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Abstract

In a constraint satisfaction problem, two values of
a variable are interchangeable if every solution in-
volving one value remains a solution with the value
replaced by the other one. Although interchange-
ability occurs in many problems, there are also
problems where little interchangeability occurs. In
this paper, we study conditional interchangeability
and substitutability for problems where values are
interchangeable or substitutable under certain con-
ditions.

1 Introduction
A binary Constraint Satisfaction Problem (CSP) consists of a
set of variables, each of which has a finite domain, and a set of
binary constraints on these variables. A solution to a CSP is
an assignment of values to variables such that all constraints
are satisfied.

Given a constraint satisfaction problem, two values of a
variable are interchangeable [Freuder, 1991] if every solu-
tion involving one value remains a solution when the value
is replaced by the other one. Derived from this concept of
interchangeability are concepts of substitutability, partial in-
terchangeability, and functional interchangeability etc. These
variations are present in many real-world problems and help
to solve, abstract, and compile CSPs [Freuder and Sabin,
1997; Rainer Weigel, 1999]. However, for some problems,
there is little or no interchangeability. For example, consider
a CSP with only one constraint x < y with x, y ∈ [1..10].
No values of x (or y) are interchangeable, but if we know that
y > 6, the values from 1 to 6 of x are interchangeable with
each other. In other words, under certain conditions, some
values of a variable become interchangeable.

In this paper, we introduce conditional interchangeability
(CI) and conditional substitutability (CS), and their restricted
version to neighboring variables. We also present alternative
ways to express the ’condition’ and compare this work with
the existing work.
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2 Conditional interchangeability and
substitutability

A CSP is usually represented as a triple (V,D,C), where
V is a set of variables {x1, . . . , xn}, D a set of domains
{D1, . . . , Dn}, and C a set of constraints. A constraint be-
tween x and y is denoted by cxy . In this paper, the values of
a variable are referred to by letters of a, b, c, d, e, f, . . .. d is
also used to denote the size of the maximum domain in a CSP.
We assume that a constraint is given explicitly by a set of al-
lowed tuples. For simplicity, x.a refers to value a of variable
x.

Definition 1 A condition on a set of variables X is defined
as a set of constraints on these variables X .

The idea of conditional interchangeability is to consider the
interchangeability under a solution space restricted by certain
conditions, as shown by the example of x < y in the first
section whose solution space is reduced by the condition y >
6.

Definition 2 Given a CSP (V,D,C) and a variable x, two
values a, b of x are conditionally interchangeable (CI) un-
der condition Con iff they are interchangeable in (V,D,C ∪
Con).

In this section, a condition is assumed to consist of primi-
tive constraints of the form x = a where x is a variable and a
a value, and logical conjunctions and disjunctions.

Example 0 Assume a CSP with a list of variables <
x, y, z > has a solution space

{(a, a, a), (a, b, c), (b, b, c), (a, c, c), (b, c, c), (b, b, b)}.

A tuple, e.g., (a, b, c), is an instantiation of the variables
< x, y, z > in that order. The values a and b of x are not
interchangeable due to the existence of the solutions (a, a, a)
and (b, b, b). After exposing the condition of y = b ∧ z = c
or y = c ∧ z = c, these two solutions are excluded, and thus
values a, b of x are interchangeable. It can be written as

(y = b ∧ z = c ∨ y = c ∧ z = c) → x.a ≡ x.b

where ≡ denotes interchangeability.
It is straightforward to verify the following observation.

Proposition 1 Given a condition, CI is reflective, symmetric,
and transitive.



As such, CI provides a way to put the values of a variable into
equivalent groups.

Substitutability is defined in [Freuder, 1991] as follows.
Given a CSP and two values a and b of a variable x, a is sub-
stitutable for b if any solution involving b remains a solution
after a is substituted for b. Similar to the interchangeability
under conditions, an otherwise non-substitutable value could
become substitutable under some condition.

Definition 3 Given a CSP (V,D,C) and two values a and b
of a variable x, a is conditionally substitutable for b under a
condition Con iff it is substitutable for b in (V,D,C ∪Con).

