
Journal of Artificial Intelligence Research 27 (2006) 441-464 Submitted 03/06; published 12/06

Set Intersection and Consistency in Constraint Networks

Yuanlin Zhang yzhang@cs.ttu.edu
Department of Computer Science, Texas Tech University
Lubbock, TX 79414 USA

Roland H. C. Yap ryap@comp.nus.edu.sg

Department of Computer Science, National University of Singapore
3 Science Drive 2, Singapore 117543

Abstract

In this paper, we show that there is a close relation between consistency in a constraint
network and set intersection. A proof schema is provided as a generic way to obtain consis-
tency properties from properties on set intersection. This approach not only simplifies the
understanding of and unifies many existing consistency results, but also directs the study
of consistency to that of set intersection properties in many situations, as demonstrated
by the results on the convexity and tightness of constraints in this paper. Specifically,
we identify a new class of tree convex constraints where local consistency ensures global
consistency. This generalizes row convex constraints. Various consistency results are also
obtained on constraint networks where only some, in contrast to all in the existing work,
constraints are tight.

1. Introduction

A constraint network consists of a set of variables over finite domains and a system of
constraints over those variables. An important task is to find an assignment for all the
variables such that all the constraints in the network are satisfied. If such an assignment
exists, the network is satisfiable or globally consistent, and the assignment is called a solution.
The problem of determining the global consistency of a general constraint network is NP-
complete. Usually a search procedure is employed to find a solution. In practice, due
to efficiency considerations, the search is usually equipped with a filtering algorithm that
prunes values of a variable or the combinations of values of a certain number of variables
that cannot be part of any solution. The filtering algorithm can make a constraint network
locally consistent in the sense that a consistent assignment of some variables can always be
extensible to a new variable. An important and interesting question on local consistency is:

Is the local consistency obtained sufficient to determine the global consistency of
the network without further search? As the filtering algorithm is of polynomial
complexity, a positive answer would mean that the network can be solved in
polynomial time.

Much work has been done to explore the relationship between local and global consis-
tency in particular and the properties of local consistency in general. One direction is to
make use of the topological structure of a constraint network. A classical result is that
when the graph of a constraint network is a tree, arc consistency of the network is sufficient
to ensure its global consistency (Freuder, 1982).

c©2006 AI Access Foundation. All rights reserved.

Zhang & Yap

The second direction1 makes use of semantic properties of the constraints. For monotone
constraints, path consistency implies global consistency (Montanari, 1974). Van Beek and
Dechter (1995) generalize monotone constraints to a larger class of row convex constraints.
Dechter (1992) shows that a certain level of consistency in a constraint network whose
domains are of limited size ensures global consistency. Later, Van Beek and Dechter (1997)
study the consistency of constraint networks with tight and loose constraints.

The existing work along the two approaches has used specific and different techniques to
study local and global consistency. In particular, there is little commonality in the details
of the existing work. In much of the existing work, the techniques and consequently the
proofs given are developed specifically for the results concerned.

In this paper, we show how much of this work can be connected together through a
new approach to studying consistency in a constraint network. We unite two seemingly
disparate areas: the study of set intersection on special sets and the study of k-consistency
in constraint networks. In fact, k-consistency can be expressed in terms of set intersection,
which allows one to obtain relationships between local and global consistency in a constraint
network through the properties of set intersection on special sets. The main result of this
approach is a proof schema that can be used to lift results from set intersection, which are
rather general, to particular consistency results on constraint networks. One benefit of the
proof schema lies in that it provides a modular way to greatly simplify the understanding
and proofs of consistency results. This benefit is considerable as often the proofs of many
existing results are complex and “hard-wired”. Using this new approach, we show that
it is precisely the various properties of set intersection that are the key to those results.
Furthermore, the proofs become mechanical.

The following sketch illustrates briefly the use of our approach. One property of set
intersection is that if the intersection of every pair (2) of tree convex sets (see Section 3) is
not empty, the intersection of the whole collection of these sets is not empty too. From this
property, we can see that the local information on the intersection of every pair of sets gives
rise to the global information on the intersection of all sets. Intuitively, this relationship
between the local and global information corresponds to obtaining global consistency from
local consistency. The proof schema is used to lift the result on tree convex sets to the
following consistency result. For a binary constraint network of tree convex constraints,
(2+1)-consistency (path consistency) implies global consistency of the network.

The usefulness of our new set-based approach is twofold. Firstly, it gives a clear picture
of many of the existing results. For example, many well known results in the second direction
based on semantic properties of the constraints (including van Beek & Dechter, 1995, 1997),
as well as results from the first direction, can be shown with easy proofs that make use of
set intersection properties. Secondly, by directing the study of consistency to that of set
intersection properties, it helps improve some of the existing results and derive new results
as demonstrated in sections 5–7.

