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Abstract. The tightness of a constraint refers to how restricted the
constraint is. The existing work shows that there exists a relationship
between tightness and global consistency of a constraint network. In this
paper, we conduct a comprehensive study on this relationship. Under the
concept of k-consistency (k is number), we strengthen the existing results
by establishing that only some of the tightest, not all, binary constraints
are used to predict a number k such that strong k-consistency ensures
global consistency of an arbitrary constraint network which may include
non-binary constraints. More importantly, we have shown a lower bound
of the number of the tightest constraints we have to consider in predicting
the number k. To make better use of the tightness of constraints, we
propose a new type of consistency: dually adaptive consistency. Under
this concept, only the tightest directionally relevant constraint on each
variable (and thus in total n− 1 such constraints where n is the number
of variables) will be used to predict the level of “consistency” ensuring
global consistency of a network.

1 Introduction

Informally, the tightness of a binary constraint is the maximum number of com-
patible values allowed for each value of the constrained variables. For example,
let x, y ∈ 1..10 be two variables and consider a constraint x = y. For any value
of x, the constraint allows at most 1 compatible value for y . The constraint
is also said 1-tight. An interesting discovery is that there is a close relationship
between the tightness and the global consistency of a constraint network. (When
we say a network is globally consistent, we mean it is satisfiable.) For example, if
all the constraints in a binary network is 1-tight, path consistency (i.e., strongly
3-consistency) is sufficient to determine the global consistency of the network.
If not all constraints are 1-tight, the existing method will use the least tight
constraint to determine the level of consistency sufficient for global consistency.
This level is higher (and thus more expensive) if the constraints are less tight.
The main objective of this paper is to determine the level of consistency by using
less and tighter constraints. For example, by our results, if a constraint network
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with n variables has n 1-tight constraints on “correct” variables, a variation of
path consistency is still able to ensure its global consistency.

One of the first interesting pieces of work related to the tightness of con-
straints is by Dechter [2]. She observes that the size of the largest domain in
a constraint network can be used to predict a number k such that strong k-
consistency [6] is sufficient to guarantee the global consistency of the network.
Later, van Beek and Dechter [10] propose the the concept of tightness. They
observe that the least tight constraint in a network are also able to be used to
predict a k. The k derived by tightness is obviously lower than that derived by
the domain size because the tightness of a constraint is at most the size of the
domains involved in the constraint.

Recently, we proposed a concept of weakly m-tight constraint networks in
[11]. Using this concept, one can use the tightness of all binary constraints
(while ignoring the tightness of all other non-binary constraints) to predict the
k-consistency sufficient for global consistency.

In this paper, we first study the potential of weak m-tightness in reducing
the number of constraints needed to predict a number k such that strong k-
consistency on the network ensures global consistency. Some property of weakly
m-tight networks is presented and we show that we can use a certain number
(but not all) of the tightest binary constraints to make an predication of k.
Unexpectedly and importantly, we also find that there exists a lower bound on
the number of constraints we have to use in a prediction under the concept of
weak m-tightness of a network.

The weak m-tightness of a network grows from the concept of k-consistency
which requires the consistent extensibility of a valid instantiation of any k − 1
variables to any new variable. A weakly m-tight network assures that there is an
m-tight constraint involved when extending any instantiation to a new variable.
k-consistency is so strong a property that it might restrict the role of tightness
in determining the global consistency of a network.

We then study the impact of tightness on global consistency under the con-
cept of directional k-consistency. In directional k-consistency, it is only necessary
to assure the consistent extensibility of a valid instantiation to a new variable
which comes after the instantiated variables in terms of some variable ordering.
This approach further reduces the number of constraints required for a predic-
tion of a local level of consistency ensuring global consistency. However, the
reduction is still not very substantial.

We continue the exploration by considering adaptive consistency – an elegant
and natural extension of directional consistency – which is devised when consid-
ering the topological structure of a constraint network. It needs an ordering of
variables and guarantees that for any variable, all constraints involving it and
its predecessors are “consistent” on it. It is observed that to make the “relevant”
constraints consistent on a variable, the computation effort is dependent on the
tightest constraint (which may or may not be binary) on the variable. This ob-
servation leads to the concept of dually adaptive consistency which assures global



consistency but requires “less” consistency inside a network by making full use
of its topological structure and the tightness of the constraints.

