composition (and intersection respectively) of two constraints
areO(α) andO(1). Further assume the time and space com-
plexity of enforcing arc consistency areO(ed2) andO(β).
Given a CRC problemP=(V,D,C), a solution of the prob-
lem can be found inO(n3α) with working spaceO(n + β).

Assume the constraint graph ofP is complete. For every
variable, there are at mostn neighbors. So, to eliminate a
variable (line 10–14) takesO(n2α). Totally, n variables are
removed. So, the complexity ofeliminate is O(n3α). The
procedureeliminate dominates the complexity ofsolve
and thus to find a solution ofP takesO(n3α + ed2) where
ed2 is the cost (amortizable) of removing values and its prop-
agation.Working spacehereexcludes the space for the rep-
resentation of the constraints and the new constraints created
by elimination. It is useful to distinguish the existing non-
randomized algorithms. Throughout this paper, space com-
plexity refers to working space complexity by default. A
stacks and a setL are used bysolve and eliminate to
hold variables. They needO(n) space. The total space used
by solve is O(n+β) whereβ is the space cost (amortizable)
of removing values and its propagation. 2

4 Composing two CRC constraints
In this section, we consider only constraints that are row con-
vex and connected. These constraints are arc consistent in
accordance with our definition. Remember that our definition

of connectedness is stronger than the original definition. The
following property is clear and useful across this section.

Property 1 Given two row convex and connected constraints
cix andcxj , let cij be their composition. For anyu ∈ Di,
cij [u] is not empty.

To compose two constraintscix and cxj , one can simply
multiply their matrices, which amounts to the complexity of
O(d3) . We will present fast algorithms to compute the com-
position in this section. Constraints here can use aninterval
representationdefined below. For everycij ∈ C andu ∈ Di,
cij [u].min is used formin{v | (u, v) ∈ cij}, andcij [u].max
for max{v | (u, v) ∈ cij}.

4.1 Basic algorithm to compute composition
With the interval representation, we have procedurecompose
in Algorithm 3. For any valueu ∈ Di andv ∈ Dj , lines 6–8
compute whether(u, v) ∈ cxj ◦ cix. By Property 1,min ≤
max is always true for line 10.

Algorithm 3 : Basic algorithm for computing the composition
of two constraints
compose (in cix, cxj , out cij)

u← succ (head, Di)1
while u 6= tail do2

v ← succ (head, Dj)3
min← tail, max← head4
while v 6= tail do5

if not disjoint (cix[u], cjx[v]) then6
if v > max then max← v7
if v < min then min← v8

v ← succ (v, Dj)9

cij [u].min← min, cij [u].max← max10
u← succ (u, Di)11

disjoint (in cix[u], cjx[v])

if (cix[u].min > cjx[v].max) or (cix[u].max < cjx[v].min) then12
return true13

else return false14

Proposition 1 The procedure ofcompose has a time com-
plexity of O(d2) and space complexity isO(1).

The two while loops (lines 2, 5) give a time complexity of
O(d2). 2

We emphasize that, due to the interval representation of
constraints, for anycix and cxj we need to callcompose
twice to computecij and cji separately. This does not af-
fect the complexity of those algorithms usingcompose . For
example, foreliminate to usecompose we need to change
i < j (line 10 of Algorithm 1) toi 6= j.

4.2 Remove values without support
Although composition does not lead to the removal of values
under our assumption, the intersection will inevitably cause
the removal of values. In this case, to maintain the row con-
vexity and connectedness, we need to remove values without
support from their domains. The algorithmremoveValues ,
listed in Algorithm 4, makes use of the interval representation
(line 6–11) to propagate the removal of values. If a domain
becomes empty (line 13), we let the program involving this
procedure exit with an output indicating inconsistency.

Algorithm 4 : Remove values

removeValues (in (V, D, C), Q)
// Q is a queue of values to be removed1
while Q 6= ∅ do2

take and delete a value (u, x) from Q3
foreachvariabley such thatcyx ∈ C do4

foreach valuev ∈ Dy do5
if cyx[v].min = u = cyx[v].max then6

Q← Q ∪ {(v, y)}7

else ifu = cyx[v].min then8
cyx[v].min← succ (u, Dx)9

else ifu = cyx[v].max then10
cyx[v].max← pred (u, Dx)11

deleteu from Dx12
if Dx = ∅ then output inconsistency,exit13

Proposition 2 Given a CSP problem(V,D,C) of CRC con-
straints with an interval representation, the worst case time
complexity of removeValues is O(ed2) with space com-
plexity of O(nd).