This paper is organized as follows. In Section 2, we present necessary notations and
concepts. In Section 3, we focus on properties of the intersection of tree convex sets and sets

1. There is a difference between the work concerned here and that studying the tractability of constraint
languages (e.g., Schaefer, 1978; Jeavons, Cohen, & Gyssens, 1997). The latter considers the problems
whose constraints are from a fixed set of relations while the former studies constraint networks with
special properties.

442

Set Intersection and Consistency in Constraint Networks

with cardinality restrictions. In Section 4, we develop a characterization of k-consistency
utilizing set intersection and the proof schema that offers a generic way to obtain consistency
results from set intersection properties. The power of the new approach is demonstrated
by new consistency results on the convexity and tightness of constraints. Tree convex
constraints are studied in Section 5. On a constraint network of tree convex constraints,
local consistency ensures global consistency, as a result of the intersection property of tree
convex sets. The tightness of constraints is studied in Section 6. Thanks to the intersection
properties of sets with cardinality restriction, a relation between local and global consistency
is identified on weakly tight constraint networks in Section 6.1. These networks require only
some, rather than all, constraints to be m-tight, improving the tightness result by van Beek
and Dechter (1997). With the help of relational consistency, we show that global consistency
can be achieved through local consistency on weakly tight constraint networks in Section 6.2.
This type of result on tightness was not known before. In Section 6.3, we explore when
a constraint network is weakly m-tight and present several results about the number of
tight constraints sufficient or necessary for a network to be weakly tight. To make full use
of the tightness of the constraints in a network, we propose dually adaptive consistency
in Section 6.4. Dually adaptive consistency of a constraint network is determined by its
topology and the tightest relevant constraint on each variable. For completeness, we include
in Section 7 results on tightness and tree convexity that are based on relational consistency.
We conclude in Section 8.

2. Preliminaries

A constraint network R is defined as a set of variables N = {x1, x2, . . . , xn}; a set of finite
domains D = {D1, D2, . . . , Dn} where domain Di, for all i ∈ 1..n, is a set of values that
variable xi can take; and a set of constraints C = {cS1 , cS2 , . . . , cSe} where Si, for all i ∈ 1..e,
is a subset of {x1, x2, . . . , xn} and each constraint cSi is a relation defined on the domains
of all variables in Si. Without loss of generality, we assume that, for any two constraints
cSi , cSj ∈ C (i 6= j), Si 6= Sj. The arity of constraint cSi is the number of variables in Si.
For a variable x, Dx denotes its domain. In the rest of this paper, we will often use network
to mean constraint network.

An instantiation of variables Y = {x1, . . . , xj} is denoted by ā = (a1, . . . , aj) where
ai ∈ Di for i ∈ 1..j. An extension of ā to a variable x(/∈ Y) is denoted by (ā, u) where
u ∈ Dx. An instantiation of a set of variables Y is consistent if it satisfies all constraints in
R that do not involve any variables outside Y .

A constraint network R is k-consistent if and only if for any consistent instantiation ā
of any distinct k − 1 variables, and for any new variable x, there exists u ∈ Dx such that
(ā, u) is a consistent instantiation of the k variables. R is strongly k-consistent if and only if
it is j-consistent for all j ≤ k. A strongly n-consistent network is called globally consistent.

For more information on constraint networks and consistency, the reader is referred to
the work by Mackworth (1977), Freuder (1978) and Dechter (2003).

443

Zhang & Yap

3. Properties on Set Intersection

In this section, we develop a number of set intersection results that will be used later to
derive results on consistency. The set intersection property that we are concerned with is:

Given a collection of l finite sets, under what conditions is the intersection of
all l sets not empty?

Here, we are particularly interested in the intersection property on sets with two inter-
esting and useful restrictions: convexity and cardinality.

3.1 Tree Convex Sets

Given a collection of sets, some structures can be associated with the elements of the sets
such that we can obtain interesting and useful set intersection results. Here we study the
sets whose elements form a tree. We first introduce the concept of a tree convex set.

Definition 1 Given a discrete set U and a tree T with vertices U , a set A ⊆ U is tree
convex under T if there exists a subtree of T whose vertices are A.

A subtree of a tree T is a subgraph of T that is a tree. Next we define when we can say
a collection of sets are tree convex.

Definition 2 Given a collection of discrete sets S, let the union of the sets of S be U . The
sets of S are tree convex under a tree T on U if every set of S is tree convex under T .

A collection of sets are said tree convex if there exists a tree such that the sets in the
collection are tree convex under the tree.