Consider Example 0 again. Neither a nor b of x is substi-
tutable for the other. After introducing the condition

y = b ∧ z = c or y = c ∧ z = c or y = a ∧ z = a,

solution (b, b, b) is excluded and thus a is substitutable for b.
However, under this condition, b is not substitutable for a and
consequently not interchangeable with b. The fact that b is
conditionally substitutable for a is denoted by

(y = b∧z = c ∨ y = c∧z = c ∨ y = a∧z = a) → a � b,

where � means “substitutable for”.
Conditional substitutability describes a relationship be-

tween values of a variable, and has the following property.

Proposition 2 Given a condition Con, conditional substi-
tutability is reflexive and transitive.

The following stronger substitutability will be useful later.

Definition 4 Given a CSP and a variable x, a value a of x
is completely substitutable if it is substitutable for any other
value in the domain of x.

The conditional version of this concept is given below.

Definition 5 Given a CSP (V,D,C) and a variable x, a
value a of x is conditionally completely substitutable under
condition Con iff it is completely substitutable in (V,D,C ∪
Con).

Since the solution space of a CSP is not known a priori, it
is usually not easy to identify the (conditionally) interchange-
able values in the problem. In the next section, we study the
conditional interchangeability of the values of a variable x by
considering only the constraints between x and its neighbors.

3 Conditional Neighborhood
Interchangeability

We first explain some notations on the neighborhood of a vari-
able. Given a constraint cxy , value a ∈ Dx is compatible with
b ∈ Dy if (a, b) ∈ cxy and a is also called a support of b. Two
variables are neighbors if there is a constraint between them.
N(x) is used to denote an ordered list of all neighboring vari-
ables of x: < x1, . . . , xl >. Given a CSP and a variable x,
the neighborhood subproblem on x refers to the problem of
variable x, its neighbors, and the constraints between x and
its neighbors. Note that the subproblem of x does not in-
clude any constraints between its neighbors. Once a CSP is
restricted to a neighborhood subproblem, it is easy to recog-
nize the conditions for the values to be interchangeable.

Definition 6 Given a CSP, two values a and b of a variable x
are conditionally neighborhood interchangeable (CNI) under
condition Con iff under Con, a and b are interchangeable
with respect to the neighborhood subproblem on x.

The conditional interchangeability has the following rela-
tionship with CNI.

Proposition 3 Two values of a variable are conditionally in-
terchangeable under a condition Con if they are condition-
ally neighborhood interchangeable under Con.
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Figure 1: A CSP instance. The big circle represents a domain
of a variable. The alphabets inside a circle are values. Two
values are compatible if there is an edge between them. The
constraint between two variables are exactly the set of all the
edges connecting values of these variables.

Example 1 Consider the neighborhood subproblem, of a
CSP, on x in Fig 1. values e, f ∈ Dx are CNI under the
condition y = b ∧ z = c. Hence,

y = b ∧ z = c → e ≡ f.
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Figure 2: Values e and f are CNI under many conditions

Example 2 In Fig 2, e and f share many supports in y and
z respectively. They are CNI under any one of the four in-
stantiations of (y, z): (a1, b1), (a1, b2), (a2, b1), and (a2, b2).
We could have

y = a1 ∧ z = b1 → e ≡ f,

y = a1 ∧ z = b2 → e ≡ f,

y = a2 ∧ z = b1 → e ≡ f,

y = a2 ∧ z = b2 → e ≡ f.



Here we are interested in finding all conditions under
which two values are CNI. Consider two values a and b of
a variable xi. Let < x1, . . . , xl > be the neighbors of xi.
For a neighboring variable xj(j ∈ 1..l), let SSj({a, b})
be the shared supports of a and b with respect to the con-
straint cij . Every tuple in SS1({a, b}) × · · · × SSl({a, b})
is a condition for a and b to be CNI. In the example above
SSy({e, f}) = {a1, a2} and SSz({e, f}) = {b1, b2}. The
number of conditions can be exponential to the number of
neighboring variables. Given the fact that all the conditions
for a and b to be CNI are from a Cartesian product of their
shared supports, the conditions can be simplified as

x1 ∈ SS1 ∧ · · · ∧ xl ∈ SSl → a ≡ b. (1)
Specifically, in Example 2, we have

y ∈ {a1, a2} ∧ z ∈ {b1, b2} → e ≡ f. (2)
It can be shown that the shared supports of two values pro-

vide the “weakest” condition under which they are CNI.