Let δi be the degree of variablei ∈ V . To delete a value
(line 4–12), the cost isδid. In the worst case,nd values are
removed. Hence the time complexity is

∑
i∈1..n δid × d =

O(ed2). The space cost forQ is O(nd). 2

Given a problem of CRC constraints that are represented
by matrix, for each constraintcij and u ∈ Di, we setup
cij [u].min andcij [u].max and collect the values ofDi with-
out support. LetQ contain all the removed values during the
setup stage, we then callremoveValues to make the prob-
lem arc consistent. This process has a time complexity of
O(ed2) with working space complexityO(nd) (due toQ).

By the above process, Theorem 1, and Proposition 2, it
is clear that the proceduresolve equipped withcompose
and removeValues has the following property. Note that
the time and space cost ofremoveValues are “amortized”
in eliminate .

Corollary 1 Given a problem of CRC constraints,solve
can find a solution in timeO(n3d2) with space complexity
O(nd).

4.3 Fast composition of constraints
As one may see,compose makes use of the row convexity to
the minimal degree. In fact, we can do better.

...
...

...
....

...
...

...
...

...

...
...

...
...

...

...
...

...
...

...
...

...
...

...
...

...
..

...
...

...
...

..

...
...

...

..

..
...........

...........
...........

...

...........
...........
...........
...........
...

............................

............................

..

............................

............................

l>

l⊥

r>

r⊥

t t

bb

Figure 1: The area of 1’s in the matrix of a CRC constraint

The 1’s in the matrix of a CRC constraint form anab-
stract shape (the shaded area in Figure 1) where the slant
edges mean monotonicity rather than concrete boundaries.
It is characterised by the following fields associated with
cij . Let min = min{cij [u].min | u ∈ Di} and max =
max{cij [u].max | u ∈ Di}. The field cij .t denotes the
value of Di corresponding to the first row that contains at
least a 1,cij .b the value ofDi corresponding to the last

row that contains at least a 1,cij .l> the first valueu of Di

such thatcij [u].min=min, cij .l⊥ the last valuev of Di such
that cij [v].min=min, cij .r> thefirst valueu of Di such that
cij [u].max=max, andcij .r⊥ the last valuev of Di such that
cij [v].max=max. If cij is row convex and connected,cij .t
= succ (head, Di) andcij .b = pred (tail, Di). The fields are
related as follows.

Proposition 3 Given a row convex and connected constraint
cij , for all u ∈ Di such thatcij .l> ≤ u ≤ cij .l⊥, cij [u].min=
min; for all u such thatcij .r> ≤ u ≤ cij .r⊥, cij [u].max=
max; and the relation betweencij .l> (cij .l⊥) and cij .r>
(cij .r⊥) can be arbitrary.

...
...........

...........
...........

...........
......... ...

...........
..........

...
.........
.........
.........
.........
......

.........
.........
.........
.........
.........
...... ...

................................

...........
...........
...........
...........
...........
...

...........
...........

...........
...........

...........
.........

b shape d shape

q shape p shape

.......... .

.......... .

.......... .

.......... .

.......... .

. .

. .

.......... .l2

l3

l3

t

l2
l1

l4

o shape / shape

b

shape\

Figure 2: The possible shapes of the strips of a constraint that
is row convex and connected

Consider a row convex and connected constraintcij . Let
l1, l2, l3, l4 be the sorted values ofcij .l>, cij .r>, cij .l⊥, and
cij .r⊥. The matrix ofcij consists of the following strips. 1)
Top stripdenotes the rows fromcij .t to l2, 2) middle stripthe
rows from l2 to l3, and 3)bottom stripthe rows froml3 to
cij .b (b in the diagram).

The row convexity and connectedness ofcij implies that
the 1’s in its top strip can be of only ’b’ shape or ’d’ shape, the
1’s in its middle strip of only ’\ ’ shape, ’o’ shape, or ’/’ shape,
and the 1’s in its bottom strip of only ’q’ shape or ’p’ shape
(see Figure 2). Note that these shapes areabstractshapes and
do not have the ordinarygeometricalproperties. The strips
and shapes are characterised by the following properties.

Property 2 Top strip: for everyu1, u2 ∈ [cij .t, l2] where
u1 ≤ u2, cij [u1] ⊆ cij [u2]. Middle strip: for ev-
ery u1, u2 ∈ [l2, l3] whereu1 = pred (u2), shape ’\ ’ im-
plies cij [u1].min≤cij [u2].min and cij [u1].max≤cij [u2].max;
shape ’o’ impliescij [u1] = cij [u2]; and shape ’/’ implies
cij [u2].min≤cij [u1].min andcij [u2].max≤cij [u1].max. Bot-
tom strip: for everyu1, u2 ∈ [l3, cij .b] whereu1 ≤ u2,
cij [u2] ⊆ cij [u1].