(a)

...
..

b c d

a

e

.............
.............

.............
.............

.............
.............

.............
.............

.
............

.............
.............
.............
.............
.............
.............
.............
.................................

....................
...

.........
.........
.........
.........
.........
.........
.........
.........
...........
............

.........
.........
.........
.........
.........
.........
.........
.........
.........
..
........
............

.........
.........
.........
.........
.........
.........
.........
.........
.........
.......................

b

a dc

fe

(b)

..

Figure 1: (a) A tree with nodes {a, b, c, d, e} (b) A partial order with nodes {a, b, c, d, e, f}

Example 1 Consider a set U = {a, b, c, d, e} and a tree given in Figure 1. The subset
{a, b, c, d} is tree convex under the given tree. So is the set {b, a, c, e} since the elements of
the set are a subtree. However, {b, c, e} is not tree convex as its elements do not form a
subtree of the given tree.

Example 2 Consider S = {{1, 9}, {3, 9}, {5, 9}}. If we construct a tree on {1, 3, 5, 9} with
9 being the root and 1, 3, 5 being its children, each set of S covers the nodes of exactly one
branch of the tree. Hence, the sets of S are tree convex.

444

Set Intersection and Consistency in Constraint Networks

Tree convex sets have the following intersection property.

Lemma 1 (Tree Convex Sets Intersection) Given a finite collection of finite sets S,
assume the sets of S are tree convex.

⋂
E∈S

E 6= ∅ iff for all E1, E2 ∈ S, E1
⋂

E2 6= ∅.

Proof. Let l be the number of sets in S, and T a tree such that, for each Ei ∈ S, Ei is
the vertices of a subtree Ti of T . Assuming T is a rooted tree, every Ti (i ∈ 1..l) is a rooted
tree whose root is exactly the node nearest to the root of T . Let ri denote the root of Ti

for i ∈ 1..l.
To prove

⋂
i∈1..l

Ei 6= ∅, we want to show the intersection of the trees {Ti | i ∈ 1..l} is not

empty. The following propositions on subtrees are necessary in our main proof.

Proposition 1 Let T1, T2 be two subtrees of a tree T , and T = T1 ∩ T2. T is a tree.

If T = ∅, it is a trivial tree. Now let T 6= ∅. Since T is a portion of T1, there is no circuit in
it. It is only necessary to prove T is connected. That is to show, for any two nodes u, v ∈ T ,
there is a path between them. u, v ∈ T1 and u, v ∈ T2 respectively imply that there exist
paths P1 : u, . . . , v in T1 and P2 : u, . . . , v in T2 respectively. Recall that there is a unique
path from u to v in T and that T1 and T2 are subtrees of T . Therefore, P1 and P2 cover
the same nodes and edges, and thus they are in T , the intersection of T1 and T2. P1 is the
path we want.

Proposition 2 Let T1, T2 be two subtrees of a tree T , and T = T1 ∩ T2. T is not empty if
and only if at least one of the roots of T1 and T2 is in T .

Let r1 and r2 be the roots of T1 and T2 respectively. If r1 ∈ T , the proposition is correct.
Otherwise, we show r2 ∈ T . Assume the contrary r2 /∈ T . Clearly, r1 6= r2. Let r be the
first common ancestor of r1 and r2 and v the root of T (T is a tree by Proposition 1). We
have paths P1 : r1, . . . , v in T1; P2 : r2, . . . , v in T2; and P3 : r, . . . , r1, and P4 : r, . . . , r2 in
T . Since v is a descendant of both r1 and r2, P1 and P2 share only the vertex v. Since r is
the first common ancestor of r1 and r2, P3 and P4 share only the vertex r. It can also be
verified that P3 and P1 share only r1, P2 and P4 share only r2, and no vertex is shared by
either P1 and P4 or P2 and P3. Hence, the closed walk P3P1P

′
2P

′
4, where P ′

2 and P ′
4 are the

reverse of P2 and P4 respectively, is a simple circuit. It contradicts that there is no circuit
in T .

Further, we have the following observation.

Proposition 3 Let T be a tree with root r, and T1 and T2 two subtrees of T with roots r1

and r2 respectively. Let r1 be not closer to r than r2, and T the intersection of T1 and T2.
r1 is the root of T if T is not empty.

The proposition is true if r1 = r2. Now let r1 be farther to r than r2. Clearly r2 /∈ T1 and
thus r2 /∈ T . By Proposition 2, r1 is the root of T .
Let T =

⋂
i∈1..l

Ti. We are ready now to prove our main result T 6= ∅. Select a tree Tmax from

T1, T2, . . . , Tl such that its root rmax is the farthest away from r of T among the roots of

445

Zhang & Yap

the concerned trees. In accordance with Proposition 3, that Tmax intersect with every other
tree implies that rmax is a node of every Ti (i ∈ 1..l). Therefore, rmax ∈ T . 2

Remark. A partial order can be represented by an acyclic directed graph. It is tempt-
ing to further generalize tree convexity to partial convexity in the following way.