Proposition 4 To represent the weakest condition for two
values of x to be CNI, we need a space of size O(|N(x)|d)
where d is the size of the maximum domain of the problem of
concern.

Now let us turn to the neighborhood substitutability under
conditions.

Definition 7 Given a CSP and two values a and b of a vari-
able x, value a is conditionally neighborhood substitutability
(CNS) for b under condition Con iff under Con, a is substi-
tutable for b with respect to the neighborhood subproblem on
x.

Example 3 Consider the CSP in Fig 3. Neither e nor f of
variable x is substitutable for the other. If we restrict y to be
in {a1, a2, a3}, i.e., y ∈ {a1, a2, a3}, value e is substitutable
for f . Since e and f share the same supports in z, it is not
necessary to put any condition on z for e to be substitutable
for f . The substitutability of a for b under the condition above
can be expressed as

y ∈ {a1, a2, a3} → e � f.

Is there a condition under which e is completely substi-
tutable (i.e., substitutable for f and g of x)? For this example,
it can be verified that

y ∈ {a1, a2, a3} ∧ z ∈ {b1, b2} → e � f ∧ e � g.

In fact, we can identify a general condition for any value a
of a variable x to be completely substitutable: If each neigh-
boring variable of x contains only values that are supports of
a, a is then substitutable for any other value of x.

Proposition 5 Given a CSP and a value a of a variable x,
for any neighboring variable xj of x, let Sj be the set of sup-
ports for a with respect to the constraint on x and xj . a is
completely substitutable under the condition

x1 ∈ S1 ∧ x2 ∈ S2 ∧ · · · ∧ xl ∈ Sl.

Conditional neighborhood substitutability implies condi-
tional substitutability.
Proposition 6 Given a CSP and two values a and b of x,
if a is conditionally neighborhood substitutable for b under
condition Con, a is conditionally substitutable for b under
condition Con.
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Figure 3: More complicated constraint cyx

4 Extension of conditional interchangeability
and substitutability

The interchangeability and substitutability of values of a vari-
able can be generalized to those of instantiations of a set of
variables. Since a set of variables can be regarded as one vari-
able whose values are consistent instantiations of the original
variables, it is not difficult to extend the conditional inter-
changeability and substitutability of values to those of instan-
tiations.

Given a list of variables X , an instantiation of X is consis-
tent iff it satisfies all the constraints involving only variables
in X . We use ā, b̄, ... to refer to an instantiation of X .

We are interested in the set of variables each of which is
outside X and is a neighbor of some variable in X . These
variables are called neighbors of X and denoted by N(X).

Two consistent instantiations of X are interchangeable iff
every solution involving one instantiation remains a solution
with the instantiation replaced by the other one.

Definition 8 Given a CSP (V,D,C) and a set of variables
X , let ā and b̄ be two consistent instantiations of X . ā and
b̄ are conditionally interchangeable under condition Con iff
they are interchangeable in CSP (V,D,C ∪ Con).

The conditional substitutability of a consistent instantiation
is defined below.

Definition 9 Given a CSP (V,D,C) and a set of variables
X , let ā and b̄ be two consistent instantiations of X . ā is
conditionally substitutable for b̄ under condition Con iff it is
substitutable for b̄ in CSP (V,D,C ∪ Con).

Given a CSP, the neighborhood subproblem on X is the
one consisting of X and N(X), the constraints involving
variables in X , and the constraints involving one variable in
X and the other in N(X). In other words, the subproblem
on X includes constraints on X and constraints connecting
a variable in X with a neighbor of X . Now we are able to
list the neighborhood version of conditional interchangeabil-
ity and substitutability.

Definition 10 Given a CSP and two consistent instantiations
ā and b̄ of a set of variables X , ā and b̄ are conditionally
neighborhood interchangeable under condition Con iff under
Con, ā and b̄ are interchangeable with respect to the neigh-
borhood subproblem on X .



Definition 11 Given a CSP and two consistent instantiations
ā and b̄ of a set of variables X , ā is conditionally neighbor-
hood substitutable for b̄ under condition Con iff under Con,
ā is substitutable for b̄ with respect to the neighborhood sub-
problem on X .