With dually adaptive consistency, we are finally able to say that we only
need the n − 1, where n is the number of variables, tightest constraints (in the
sense of taking the tightest “relevant” constraint on each variable) to determine
the computational cost for achieving global consistency.

2 Preliminaries

In this section, we review the basic concepts and notations used in this paper.
Constraint Networks A constraint network consists of a set of variables

V = {x1, x2, · · · , xn} with a domain Di for each variable xi ∈ V , and a set of
constraints C = {cS1

, cS2
, · · · , cSe

} where Si is a subset of V for all i : 1..n,
and each constraint cS ∈ C is a relation defined on the domains of variables
in S. Given a constraint cS , S is also called the scope of cS . The arity of cS is
the number of variables in S. If |S| is two, cS is binary and denoted by cij on
variables xi and xj . Throughout the paper, n denotes the number of variables
in a network.

See [8, 9] for more information on constraint networks.
Consistent Instantiation and Image An instantiation of a set of variables

Y = {x1, · · · , xj} is denoted by ā = (a1, · · · , aj) where ai ∈ Di for i ∈ 1..j; and
it is consistent if it satisfies all constraints involving only variables in Y . For
b ∈ Di, (ā, b) denotes an instantiation of Y ∪{xi}. Given a constraint cS and an
instantiation ā of X − {xi} (S ⊆ X ⊆ V ) for any xi ∈ S, u ∈ Di is a support
(with respect to cS) of ā if (ā, u) satisfies cS ; and the image of ā on Di under cS

is the set of all its supports in Di.
m-tightness and Proper m-tightness [10, 11] Given a number m, a con-

straint cS is m-tight on xi if and only if the image of any instantiation of S−{xi}
is of size at most m or the size of Di. If a constraint is m-tight on x, its tightness
on x is m. A constraint is m-tight if it is m-tight on each of its variables.

A constraint cS is properly m-tight on x if and only if the image of any
instantiation of S − {x} is of size up to m. A constraint is properly m-tight if
and only if it is properly m-tight on every variable in its scope.

Example The constraint in Fig. 1 is properly 3-tight because b1 has image
{a2, b2, c2} which is maximum among all images of all values here. However in
deciding the m-tightness of the constraint, we ignore the image of b1 because
it is equal to the domain of y. The image {b1, c1} (or {a1, b1}) of a2 (or c2) is
maximum and thus the constraint is 2-tight. 2

3 Tightness under k-consistency

We first discuss k-consistency, weakly m-tight constraint networks and the ex-
isting results, and then present a detailed analysis of weakly m-tight networks.

Relevant Constraints A relevant constraint on a variable x with respect
to a set of variables Y is one whose scope consists of only x and variables from
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Fig. 1. A constraint between x and y. The domain of x is {a1, b1, c1} and the domain
of y {a2, b2, c2}. An allowed tuple by the constraint is drawn as an edge.

Y . In other words, it involves x, but does not involve any variable outside Y .
RY (x) is used to denote the set of relevant constraints on x wrt Y . When Y is
clear from the context, R(x), rather than RY (x), will be used.

Example Consider the network in Fig. 4. At this moment, we do not assume
any ordering on the variables and just take it as a normal network. The relevant
constraints on x2 with respect to {x1, x3} are c12 and c32. Without a reference
set of variables, the relevant constraints of x2 refer to those on it with respect
to all variables: c12, c32, and c42. 2

(Strong) k-consistency [6] A constraint network is k-consistent if and only
if for any consistent instantiation ā of any distinct k−1 variables, and for any new
variable xi, there exists u ∈ Di such that (ā, u) is a consistent instantiation of the
k variables. A network is strongly k-consistent if and only if it is j-consistent for
all j ≤ k. A strongly n-consistent network where n is the number of constraints is
globally consistent. We use local consistency in this section to denote (strongly)
k-consistency with some k < n.