Given a set U and a partial order on it, a set A ⊂ U is partially convex if and only if A
is the set of nodes of a connected subgraph of the partial order. Given a collection of sets S,
let the union of the sets of S be U . The sets of S are partially convex if there is a partial
order on U such that every set of S is partially convex under the partial order.

However, with this generalization, we can not get a result similar to Lemma 1, which
is illustrated by the following example. Consider three sets {c, b, d}, {d, f, a} and {a, e, c}
that are the nodes of the diagram given in Figure 1(b). These sets are partially convex and
intersect pairwise. However, the intersection of all three sets is empty.

3.2 Sets with Cardinality Restrictions

Another useful restriction that we will place on sets is to restrict their cardinalities. As a
special case, consider a set with only one element a. If its intersection with every other set
is not empty, we are able to conclude that every set contains a, and thus the intersection of
all the sets is not empty. Generally, if a set has at most m elements, we have the following
result.

Lemma 2 Consider a finite collection of l sets S={E1, E2, . . . , El} and a number m < l.
Assume one set E1 ∈ S has at most m elements.⋂

E∈S
E 6= ∅

iff the intersection of E1 and any other m sets of S is not empty.

Proof. The necessary condition is immediate.
To prove the sufficient condition, we show that the intersection of E1 and any other

k (m ≤ k ≤ l − 1) sets of S is not empty by induction on k. When k = m, the lemma
is true according to its assumption. Assuming that the intersection of E1 and any other
k − 1 (≥ m) sets of S is not empty, we show that the intersection of E1 and any other k
sets of S is not empty. Without loss of generality, the subscripts of the k sets are numbered
from 2 to k +1. For 2 ≤ i ≤ k +1, let Ai be the intersection of E1 and the k sets except Ei:

Ai = E1 ∩ . . . ∩ Ei−1 ∩ Ei+1 ∩ . . . ∩ Ek+1.

First, we show by contradiction that there exist some i, j ∈ 2..k + 1, i 6= j such that
Ai ∩Aj 6= ∅. Assume Ai ∩Aj = ∅ for all distinct i and j. According to the construction of
Ai’s,

E1 ⊇
⋃

i∈2..k+1

Ai,

446

Set Intersection and Consistency in Constraint Networks

and |Ai| ≥ 1 by the induction assumption. Hence,

|E1| ≥
∑

i∈2..k+1

|Ai| ≥ k > m,

which contradicts |E1| ≤ m.
Since Ai ∩Aj 6= ∅ for some i, j ∈ 2..k + 1, i 6= j,

Ai ∩Aj =
⋂

i∈1..k+1

Ei 6= ∅.

2

This lemma leads to the following corollary where the intersection of every m + 1 sets
is not empty.

Corollary 1 (Small Set Intersection) Consider a finite collection of l sets S and a
number m < l. Assume one set of S has at most m elements.⋂

E∈S
E 6= ∅

iff the intersection of any m + 1 sets of S is not empty.

There are other specialized versions (Zhang & Yap, 2003) of Lemma 2 on which some
existing works by van Beek and Dechter (1997) and David (1993) are based.

When the sets of concern have a cardinality larger than a certain number, the intersection
of these sets is not empty under some conditions. The reader may refer to the Large Sets
Intersection lemma (Zhang & Yap, 2003) for more details.

4. Set Intersection and Consistency

In this section, we first relate consistency in constraint networks to set intersection. Using
this result, we present a proof schema that allows us to study the relationship between local
and global consistency from the properties of set intersection.

Underlying the concept of k-consistency is whether an instantiation of some variables
can be extended to a new variable such that all relevant constraints on the new variable are
satisfied. A relevant constraint on a variable xi with respect to Y is a constraint that contains
only xi and some variables of Y . Given an instantiation of Y , each relevant constraint allows
a set (possibly empty) of values for the new variable. We call this set an extension set. The
satisfiability of all relevant constraints depends on whether the intersection of their extension
sets is non-empty (see Lemma 3).

Definition 3 Given a constraint cSi, a variable x ∈ Si, and any instantiation ā of Si−{x},
the extension set of ā to x with respect to cSi is defined as

Ei,x(ā) = {b ∈ Dx | (ā, b) satisfies cSi}.

An extension set is trivial if it is empty; otherwise it is non-trivial.