In the following we discuss conditions to make instantia-
tions interchangeable or substitutable.

For any consistent instantiation ā of X , and a neighbor
yi ∈ N(X), let Si(ā) be the set of values of yi that are com-
patible to ā, i.e., each value of Si(ā) and ā satisfy the con-
straints between yi and any variable in X . Given two instanti-
ations ā and b̄ of X and a neighbor yi, their shared support set,
denoted by SSi({ā, b̄}), is the intersection of the support set
of ā and that of b̄. Assuming that N(X) = {y1, y2, . . . , ym},
we are able to list the general conditions for neighborhood
interchangeability

y1 ∈ SS1 ∧ y2 ∈ SS2 ∧ · · · ∧ ym ∈ SSm → ā ≡ b̄

where SSi, i ∈ 1..m, refers to SSi({ā, b̄}).
Under the condition

y1 ∈ S1(ā) ∧ y2 ∈ S2(ā) ∧ · · · ∧ ym ∈ Sm(ā),

ā is completely substitutable, i.e., substitutable for every
other consistent instantiation of X .

5 On the application of conditional
interchangeability and substitutability

In the case of checking the satisfiability of a CSP, conditional
interchangeability and substitutability may be used to prune
the search space. The conditional interchangeability, as an
equivalence relation, partitions the values of a variable into
equivalent groups. Given a group of interchangeable values
(under certain condition), we can choose to keep only one
value of the group in the domain of the variable while not
affecting the satisfiability of the original problem. The reason
is that if there is any solution including another member of the
group, it remains a solution if we replace the member by the
value we choose to keep.

Consider a value a of a variable x. Assume x has l neigh-
bors, for neighbor xi(i ∈ 1..l), Si is the support set of a, and
SSi is the shared support set of a and another value b of x.

By the condition in (1), if we have

x1 ∈ SS1 ∧ · · · ∧ xl ∈ SSl,

we can keep a and prune b and all other values which are
interchangeable with a under this condition.

By the condition in Proposition 5, conditional neighbor-
hood substitutability results in

x1 ∈ S1 ∧ x2 ∈ S2 ∧ · · · ∧ xl ∈ Sl → x = a. (3)

Concerning the pruning ability, the CNS is clearly more
powerful than CNI. CNI can only remove values interchange-
able with a while CNS removes all other values. Further-
more, each SSi is a subset of Si, implying that the CNS pro-
vides a weaker premise than CNI.

In the rest of this section, we study the relationship between
the concepts here and those in the work reported in [Bowen
and Likitvivatanavong, 2004; Prestwich, 2004; Chmeiss and
Sais, 2003].

5.1 Domain transmutation
The work by Bowen and Likitvivatanavong embeds the idea
of conditional neighborhood interchangeability without ex-
plicitly introducing condition. They introduce the concept of
domain transmutation by splitting a value into two or merg-
ing two values in terms of CNI. In other words, [Bowen and
Likitvivatanavong, 2004] creates virtual values for those con-
ditions making values interchangeable.

Consider Example 1 (Fig 1). For values e and f of x, their
shared supports are SSy = {b}, SSz = {c}. We know that

y ∈ SSy ∧ z ∈ SSz → e ≡ f.

But we can not remove either e or f because they are in-
terchangeable only when the condition holds. The method
in [Bowen and Likitvivatanavong, 2004] simply introduces
a new value, say g, whose support sets are exactly SSy and
SSz . Now that some role of e has been assumed by y, we only
need to figure out the other role e plays when the condition is
not true (i.e., y 6= b ∨ y 6= c). When y 6= b, e is supported
by a of y and c of z, but when z 6= c, e is not supported by
any value of z and thus all its supports in y are useless. See
the picture in Fig. 4 for the supports of e. Similarly, when the
condition is false, the supports of f are {b} (for y) and {d}
(for z).
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Figure 4: New value g is introduced and the constraints cxy

and cxz are updated to reflect the conditional neighborhood
interchangeability

5.2 “Interchangeability constraints”
Since the work in [Prestwich, 2004] is based on a different
representation of constraints, to establish the connection, we
first explain a “nogood” (disallowed) representation of a con-
straint.

Consider the constraint cyx in Example 2 (Fig 2). The dis-
allowed tuples by cyx are:

{(a0, e), (a3, f)}.