Assumecix andcxj are row convex and connected. The
new algorithm to computecxj ◦ cix, listed in Algorithm 5,
is based on the following two ideas. 1) We first compute
cij [u].min for all u ∈ Di (line 2–21), which is calledmin
phase, and then computecij [u].max for all u ∈ Di (line
22–41), which is calledmax phase. 2) In the two phases,
the properties of the shapes and strips ofcix are employed to
speed up the computation.

In the min phase, the algorithm starts from the top strip of
cix. Let u = cix.t. Find cij [u].min (line 5) and let it bev.

Algorithm 5 : Fast algorithm for computing the composition
of two constraints
fastCompose (in cix, cxj , out cij)

let l1, . . . , l4 be the ascendingly sorted values ofl>, l⊥, r>, r⊥ of cix1
// min phase2
// process the top strip ofcix3
u← cix.b4
find fromhead to tail the firstv ∈ Dj such thatcix[u] ∩ cjx[v] 6= ∅5
cij [u].min← v6
searchToLeft (cix, cxj , u, l2, v, cij)7
// process the middle strip8
if the middle strip is of ’o’ shapethen9

u← l210
while u ≤ l3 do {cij [u].min← v, u← succ (u, Di)}11

if the middle strip is of ’\’ shapethen12
if v 6= cjx.t and cix[u].max < cjx[pred (v)].min then13

searchToLeftWrap (cix, cxj , u, l3, v, cij)14

elsesearchToRight (cix, cxj , u, l3, v, cij)15

if the middle strip is of ’/’ shapethen16
if v 6= cjx.t and cix[u].min > cjx[pred (v)].max then17

searchToLeftWrap (cix, cxj , u, l3, v, cij)18

elsesearchToRight (cix, cxj , u, l3, v, cij)19

// bottom strip20
searchToRight (cix, cxj , u, cij .b, v, cij)21
// max phase22
// process the top strip23
u← cix.b24
find the lastv ∈ Dj such thatcix[u] ∩ cjx[v] 6= ∅25
cij [u].max← v26
searchToRightMax (cix, cxj , u, l2, v, cij)27
// process the middle strip28
if the middle strip is of ’o’ shapethen29

u← l230
while u ≤ l3 do {cij [u].max← v, u← succ (u, Di)}31

if the middle strip is of ’\’ shapethen32
if v 6= cjx.b and cix[u].max < cjx[succ (v)].min then33

searchToRightWrap (cix, cxj , u, l3, v, cij)34

elsesearchToLeftMax (cix, cxj , u, l3, v, cij)35

if the middle strip is of ’/’ shapethen36
if v 6= cjx.b and cix[u].min > cjx[succ (v)].max then37

searchToRightWrap (cix, cxj , u, l3, v, cij)38

elsesearchToLeftMax (cix, cxj , u, l3, v, cij)39

// bottom strip40
searchToLeftMax (cix, cxj , u, cij .b, v, cij)41
set the fields ofcij : t, b, l>, l⊥, r>, r⊥42

Due to the property of the top strip, we can findcij [u].min for
all u ∈ [cij .t, l2] in order by scanningoncefrom v down to
head of Dj , i.e., searching to the left ofv (line 7). The search
proceduresearchToLeft is listed in Algorithm 6 where one
needs to note thatv is replaced byv1 in line 4. Similarly,
we can process the bottom strip by searching to the right of
v ∈ Dj (line 21). For the middle strip, we have three cases for
the three shapes. By Property 2, lines 9–11 are quite straight-
forward for the ’o’ shape. For the ’\’ shape (line 12–15),
if v is not the first column ofcxj andcix[u] is “above” the
interval of the column beforev of cxj (line 13), we need to
search to the left ofv to be sure we do not miss any value
of Dj that is smaller thanv but is a support ofa ∈ [u, l3].
Due to the property of the ’\’ shape, after we hit thehead of
Dj and no support is found, we need to search to the right
until tail if necessary (line 14). This process is implemented
assearchToLeftWrap (line 5–12 of Algorithm 6). The cor-
rectness of this method is assured by the connectedness as
well as row convexity ofcix and cxj . The details are not
given here due to space limit. Otherwise (line 15), we only
need to search to the right ofv for values in[u, l3]. The pro-
cess for the ’/’ shape is similar to that for the ’\’ shape with
some “symmetrical” differences (line 17).