447

Zhang & Yap

Recall that Dx refers to the domain of variable x. Throughout the paper, it is often
the case that an instantiation ā of S − {x} is already given, where S − {x} is a superset
of Si − {x}. Let b̄ be the instantiation obtained by restricting ā to the variables only in
Si−{x}. For ease of presentation, we continue to use Ei,x(ā), rather than Ei,x(b̄), to denote
the extension of b̄ to x under constraint cSi . To make the presentation easy to follow, some
of the three parameters i, ā, and x may be omitted from an expression hereafter whenever
they are clear from the context. For example, given an instantiation ā and a new variable
x, to emphasize different extension sets with respect to different constraints cSi , we write
Ei instead of Ei,x(ā) to simply denote an extension set.

Example 3 Consider a network with variables {x1, x2, x3, x4, x5}:

cS1 = {(a, b, d), (a, b, a)}, S1 = {x1, x2, x3};
cS2 = {(b, a, d), (b, a, b)}, S2 = {x2, x4, x3};
cS3 = {(b, d), (b, c)}, S3 = {x2, x3};
cS4 = {(b, a, d), (b, a, a)}, S4 = {x2, x5, x3};

D1 = D4 = D5 = {a}, D2 = {b}, D3 = {a, b, c, d}.

Let ā = (a, b, a) be an instantiation of variables Y = {x1, x2, x4}. The relevant constraints
to x3 are cS1, cS2, and cS3. cS4 is not relevant since it contains x5 outside Y . The extension
sets of ā to x3 with respect to the relevant constraints are:

E1(ā) = {d, a}, E2(ā) = {d, b}, E3(ā) = {d, c}.

The intersection of the extension sets above is not empty, implying that ā can be extended
to satisfy all relevant constraints cS1 , cS2 and cS3.

Let ā = (b, c) be an instantiation of {x2, x3}. E1,x1(ā) = ∅ and thus it is trivial. In
other words, with a trivial extension set, an instantiation can not be extended to satisfy the
constraint of concern.

The relationship between k-consistency and set intersection is characterized by the fol-
lowing lemma.

Lemma 3 (Set Intersection and Consistency; Lifting) A constraint network R is k-
consistent if and only if for any consistent instantiation ā of any (k − 1) distinct variables
Y = {x1, x2, . . . , xk−1}, and any new variable xk,⋂

j∈1..l

Eij 6= ∅

where Eij is the extension set of ā to xk with respect to cSij
, and cSi1

, . . . , cSil
are all relevant

constraints.

Proof. It follows directly from the definition of k-consistency in Section 2 and the
definition of extension set. 2

The insight behind this lemma is to examine consistency from the perspective of set
intersection.

448

Set Intersection and Consistency in Constraint Networks

Example 4 Consider again Example 3. We would like to check whether the network is 4-
consistent. Consider the instantiation ā of Y again. This is a trivial consistent instantiation
since the network doesn’t have a constraint among the variables in Y . To extend it to x,
we need to check the first three constraints cS1 to cS3. The extension is feasible because
the intersection of E1, E2, and E3 is not empty. We show the network is 4-consistent, by
exhausting all consistent instantiations of any three variables. Conversely, if we know the
network is 4-consistent, we can immediately say that the intersection of the three extension
sets of ā to x is not empty.

The usefulness of this lemma is that it allows consistency information to be obtained from
the intersection of extension sets, and vice versa. With this point of view of consistency as
set intersection, some results on set intersection properties, including all those in Section 3,
can be lifted to get various consistency results for a constraint network through the following
proof schema.

Proof Schema
1. (Consistency to Set) From a certain level of consistency in the constraint network,

we derive information on the intersection of the extension sets by Lemma 3.
2. (Set to Set) From the local intersection information of sets, information may be

obtained on intersection of more sets.
3. (Set to Consistency) From the new information on intersection of extension sets,

higher level of consistency is obtained by Lemma 3.
4. (Formulate conclusion on the consistency of the constraint network). 2

In the proof schema, step 1 (consistency to set), step 3 (set to consistency), and step 4 are
straightforward in many cases. So, Lemma 3 is also called the lifting lemma because once we
have a set intersection result (step 3), we can easily have consistency results on a network
(step 4). The proof schema establishes a direct relationship between set intersection and
consistency properties in a constraint network.

In the following sections, we demonstrate how the set intersection properties and the
proof schema are used to obtain new results on the consistency of a constraint network.

5. Global Consistency of Tree Convex Constraints

The notion of extension set plays the role of a bridge between the restrictions to set(s) and
properties of special constraints. In this section, we consider the constraints arising from
tree convex sets (Lemma 1). A constraint is tree convex if all the extension sets with respect
to the constraint are tree convex.