That (a0, e) is not allowed is expressed by 6= and logical con-
nectives

y 6= a0 ∨ x 6= e.

Similarly, disallowing (a3, f) is expressed as

y 6= a3 ∨ x 6= f.



To represent cyx, we connect the two formulae above by and:

(y 6= a0 ∨ x 6= e) ∧ (y 6= a3 ∨ x 6= f). (4)

Now a constraint is represented by a formula with conjunc-
tive normal form, instead of a set of allowed tuples. Conse-
quently, the conjunction of all constraints of CSP is still of
conjunctive normal form. The CSP in Example 2 is repre-
sented as

(y 6= a3 ∨ x 6= e) ∧ (y 6= a0 ∨ x 6= f) //cyx

∧
(z 6= b3 ∨ x 6= e) //czx

We are now able to introduce the idea to prune values in
[Prestwich, 2004]. Given a variable x and a term x 6= a, we
first select all conjuncts containing x 6= a from all constraints
(for simplicity, we consider only binary constraints here al-
though non binary constraints can be treated similarly)

x 6= a ∨ x1 6= a11

...
x 6= a ∨ x1 6= a1n1

x 6= a ∨ x2 6= a21

...
x 6= a ∨ x2 6= a2n2

x 6= a ∨ xl 6= al1

...
x 6= a ∨ xl 6= alnl

(5)

Note, in the formulae above, we group the conjuncts with
the same variables together. For instance, the first group in-
volves x and x1.

By assuming an ordering “≤” on the values in the do-
main of x, Prestwich gives the following pruning “constraint”
[Prestwich, 2004] for all b such that a ≤ b,

x1 6= a11 ∧ · · · ∧ x1 6= a1n1
∧

x2 6= a21 ∧ · · · ∧ x2 6= a2n2
∧ · · · ∧

xl 6= al1 ∧ · · · ∧ xl 6= alnl
→ x 6= b.

(6)

This constraint is named by Prestwich as interchangeabil-
ity constraints (IC). Its premise is the conjunctions of all the
conjuncts in (5) with x 6= a removed. Since conjuncts in
(5) include all those involving x 6= a, if the premise of (6)
is true, we can simply let x be a, which makes all other 6=’s
on x (in the whole CSP of concern) true and thus the satisfi-
ability of the whole problem is not affected. The IC can be
strengthened as follows

x1 6= a11 ∧ · · · ∧ x1 6= a1n1
∧

x2 6= a21 ∧ · · · ∧ x2 6= a2n2
∧ · · · ∧

xl 6= al1 ∧ · · · ∧ xl 6= alnl
→ x = a.

(7)

In fact, with the traditional representation of constraints in
mind, x1 . . . xl are exactly the neighbors of x, and ai1 . . . ail

are the values which are not consistent with a of x. The con-
straint (7) could be written as

x1 /∈ (D1 − S1) ∧ x2 /∈ (D2 − S2) ∧ · · · ∧
xl /∈ (Dl − S1) → x = a

(8)

where Si is the support set of a of x with respect to xi, as de-
fined as before. Obviously, this pruning constraint is equiva-
lent to (3) that is derived from CNS directly.

In summary, the conditional neighborhood substitutability
facilitates stronger pruning and more intuition than IC’s.

5.3 Generalized neighborhood substitutability
In this subsection, we switch back to the traditional represen-
tation of a constraint as a set of allowed tuples.

The generalized neighborhood substitutability (GNS) pro-
posed in [Chmeiss and Sais, 2003] says that two values of a
variable is GNS iff they share at least one support with respect
to each neighboring variable.

There is a relationship between GNS and CNI.

Proposition 7 Two values are GNS iff there exists a condi-
tion Con such that they are CNI under Con.

However, when a value is CNS for another value, these two
values might not be GNS. For example, consider e and g of x
in Fig. 3. e is CNS for g, but they do not share any support in
the domain of variable z and thus they are not GNS.