Algorithm 6 : Search methods for computing the composition
of two constraints
searchToLeft (inout cix, cxj , u, l, v, cij)

// search to the left ofv1
while u≤l do2

find firstv1 from v down tohead of Dj such that3
cix[u] ∩ cjx[pred (v1)] = ∅
cij [u].min = v1, v ← v1, u← succ (u, Di)4

searchToLeftWrap (inout cix, cxj , u, l, v, cij)

// search to the left ofv5
wrapToRight← false6
while u≤l do7

find firstv1 from v down tohead of Dj such that8
cix[u] ∩ cjx[pred (v1)] = ∅ and cix[u] ∩ cjx[v1] 6= ∅
if v1 does not existthen {wrapToRight← true, break }9
else{cij [u].min← v1, v ← v1, u← succ (u, Di)}10

if wrapToRight is true and u≤l then11
searchToRight (cix, cxj , u, l, succ (head, Dj), cij)12

searchToRight (inout cix, cxj , u, l, v, cij)

// search to the right ofv13
while u≤l do14

find firstv1 from v to tail of Dj such that15
cix[u] ∩ cjx[pred (v1)] = ∅ and cix[u] ∩ cjx[v1]

cij [u].min← v1, v ← v1, u← succ (u, Di)16

searchToRightMax (inout cix, cxj , u, l, v, cij)

// search to the right ofv17
while u≤l do18

find lastv1 from v to tail of Dj such thatcix[u] ∩ cjx[v1] 6= ∅19
cij [u].max← v1, v ← v1, u← succ (u, Di)20

searchToRightWrap (inoutcix, cxj , u, l, v, cij)

// search to the right ofv21
wrapToLeft← false22
while u≤l do23

find lastv1 from v to tail of Dj such that24
cix[u] ∩ cjx[succ (v1)] = ∅ and cix[u] ∩ cjx[v1] 6= ∅
if v1 does not existthen {wrapToLeft← true, break }25
else {cij [u].max = v1, v ← v1, u← succ (u, Di) }26

if wrapToLeft is true then27
searchToLeftMax (cix, cxj , u, l, pred (tail, Dj), cij)28

searchToLeftMax (inout cix, cxj , u, l, v, cij)

// search to the left ofv29
while u≤l do30

find firstv1 from v down tohead of Dj such that31
cix[u] ∩ cjx[v1] 6= ∅
cij [u].max← v1, v ← v1,u← succ (u, Di)32

The max phase is similar. Finally, according to the newcij ,
we set the attributes ofcij in a proper way (line 42). Clearly,
for each phase, we only need a time cost ofO(d).

Proposition 4 The algorithmfastCompose is correct and
composes two constraints in time complexity ofO(d) with
space complexity ofO(1).

5 CSP’s with sparse constraint graphs
The practical efficiency ofeliminate is affected by the or-
dering of the variables to be eliminated. Consider a constraint
graph with variables{1, 2, 3, 4, 5} that is shown in the top left
corner of Figure 3. In the first row, we choose to eliminate1
first and then3. In this process, no constraints are composed.
However, if we first eliminate2 and then4 as shown in the
second row,eliminate needs to make 3 compositions in
eliminating each of variable2 and4.

The topology of a constraint graph can be employed to find
a good variable elimination ordering. Here we consider trian-
gulated graphs. An undirected graphG is triangulatedif for
every cycle of length 4 or more inG, there exists two non-
consecutive vertices of the cycle such that there is an edge
between them inG. Given a vertexx ∈ G, N(x) denotes

...
...........
..........

4

5
2...

...........
..

2
3 4

5

.........
.........
.........
.........
.........
.........
..

1

3

5
...........
...........
..........

...
.........
.........
.........
.........
.........
.......1

3 4

5

................................

...
...........
..........

................................

...
...........
..........

...............
...

...............
...

...............
...

...............
...

1

2
3 4

5

4

1

2
3

5

3

4

1

2

Figure 3: Example on elimination variable ordering

neighbors ofx: {y | {x, y} is an edge ofG}. A vertexx
is simplicial if the subgraph ofG induced by N(x) is com-
plete. A nice property of triangulated graphs is that there is
a simplicial vertex for each triangulated graph and a triangu-
lated graph remains triangulated after a simplicial vertex and
its incident edges are removed from the graph. Aperfect ver-
tex elimination orderof a graphG=({x1, x2, . . . , xn}, E) is
an ordering〈y1, y2, . . . , yn〉 of the vertices ofG such that for
1 ≤ i ≤ n − 1, yi is a simplicial vertex of the subgraph of G
induced by{yi, yi+1, . . . , yn}.