Definition 4 A constraint cS is tree convex with respect to xi and a tree Ti on Di if and
only if the sets in

A = {ES,xi | ES,xi is a non-trivial extension of some instantiation of S − {xi}}

are tree convex under Ti. A constraint cS is tree convex under a tree T on the union of the
domains of the variables in S, if it is tree convex with respect to every x ∈ S under T .

Example 5 Tree convex constraints can occur where there is a relationship among the
values of a variable. Consider the constraint on the accessibility of a set of facilities by a

449

Zhang & Yap

set of persons. The personnel include a network engineer, web server engineer, application
engineer, and a team leader. The relationship among the staff is that the team leader
manages the rest, which forms a tree structure shown in Figure 2(b). There are different
accessibilities to a system which includes basic access, access to the network routers, access
to the web server, and access to the file server. In order to access the routers and servers,
one has to have the basic access right, implying a tree structure (Figure 2(c)) on the access
rights. The constraint is that the team leader is able to access all the facilities while each
engineer can access only the corresponding facility (e.g., the web server engineer can access
the web server). This tree convex constraint is shown in Figure 2(a) where the rows are
named by the initials of the engineers and the columns by the initials of the access rights. The
tree on the union of personnel and the accessibilities can be obtained from their respective
trees (in Figure 2(b) and (c)) by adding an edge, say between web server and leader. Note
that the constraint in Figure 2(a) is not row convex.

r w f b
n * *
w * *
a * *
l * * * * application

engineer
network

engineer
web

engineer

leader

fileweb
server serverrouters

basic access

(a) (b) (c)

Figure 2: A tree convex constraint between accessibilities and staffs

Example 6 Tree convex constraints can also be used to model some scene labeling problems
naturally as shown by Zhang and Freuder (2004).

Definition 5 A constraint network is tree convex if there exists a tree T on the union of
all its variable domains such that all constraints are tree convex under T .

Tree convex constraints generalize row convex constraints introduced by van Beek and
Dechter (1995).

Definition 6 A constraint cS is row convex with respect to x if and only if the sets in

A = {ES,x | ES,x is a non-trivial extension of some instantiation of S − {x}}

are tree convex under a tree where any node has at most one child. Such a tree is called a
total ordering. A constraint cS is row convex if, under a total ordering on the union of the
involved domains, it is row convex with respect to every x ∈ S.

Example 7 For the constraint c in Example 5 to be row convex, b (basic access) has to be
the neighbor of r (routers), w (web server), and f (file server). However, in a total ordering,
a value can be the neighbor of at most two other values. Hence, c is not row convex but is
tree convex.

By the property of set intersection on tree convex sets and the proof schema, we have
the following consistency results on tree convex constraints.

450

Set Intersection and Consistency in Constraint Networks

Theorem 1 (Tree Convexity) Let R be a network of constraints with arity at most r
and strongly 2(r − 1) + 1 consistent. If R is tree convex then it is globally consistent.

Proof. The network is strongly 2(r − 1) + 1 consistent by assumption. We prove that
the network is k consistent for any k ∈ {2r, . . . , n}.

Consider any instantiation ā of any k − 1 variables and any new variable x. Let the
number of relevant constraints be l. For each relevant constraint, there is one extension set
of ā to x. So, we have l extension sets. If the intersection of all l sets is not empty, we have
a value for x such that the extended instantiation satisfies all relevant constraints.

(Consistency to Set) Consider any two of the l extension sets: E1 and E2. The two
corresponding constraints involve at most 2(r−1)+1 variables since the arity of a constraint
is at most r and each of the two constraints has x as a variable. By the consistency lemma,
that R is (2(r − 1) + 1)-consistent implies that the intersection of E1 and E2 is not empty.

(Set to Set) Since all relevant constraints are tree convex under the given tree, the
extension sets of ā to x are tree convex. Henceforth, the fact that every two of the extension
sets intersect shows that the intersection of all l extension sets is not empty, by the tree
convex sets intersection lemma.

(Set to Consistency) From the consistency lemma, we have that R is k-consistent. 2

Since a row convex constraint is tree convex, this result generalizes the consistency result
on row convex constraints reported by van Beek and Dechter (1995). It is interesting to
observe that the latter can be lifted from a set intersection results on convex sets (Zhang
& Yap, 2003).

A question raised by Theorem 1 is how efficient it is to check whether a constraint
network is tree convex. Yosiphon (2003) has proposed an algorithm to recognize a tree
convex constraint network in polynomial time.

6. Consistency and the Tightness of Constraints

In this section, we will present various consistency results on the networks with m-tight
constraints.