A “constraint” to prune search space is also proposed in
[Chmeiss and Sais, 2003]. By assuming a total ordering on
the values, the key component of that pruning constraint on
a variable x can be translated, by using notations developed
here, to

x1 ∈ S1 ∧ x2 ∈ S2 ∧ · · · ∧ xl ∈ Sl

→ (x = a1 ∨ x = a2 ∨ · · · ∨ x = am ∨ x = a)
(9)

where a is a value of x, a1 · · · am are the values smaller than
a, x1 . . . xl are the neighbors of x, and again Si is the support
set of a with respect to xi.

It is interesting to observe that this constraint is equivalent
to the IC (6) if the same ordering on values is used in both
constraints.

As we have been aware, under the premise of (9), a is
completely substitutable for every other value of x, and thus
the pruning constraint can be strengthened by letting x = a,
equivalent to (3).

There is no obvious connection between the constraint (9)
and GNS. But the relationship between the specific pruning
constraints (3) and CNS is immediate.

6 Other related work
6.1 Partial interchangeability
Two values of a variable x are partially interchangeable
[Freuder, 1991] with respect to a set of variables X iff any
solution involving one implies a solution involving the other
with possibly different values for X . Partial interchangeabil-
ity is a special type of conditional interchangeability where
the condition is on the assignments of X .

In this section, we present a result on a property of partial
interchangeability. If x is not a neighbor of any variable in X ,
partial interchangeability is equivalent to interchangeability.

Proposition 8 Given two values a and b of a variable x and
a set X , if a and b are partially interchangeable with respect
to X , and x is not a neighbor of X , then a and b are inter-
changeable.



Proof. Consider any solution where x takes value a . Let
ā be the list of values for X in the solution and a′ the list of
values for other variables in the solution. We represent the
solution by a list (a, ā, a′). We need to prove that (b, ā, a′) is
also a solution.

Since a and b are partially interchangeable, there exist a
list of values b̄ for X such that (b, b̄, a′) is a solution. The
fact that x is not a neighbor of any variable in X implies that
the neighbors (recalling the definition of the neighbors of a
set of variables) of X have the same values in both solutions.
Both ā and b̄ are consistent with the values taken by their
neighbors. Hence, replacing b̄ in the second solution with ā,
(b, ā, a′) is still a solution.

Similarly, we can show that any solution containing b re-
mains a solution by substituting a for b. Hence, they are in-
terchangeable. 2

6.2 Context dependent interchangeability
Context dependent interchangeability (CDI) [Weigel et al.,
1996] is equivalent to conditional interchangeability. Instead
of focusing on the neighborhood of a variable, [Weigel et al.,
1996] resorts to a rather sophisticated decomposition method
to identify CDI values under certain “conditions”.

The identification of conditional neighborhood inter-
changeability is at least tractable for binary CSPs and could
be a practical tool to prune the search space.

6.3 Domain partition
The idea in [Haselbock, 1993] is that although two values
of a variable may not be neighborhood interchangeable, they
could be (fully) interchangeable with respect to only one,
rather than all, neighboring variable. Based on this obser-
vation, the domain of a variable is partitioned with respect
to each constraint on it such that values in each partition are
interchangeable with respect to a certain constraint. One im-
mediate advantage of this method is that a filtering procedure
(e.g., AC algorithms) could be implemented more efficiently
by taking each partition as one value. A search procedure is
also introduced to make use of the neighborhood interchange-
ability (but not CNI or CNS).

6.4 Inferred Disjunctive Constraints
The inferred disjunctive constraints [Freuder and Hubbe,
1993] make use of the complete substitutability of CNS and
some other observations to decompose a CSP.

7 Conclusion
When two values of a variable are not (neighborhood) inter-
changeable or substitutable, there exists some “interchange-
ability” and “substitutability” among them under some con-
dition. The condition is usually a restriction on the do-
main of each neighboring variable. we propose conditional
(neighborhood) interchangeability and substitutability which
could be used to prune search space. They further strengthen
the pruning constraints and concepts proposed by Prest-
wich [Prestwich, 2004] and Chmeiss & Sais [Chmeiss and
Sais, 2003]. They also offer a uniform perspective on the
previous work (e.g., [Bowen and Likitvivatanavong, 2004;

Freuder and Hubbe, 1993; Prestwich, 2004; Chmeiss and
Sais, 2003]). Prestwich has studied IC’s, based on SAT
solver. We are planning experiments to study the efficiency
to prune the search space by using conditional neighborhood
substitutability in a CSP solver.
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