Weakly m-tight Constraint Networks A constraint network is weakly m-
tight at level k iff for every set of variables Y = {x1, · · · , xk} and a new variable
x, there exists an m-tight relevant constraint on x wrt Y .

This definition is simpler than the one given in [11] where every set Y of size
k or greater than k is considered. The Proposition 1 below shows that the two
definitions are equivalent.

Remark The definition needs the assumption that given a network, there is
a universal constraint among any set of variables on which there is no explicit
constraint. A universal constraint on a set of variables allows any instantiation
of the variables. So, in this section, we need to keep in mind that there is a
constraint among any set of variables.

For a weakly tight network, there exists the following relationship between
local and global consistency.

Theorem 1. [11] If for some m, a constraint network with constraints of arity
at most r is strongly ((m + 1)(r − 1) + 1)-consistent and weakly m-tight at level
((m + 1)(r − 1) + 1), it is strongly n-consistent.

As we can see from the definition, the weak m-tightness of a network does
not require us to consider the tightness of all constraints. What interests us here



is how many constraints are needed to make a network weakly m-tight. In our
earlier work [11], we were not able to answer this question except to show a
sufficient condition that if all binary constraints (possibly including universal
constraints) of a network are m-tight, then it is weakly m-tight. In this section
we give some characterization of the weakly m-tight constraint networks.

We first find that there is a strong relationship among different levels of weak
tightness in a network.

Proposition 1. If a constraint network is weakly m-tight at level k for some
m, it is weakly m-tight at any level j > k.

Proof. For any j > k, we prove that the network is weakly tight at level j.
That is, for any set of variables Y = {x1, · · · , xj}(k ≤ j < n) and a new variable
x, we show that there exists an m-tight relevant constraint on x with respect to
Y . Since the network is weakly tight for k < j, there exists an m-tight relevant
constraint on x with respect to a subset of Y . This constraint is still relevant on
x with respect to Y , and thus the one we look for. 2

In the following two results, we show more sufficient conditions for a con-
straint network to be weakly m-tight.

Theorem 2. Given a constraint network (V,D,C), if for every x ∈ V , there
are at least n− 2 binary m-tight constraints on it for some m, then the network
is weakly m-tight at level 3.

Proof. For any two variables {x, y}, and a third variable z, the relevant
constraints on z with respect to {x, y} are cxz and cyz. We know that the number
of relevant binary constraints on z with respect to V is n−1. That n−2 of them
are m-tight means either cxz or cyz must be m-tight. 2

In fact, for the weakness at a higher level, we need fewer constraints to be
m-tight as shown by the following result.

Theorem 3. A constraint network (V,D,C) is weakly m-tight at level k if for
every x ∈ V , there are at least n − k + 1 m-tight binary constraints on it for
some m and k.

Proof. For any set Y of k − 1 variables, and a new variable z, we show that
there is an m-tight relevant constraint on z with respect to Y . Otherwise, all the
k−1 binary constraints on z are not m-tight. Since the total number of relevant
constraints on z is n − 1, the number of m-tight binary constraints on z is at
most (n− 1)− (k − 1), which contradicts that z is involved in n− k + 1 m-tight
binary constraints. 2

This result shows that for a network of arbitrary constraints to be weakly
tight at level k, it could need as few as n(n − k + 1)/2 m-tight constraints,
in contrast to the result in [11] that all binary constraints are required to be
m-tight.

An immediate question is what is the minimum number of m-tight constraints
required for a network to be weakly tight? The following result answers this
question on weak tightness at level 3.



Theorem 4. For a constraint network to be weakly m-tight at level 3, it needs
at least

n(n − 1)/2 − 2bn/3c if n = 0, 1 (mod 3)

or otherwise

(n − 2)(3n − 1)/6

m-tight binary or ternary constraints for some m.