Given a perfect elimination order〈y1, y2, . . . , yn〉 of a
graphG, theelimination degreeof yi(1 ≤ i ≤ n), denoted by
σi, is the degree ofyi in the subgraph ofG that is induced by
{yi, yi+1, . . . , yn}. We useσ to denote the maximum elimi-
nation degree of the vertices of a perfect elimination order.

It is well known that, for a graphG that is not complete,
it can be triangulated in timeO(n(e + f)) wheref is the
number of edges added to the original graph ande the num-
ber of edges ofG [Bliek and Sam-Haroud, 1999]. A perfect
elimination order can be found inO(n + e).

For CSP problems whose constraint graph is triangulated,
the elimination algorithm has a better time complexity bound.

Theorem 3 Consider a CSP problemP whose constraint
graphG is triangulated. The procedureeliminate equipped
with fastCompose has a time complexity ofO(nσ2d+ed2)
and space complexity ofO(nd).

Let 〈y1, y2, . . . , yn〉 be a perfect elimination forG. Clearly,
to eliminateyi, eliminate has to composeσ2

i constraints.
Since n − 1 variables are eliminated byeliminate , its
complexity is O(nσ2d + ed2) where O(ed2) is due to
the removeValues . The space complexity is also due to
removeValues . 2

6 Related work and conclusion
We have proposed a simple elimination algorithm to solve
CRC constraints. Thanks to this algorithm, we are able to
focus on developing fast algorithms to compose constraints
that are row convex and connected. We show that the compo-
sition can be done inO(d) time, which benefits from a new
understanding of the properties of row convex and connected
constraints. In addition to the simplicity, our deterministic
algorithm has some other advantages over the existing ones.
The working space complexityO(nd) of our algorithm is the
best among existing deterministic or randomized algorithms
of which the best isO(ed). However, when a graph is sparse,

in contrast to the randomized algorithms, a deterministic al-
gorithm needs spaceO(fd) to store newly created constraints
wheref is the number of edges needed to triangulate the
sparse graph.

For problems with dense constraint graphs (e = Θ(n2)),
our algorithm (O(n3d + ed2) wheree = n2) is better than
the best (O(n3d2)) of the existing algorithms.

For problems with sparse constraint graphs, the traditional
path consistency method[Deville et al., 1997] can not make
use of the sparsity. Bliek and Sam-Haroud (1999) proposed
to triangulate the constraint graph and introduced path con-
sistency on triangulated graphs. For CRC constraints, their
(deterministic) algorithm achieves path consistency on the tri-
angulated graph with time complexity ofO(δe′d2) and space
complexity of O(δe′d) whereδ is the maximum degree of
the triangulated graph ande′ the number of constraints in
the triangulated graph. The randomized algorithm by Ku-
mar (2006) has a time complexity ofO(γn2d2) whereγ is
the maximum degree of the original constraint graph. Our
algorithm can achieveO(nσ2d + e′d2) whereσ is the max-
imum elimination degree of the triangulated graph. Since
σ ≤ δ, γ ≤ δ, σ2 ≤ e′ ≤ n2 (σ andγ are not compara-
ble), our algorithm is still favorable in comparison with the
others.

It is worth mentioning that, in addition to “determinism”,
a deterministic algorithm has a great efficiency advantage
over randomized algorithms when more than one solution is
needed.

We point out that we introduceremoveValues just for
simplifying the design and analysis of the composition algo-
rithms. It might be possible to design a refined propagation
mechanism and/or composition algorithms to discard theed2

component from the time complexity and decrease the space
complexity of the elimination algorithm toO(n).

References
[Bliek and Sam-Haroud, 1999] Christian Bliek and Djamila

Sam-Haroud. Path consistency on triangulated constraint
graphs. InIJCAI-99, pages 456–461, Stockholm, Sweden,
1999. IJCAI Inc.

[Deville et al., 1997] Y. Deville, O. Barette, and P. Van Hen-
tenryck. Constraint satisfaction over connected row con-
vex constraints. InIJCAI-97, volume 1, pages 405–411,
Nagoya, Japan, 1997. IJCAI Inc.

[Kumar, 2006] T. K. Satish Kumar. Simple randomized al-
gorithms for tractable row and tree convex constraints. In
Proceedings of National Conference on Artificial Intelli-
gence 2006, page to appear, 2006.

[van Beek and Dechter, 1995] P. van Beek and R. Dechter.
On the minimality and global consistency of row-convex
constraint networks.Journal of The ACM, 42(3):543–561,
1995.

[Zhang and Yap, 2003] Yuanlin Zhang and Roland H. C.
Yap. Consistency and set intersection. InProceedings
of International Joint Conference on Artificial Intelligence
2003, pages 263–268, Acapulco, Mexico, 2003. IJCAI
Inc.