6.1 Global Consistency on Weakly Tight Networks

The tightness of constraints has been related to the consistency of a constraint network
by van Beek and Dechter (1997). The m-tightness of a constraint is characterized by the
cardinality of the extension sets in the following way.

Definition 7 (van Beek & Dechter, 1997) A constraint cSi is m-tight with respect to x ∈ Si

iff for any instantiation ā of Si − {x},

|Ei,x| ≤ m or |Ei,x| = |Dx|.

A constraint cSi is m-tight iff it is m-tight with respect to every x ∈ Si.

Given an instantiation, if its extension set with respect to x is the same as the domain
of variable x, i.e., |Ei,x| = |Dx|, the instantiation is supported by all values of x and thus
easy to be satisfiable. Hence, in the definition above, these instantiations do not affect the
m-tightness of a constraint.

451

Zhang & Yap

b
........
........
........
........
.........
.........
..........
...........

...

...........
..........
.........
.........
........
........
........
........
.......

..

.................................
.................................

.................................
.................................

.................................
...................

..

.........................
.........................

.........................
.........................

.........................
.........................

.........................
..............a a

b

cc

x y

........

........

........

........
........
.........
.........
..........
...........

...

...........
..........
.........
.........
........
........
........
........
.......

Figure 3: The constraint cxy is 2-tight or 3-tight

Example 8 Consider the constraint cxy in Figure 3 where Dx = Dy = {a, b, c}. An edge
in the graph denotes that its ends are allowed by cxy. It can be verified that for the values
of x, their extension sets have a cardinality of 2, and for values of y, their extension sets
have a cardinality from 1 to 3. Hence, cxy can be said 2-tight or 3-tight but not 1-tight.

We are specially interested in the following tightness.

Definition 8 A constraint cSi is properly m-tight with respect to x ∈ Si iff for any instan-
tiation ā of Si − {x},

|Ei,x| ≤ m.

A constraint cSi is properly m-tight iff it is properly m-tight with respect to every x ∈ Si.

A constraint is m-tight if it is properly m-tight. The converse might not be true. For
example, the constraint x ≤ y, where x ∈ {1, 2, . . . , 10} and y ∈ {1, 2, . . . , 10}, is 9-tight
but not properly 9-tight. It is properly 10-tight since |Ex(10)| = 10 when y = 10.

Next, we define a special constraint network which allows us to make a more accurate
connection between the tightness of constraints and the consistency of the network.

Definition 9 A constraint network is weakly m-tight at level k iff for every set of variables
{x1, x2, . . . , xl}(k ≤ l < n) and a new variable x, there exists a properly m-tight constraint
among the relevant constraints on x with respect to {x1, x2, . . . , xl}.

y2y1

y3 y4

(b)

x1 x2

x3 x4

(a)

Figure 4: Two constraint networks. A thin edge represents a properly m-tight constraint
while a thick one represents a non properly m-tight constraint

452

Set Intersection and Consistency in Constraint Networks

Example 9 The network in Figure 4(a) is weakly tight at level 3 because for any three
variables and a fourth variable, one of the relevant constraints is properly m-tight. The
network in Figure 4(b) is not weakly tight at level 3 since for {y1, y3, y4} and y2, none of
the relevant constraints cy1y2 and cy4y2 is properly m-tight.

By the small set intersection corollary (Corollary 1), we have the following consistency
result on a weakly m-tight network.

Theorem 2 (Weak Tightness) If a constraint network R with constraints of arity at
most r is strongly ((m+1)(r−1)+1)-consistent and weakly m-tight at level ((m+1)(r−1)+1),
it is globally consistent.

Proof. Let j = (m+1)(r−1)+1. The constraint networkR will be shown to be k-consistent
for all k (j < k ≤ n).

Let Y = {x1, . . . , xk−1} be a set of any k − 1 variables, and ā be an instantiation of
all variables in Y . Consider any additional variable xk. Without loss of generality, let the
relevant constraints be cS1 , . . . , cSl

, and Ei be the extension set of ā to xk with respect to
cSi for i ≤ l.

(Consistency to Set) Consider any m + 1 of the l extension sets. All the corresponding
m + 1 constraints contain at most (m + 1)(r − 1) + 1 variables including xk. Since R is
((m+1)(r−1)+1)-consistent, by the set intersection and consistency lemma, the intersection
of the m + 1 extension sets is not empty.

(Set to Set) The network is weakly m-tight at level ((m + 1)(r− 1) + 1). So, there must
be a properly m-tight constraint among the relevant constraints cS1 , . . . , cSl

. Let it be cSi .
We know its extension set |Ei| ≤ m. Since the intersection of every m + 1 of the extension
sets is not empty, all l extension sets share a common element by the small set intersection
corollary.