Proof. Given a network, its weak m-tightness at level 3 depends on the
tightness of only binary and ternary constraints. Among all weakly m-tight (at
level 3) constraint networks with n variables, let the network (V,D,C) have a
minimum set M of m-tight binary or ternary constraints. Let B be the set of
binary constraints and T the set of ternary constraints in M .

In the following exposition, a constraint is denoted by its scope. For example,
we use {u, v, w} and {u, v} to denote ternary constraint c{u,v,w} and binary
constraint cuv respectively.

We first prove that keeping the total number of constraints in M unchanged
and the underlying network weakly m-tight, we can change T and B, if necessary,
such that for any constraint {u, v, w} in T , none of the binary constraints {u, v},
{v, w}, and {u,w} is m-tight.

1) At most one of {u, v}, {v, w}, and {u,w} is m-tight. Otherwise, at least two
of them are m-tight, which means {u, v, w} can be non-m-tight, contradicting
the minimum assumption of M .

2) Assume {u, v} is m-tight. Since {u, v, w} is m-tight, there should be a
reason for {u, v} to be m-tight. The only reason is that there exists another
variable z such that one of {u, z} and {v, z} is not m-tight and {u, v, z} is not
m-tight, too. See Fig. 2. Let us say {u, z} is m-tight, then {v, z} has to be
non-m-tight. There must be an m-tight constraint {z, v, w} because {v, z} and
{v, w} are not m-tight. Now we make the following transformation of T and B.
Remove from T constraints {u, v, w} and {z, v, w}, and add to B constraints
{z, v} and {v, w}, which means we replace the m-tight ternary constraints by
m-tight binary constraints. This transformation preserves the number of m-tight
constraints.
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Fig. 2. The circle represents the m-tight ternary constraint {u, v, w}. An edge between
two variables indicates a binary constraint. A tick besides an edge means it is m-tight
while a cross means it is not m-tight.



Next, we show that keeping the number of constraints in M unchanged and
the underlying network weakly m-tight, we can change T and B, if necessary,
such that any two ternary constraints do not share any variables.

Case 1: two constraints {u, v, w} and {u, v, z} in T share two variables {u, v}.
See Fig. 3(a). For {w, u} and {u, z} are not m-tight, {w, u, z} has to be m-
tight. For {w, v} and {v, z} are not m-tight, {w, v, z} has to be m-tight. Again
we remove the four ternary constraints from T and add to B the four binary
constraints {w, u}, {u, z}, {z, v} and {v, w}. This transformation preserves the
weak m-tightness of the network.

w
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v
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w w

u vu
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y

Fig. 3. A dotted ellipse together with the three variables inside it represents a ternary
constraint. (a) Left: Two ternary constraints share two variables {u, v}. Right: The
ternary constraints have to be m-tight. (b) Left: Two ternary constraints share one
variable w. Right: The ternary constraints have to be m-tight.

Case 2: two constraints {u, v, w}, and {w, x, y} share one variable w. Since
{u,w} and {w, x} are not m-tight, {u,w, x} has to be m-tight. Since {v, w}
and {w, y} are not m-tight, {v, w, y} has to be m-tight. Similarly {u,w, y} and
{v, w, x} have to be m-tight. Now obviously if we make the four binary con-
straints {u,w}, {w, x}, {v, w}, and {w, y} m-tight while relaxing the six ternary
constraints to be non-m-tight, the new network is still weakly m-tight, but has
fewer m-tight constraints. This contradicts the minimality of M . Hence, case 2
is not possible.

Therefore, the scopes of the ternary constraints in T are disjoint, and the
binary constraint between any two variables of a ternary constraint in T is not
m-tight.

Assume there are k constraints in T . Since it is difficult to count B, we
count the maximum number of non-m-tight binary constraints. We have 3k
non-m-tight binary constraints because of T . We should not have any non-m-
tight binary constraints between a variable in T and a variable outside T . Let
V ′ be the variables outside T . We have n − 3k variables outside T . The other
non-m-tight constraints fall only between variables in V ′. Since there is no two
non-m-tight constraints on a single variable in V ′, there are at most (n− 3k)/2
non-m-tight constraints if n− 3k is even, and at most (n− 3k − 1)/2 otherwise.
So the number of m-tight constraints in B and T would be



n(n − 1)/2 + k − 3k − b(n − 3k)/2c
= n(n − 1)/2 − 2k − b(n − 3k)/2c.

We know that this should be minimized, and thus k should be maximized. If n
is a multiple of 3, the number of m-tight constraints is n(n − 1)/2 − 2n/3; if n
is 1 more than a multiple of 3, the number is n(n− 1)/2− 2(n− 1)/3; otherwise
the number is (n − 1)(3n − 1)/6. 2

All these results will apply to weakly properly m-tight constraint networks.
Weakly Properly m-tight Constraint Networks [11] A constraint net-

work is weakly properly m-tight at level k iff for every set of variables Y =
{x1, · · · , xl} and a new variable x, there exists a properly m-tight relevant con-
straint on x wrt Y .

The idea behind Proposition 1 is also applicable to this definition. For com-
pleteness we list the results on weak proper m-tightness below.

Corollary 1. If a constraint network is weakly properly tight at level k, it is
weakly properly tight at any level j > k.

Corollary 2. Given a constraint network (V,D,C), if for every x ∈ V , there
are at least n − 2 binary properly m-tight constraints on it, then the network is
weakly properly m-tight at level 3.

Corollary 3. A constraint network (V,D,C) is weakly properly m-tight at level
k if for every x ∈ V , there are at least n−k+1 properly m-tight binary constraints
on it.

Corollary 4. For a constraint network to be weakly properly m-tight at level 3,
it needs at least

n(n − 1)/2 − 2bn/3c if n = 0, 1 (mod 3)

or otherwise
(n − 2)(3n − 1)/6

properly m-tight binary or ternary constraints.

From the discussion above, under the concept of k-consistency we can not
reduce the number of m-tight constraints required in a network by much to
predict the k-consistency ensuring global consistency.

4 Tightness under directional consistency

We know that strong n-consistency is stronger than we need to obtain the global
consistency of a network in that it requires any partially consistent instantiation
extensible to a solution. In fact, in many problems, even for those which need all
solutions, we can instantiate the variables one by one along a special ordering.
In order to find a solution without backtracking (i.e., efficiently), it is sufficient
to ensure that a valid instantiation of a set of variables is extensible to a variable



after them. This is the idea behind directional consistency proposed by Dechter
and Pearl [5]. In this section, we study tightness under directional consistency.

Directional k-consistency and Directionally Relevant Constraints
A constraint network is directionally k-consistent with respect to a variable or-
dering if and only if every consistent instantiation of every k − 1 variables can
be extended to any new variable after them. A network is strongly directionally
k-consistent if it is directionally j-consistent for all j ≤ k. It is easy to see a
strongly directionally n-consistent network is globally consistent. A relevant con-
straint on x with respect to a set of variables Y , is directionally relevant if it
involves x and only variables before x. For example, for the network shown in
Fig. 4, c12 is the only directionally relevant constraint on variable x2. The other
two relevant constraints, c32 and c42, involve variables after x2.

Accordingly, we have this relaxed version of weak tightness. which does not
require a constraint to be tight on each of its variables.

Definition 1. A constraint network is directionally weakly m-tight at level k
with respect to an order of variables iff for every set of variables Y = {x1, · · · , xl}(l:k..n-
1) and a new variable x , there exists an m-tight directionally relevant constraint
on x.

Theorem 5. Given a network, let r be the maximum arity of its constraints.
If it is directionally weakly m-tight at level (m + 1)(r − 1) + 1 and is strongly
directionally (m + 1)(r − 1) + 1-consistent, then it is strongly directionally n-
consistent.

The proof is similar to that of Theorem 1.

Next we present a sufficient condition for a network to be directionally weakly
m-tight.

Theorem 6. A network of arbitrary constraints is directionally weakly m-tight
at level k with respect to a variable ordering if for all i > k, there are at least i−k
directionally relevant binary constraints which are m-tight on the ith variable.

The proof is similar to that of Theorem 2. The total number of (partially) m-
tight constraints needed is about 1+2+· · ·+(n−(k−1)) = (n−k+2)(n−k+1)/2.
In other words, for a network to be directionally weakly m-tight, we still need a
significant number of constraints each of which is m-tight (on certain variables).

Again the results here apply to proper m-tightness.

If a network is not directionally k-consistent, we can enforce directional con-
sistency on it. An algorithm to enforce directional consistency is significantly
different from that for k-consistency. There exists an ordering of variables on
which to enforce directional consistency – the reverse of the given variable or-
dering – such that no iterative propagation is necessary. This observation leads
to the concept of adaptive consistency under which a solution can be found
without backtracking.



5 Dually adaptive consistency

One main purpose of our characterization of weak tightness of a network is to
help identify a consistency condition under which a solution of a network can be
found without backtracking (i.e., efficiently).

The idea of adaptive consistency [5] is to enforce only the necessary “amount”
of directional consistency on a network to ensure global consistency. Specifically,
for any variable x, we only need to be sure that a consistent instantiation of the
variables in the directionally relevant constraints on x is consistently extensible
to x. The variables outside its directionally relevant constraints do not play any
direct role on x and thus can be ignored.

The width of a variable with respect to a variable ordering is the number of
the directionally relevant constraints on it. See Fig. 4 for an example.
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Fig. 4. The variables {x1, x2, · · · , x5} are ordered according to their subscripts. For
example, x1 is before x2. The width of x2 is 1.

Example Using the network and variable ordering in Fig. 4, let us try to
figure out ideal conditions under which a solution can be found by a backtracking
free search. Assume the domain of x1 is not empty. Pick a value and assign it
to x1. If c12 is directionally (arc) 2-consistent, the existence of a value in x2 is
ensured. If c23 is directionally arc consistent, there is a value for x3 compatible to
the previous assignment. As for x4, if its three directionally relevant constraints
{c14, c24, c34} “agree” on x4 (e.g., directionally 4-consistent on x4), there exists
a value for x4 to satisfy the constraints so far. Finally, if c45 and c15 “agree”
on x5 ( e.g., directionally 3-consistent on x5), we get a solution for the whole
network.

From this example, we can see that different levels of consistency on different
variables are sufficient to enable backtracking free search. It is not necessary to
have a uniform (e.g., directionally k-) consistency everywhere on a network to
enable a backtracking free search.

Here it is also convenient (for presentation and understanding) to use the
agreement of the directionally relevant constraints on a variable, which will be
formalized below.



Definition 2. Given a network, a variable ordering, and a variable x, let R(x)
be the set of directionally relevant constraints on x and S be the union of the
scopes of the constraints of R(x). The constraints of R(x) are consistent on x,
if and only if for any consistent instantiation ā of S − {x}, there exists u ∈ Dx

such that (ā, u) satisfies all the constraints in R(x).

Now we are able to define the adaptive consistency of a network.

Definition 3. Given a constraint network and an ordering on its variables. It is
adaptively consistent if and only if for any variable x, its directionally relevant
constraints are consistent on x.

The adaptive consistency is presented as an algorithm in [5, 4]. However, for
the purpose of this paper, we prefer a declarative characterization. It leads to
the following consistency result.

Theorem 7. Given a constraint network and an ordering on its variables. It is
strongly directionally n-consistent if it is adaptively consistent.

It can be proved in the way as in the motivating example above.

When a network is not adaptively consistent, we can make the directionally
relevant constraints on each variable – in the reverse of the variable ordering –
consistent. This is exactly the algorithm in [4, page 105].

Adaptive consistency is not only more accurate in estimating the local con-
sistency sufficient for global consistency, but also makes intuitive the algorithms
to enforce consistency and to find a solution.

With the knowledge of tightness of constraints presented in the previous
sections, we know that for a network to be adaptively consistent, it is sufficient
to make sure that only some, not all, directionally relevant constraints on a
variable are consistent.

We define a network with this new tightness property.

Definition 4. Given a constraint network and an ordering of its variables. The
network is adaptively m-tight if and only if for any variable x, there exists an
m-tight directionally relevant constraint on it.

We have the following sufficient condition for such a network to be adaptively
consistent and thus globally consistent.

Theorem 8. Given a constraint network and an ordering of its variables, as-
sume the network is adaptively m-tight. The network is adaptively consistent
if

1) for any variable x whose width is not greater than m, the directionally
relevant constraints on it are consistent, and

2) for any variable x whose width is greater than m, every m + 1 of the
directionally relevant constraints on it are consistent.



We omit the proof which is similar to that of Theorem 9.
From this theorem and Theorem 7, we only need the tightest (either binary

or non-binary) directionally relevant constraint on each variable (totally n − 1
such constraints) to predict the global consistency of a network. This could
be considered a significant improvement over the results in the previous two
sections.

Compared with the result in [5], this theorem also provides a lower level (the
smaller of tightness or width) of consistency ensuring global consistency.

Before the introduction of a natural extension of adaptive consistency (Def-
inition 3) – dually adaptive consistency – we present a new result on set inter-
section.

Lemma 1. Given a number m and a collection of sets {E1, · · · , El}, assume
there is a set E among them such that |E| ≤ m.

⋂
i∈1..l

Ei 6= ∅ iff the intersection

of E and every other m sets is not empty.

Proof. The necessary condition is clear.
The sufficient condition is proved by induction on l. It is obviously true when

l ≤ m + 1. Assuming the intersection of every k (> m) sets is not empty, we
show that any k + 1 sets intersect. Without loss of generality, the subscripts of
the k + 1 sets are numbered from 1 to k + 1 and let |E1| ≤ m. Let Ai be the
intersection of all the k + 1 sets except Ei:

Ai = E1 ∩ · · · ∩ Ei−1 ∩ Ei+1 ∩ · · · ∩ Ek+1, for 1 < i ≤ k + 1.

If Ai ∩ Aj 6= ∅ for some i, j ∈ 2..k + 1, i 6= j,

⋂

i∈1..k+1

Ei = Ai ∩ Aj 6= ∅.

Let Ai ∩ Aj = ∅ for all distinct i and j. In terms of the construction of Ai’s,
E1 ⊇

⋃
i∈2..k+1

Ai. |Ai| ≥ 1 by the induction assumption. Hence,

|E1| ≥
∑

i∈2..k+1

|Ai| ≥ k > m

which contradicts |E1| ≤ m. 2

This result differs from the small set intersection lemma [11] in that the latter
demands the intersection of every m + 1 of the l sets not be empty.

Definition 5. Given a constraint network and an ordering of its variables, let
cx be one of the tightest directionally relevant constraints on x and mx be its
tightness. It is dually adaptively consistent if and only if

1) for any variable x whose width is not greater than mx, the directionally
relevant constraints on it are consistent, and

2) for any variable x whose width is greater than mx, cx is consistent with
every other mx directionally relevant constraints on x.



Now, we have the main result of this section.

Theorem 9. Given a constraint network and an ordering of its variables, it is
strongly directionally n-consistent if it is dually adaptively consistent.

Proof. We only need to prove that the network is adaptively consistent: for
any variable x, its directionally relevant constraints DR(x) are consistent on x.
Let S be the variables involved in DR(x). Consider any consistent instantiation ā
of S−{x}. We show that there exists u ∈ Dx such that (ā, u) satisfies constraints
in DR(x). Let l be the number of constraints in DR(x), and let cx be one of
the tightest constraint in DR(x) with tightness mx. For any constraint ci ∈
DR(x)(i : 1..l), let ā’s image on x under ci be Ei. It is sufficient to show

∩i∈1..lEi 6= ∅.

We know cx is consistent with every other mx constraints. Hence, Ex, ā’s image
under cx, intersects with every other mx images of ā. The set intersection lemma
implies that

∩i∈1..lEi 6= ∅.

2

Compared with Theorem 8, this result requires fewer constraints to be con-
sistent by making use of the new property of tightness. For example, assuming
there is a 1-tight constraint in DR(x), Theorem 8 demands every pair of con-
straints in DR(x) be consistent while dually adaptive consistency requires the
1-tight constraint is consistent with every other constraint in DR(x) on x.

Remark on Proper Tightness Dually adaptive consistency can also be
defined by proper m-tightness. However, when we check whether a constraint
network is adaptively consistent, we use m-tightness which is weaker than proper
m-tightness. If a network is not adaptively consistent, we use proper m-tightness
to predict the work needed to enforce adaptive consistency on it because proper
m-tightness is preserved in the enforcing process while m-tightness is not.

When a constraint network is not dually adaptively consistent with respect
to a variable ordering, it can be made so by enforcing the required consistency on
each variable, in the reverse order of the given ordering. To make the procedure
more efficient, we should chose a better variable ordering, depending on both
the topological structure and tightness of the constraints.

Improving Bucket Elimination on Constraint Networks Bucket elim-
ination [3] is an algorithmic framework which unifies the algorithms from tradi-
tional Operations Research, Constraint Networks, Probabilistic Reasoning and
other related fields. In Constraint Networks, it is exactly the adaptive consis-
tency. For a variable x, the fact that we enforce all its directionally relevant
constraints consistent on x, is described as joining (a Database operation of nat-
ural join ) all the constraints (taken as relations) and projecting away x (and
thus eliminating x) in bucket elimination. We know that both time and space
complexity of the join operation is exponential to the number of constraints in-
volved. In terms of dually adaptive consistency, if one of the constraints cx is



m-tight and m is smaller than the number of constraints of concern, we only need
to join cx and every other m constraints and then project away x. An extreme
case is that if a constraint cx is 1-tight, it is sufficient to join cx and every other
constraint of concern, and then project away x. This is not only more efficient,
but also introduces a novel way of variable elimination: We do not eliminate a
variable with respect to a whole bucket of constraints, but eliminate it with respect
to many smaller buckets while achieving the same consistency on all constraints
in the bucket. We also notice that in the process of making a constraint network
dually adaptively consistent, more constraints (with possibly smaller arity) will
be generated than in bucket elimination. In the future, we are interested in work-
ing out where the balance of cost is between bucket elimination and enforcing a
dually adaptive consistency on a network.

Possible Applications Due to the high time and space complexity of bucket
elimination and enforcing dually adaptive consistency on a constraint network,
they may not be directly used to solve any problem, which is also one reason
why we introduce dually adaptive consistency in a declarative, rather than an
algorithmic, way. However, the idea behind them may be useful in speeding
up the search procedure for certain problems. For example, bucket elimination
has inspired some heuristics to solve constraint networks (e.g., [7]). We plan to
investigate whether any improvement can be made by applying dually adaptive
consistency (or even using more semantics than tightness of constraints) to those
problems for which bucket elimination provides promising heuristics.

6 Conclusion

The theme of this paper is to study the impact of the tightness of constraints on
the global consistency of a network. Specifically, the tightness of the constraints
determines the level of local consistency sufficient to guarantee global consis-
tency. Under the concept of k-consistency, to determine the local consistency
ensuring global consistency, we show that it is sufficient to consider only some of
the binary constraints. We also show that a weakly tight constraint network does
need a significant number of constraints to be tight. After studying directional
consistency, we propose a new type of consistency – dually adaptive consistency
– which considers not only the topological structure, but also the tightness of
the constraints in a network. Based on this concept, only the tightest (in a local
sense) constraints or the widths of variables, depending on which are smaller,
determine the local consistency ensuring global consistency.

The tightness of constraints can also be naturally employed to improve the
efficiency of bucket elimination algorithms for constraint networks [3]. We also
note that Pivot consistency proposed by David [1] is a special case of the du-
ally adaptive consistency where 1-tight constraints (functional constraints) are
considered.

The dually adaptive consistency may be helpful where the heuristics from
bucket elimination have shown some promise. Having shown that theoretically
there is a close relationship between the tightness of constraints and global con-



sistency, in the future, we will explore whether the tightness of constraints can
play greater role in solving practical constraint networks.
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