(Set to Consistency) By the lifting lemma, R is k-consistent. 2

In a similar fashion, the main tightness result by van Beek and Dechter (1997), where
all the constraints are required to be m-tight, can be lifted from the small sets intersection
corollary by Zhang and Yap (2003). This uniform treatment of lifting set intersection results
to consistency results is absent from the existing works (e.g., Dechter, 1992; van Beek &
Dechter, 1995, 1997; David, 1993).

The tightness result by van Beek and Dechter (1997) requires every constraint to be
m-tight. The weak tightness theorem, on the other hand, does not require all constraints
to be properly m-tight. The following example illustrates this difference.

Example 10 For a weakly m-tight network, we are interested in its topological structure.
Thus we have omitted the domains of variables here. Consider a network with five variables
labeled {1, 2, 3, 4, 5}. In this network, for any pair of variables and for any three variables,
there is a constraint. Assume the network is already strongly 4-consistent.

Since the network is already strongly 4-consistent, we can simply ignore the instantiations
with less than 4 variables. This is why we introduce the level at which the network is weakly
m-tight. The interesting level here is 4. Table 1 shows the relevant constraints for each
possible extension of four instantiated variables to the other one. In the first row, 1234 → 5

453

Zhang & Yap

Extension Relevant constraints
1234 → 5, 125*, 135 , 145 , 235, 245, 345, 15+, 25 , 35 , 45
2345 → 1, 231 , 241 , 251*, 341, 351, 451, 21 , 31 , 41 , 51+
3451 → 2, 132 , 142 , 152*, 342, 352, 452, 12 , 32+, 42 , 52
4512 → 3, 123 , 143*, 153 , 243, 253, 453, 13 , 23+, 43 , 53
5123 → 4, 124 , 134*, 154 , 234, 254, 354, 14 , 24 , 34+, 54

Table 1: Relevant constraints in extending an instantiation of four variables to a new vari-
able

stands for extending the instantiation of variables {1, 2, 3, 4} to variable 5. Entries in its
second column denote a constraint. For example, 125 denotes c125. If the constraints on
{1, 2, 5} and {1, 3, 4} (suffixed by * in the table) are properly m-tight, the network is weakly
m-tight at level 4. Alternatively, if the constraints {1, 5}, {2, 3} and {3, 4} (suffixed by +)
are properly m-tight, the network will also be weakly m-tight. The tightness result by van
Beek and Dechter (1997) requires all binary and ternary constraints to be m-tight.

6.2 Making Weakly Tight Networks Globally Consistent

Consider the weak tightness theorem in the previous section. Generally, a weakly m-tight
network might not have the level of local consistency required by the theorem. It is tempting
to enforce such a level of consistency on the network to make it globally consistent. However,
this procedure may result in constraints with higher arity.

Example 11 Consider a network with variables {x, x1, x2, x3}. Let the domains of x1, x2, x3

be {1, 2, 3}, the domain of x be {1, 2, 3, 4}, and the constraints be that all the variables should
take different values: x 6= x1, x 6= x2, x 6= x3, x1 6= x2, x1 6= x3, x2 6= x3. This network is
strongly path consistent. In checking the 4-consistency of the network, we know that the
instantiation (1, 2, 3) of {x1, x2, x} is consistent but can not be extended to x3. To en-
force 4-consistency, it is necessary to introduce a ternary constraint on {x1, x2, x} to make
(1, 2, 3) no longer a valid instantiation.

To make the new network globally consistent, the newly introduced constraints with
higher arity may in turn require higher local consistency in accordance with Theorem 2.
Therefore, it is difficult to predict an exact level of consistency (variable based) to enforce
on the network to make it globally consistent.

In this section, relational consistency will be used to make a constraint network globally
consistent.

Definition 10 (van Beek & Dechter, 1997) A constraint network is relationally m-consistent
iff given (1) any m distinct constraints cS1 , . . . , cSm, and (2) any x ∈ ∩m

i=1Si, and (3) any
consistent instantiation ā of the variables in (∪m

i=1Si − {x}), there exists an extension of
ā to x such that the extension is consistent with the m relations. A network is strongly
relationally m-consistent if it is relationally j-consistent for every j ≤ m.

454

Set Intersection and Consistency in Constraint Networks

Variables are no longer of concern in relational consistency. Instead, constraints are the
basic unit of consideration. Intuitively, relational m-consistency concerns whether all m
constraints agree at every one of their shared variables. It makes sense because different
constraints interact with each other exactly through the shared variables.

Relational 1-, and 2-consistency are also called relational arc, and path consistency,
respectively.

Using relational consistency, we are able to obtain global consistency by enforcing local
consistency on the network.

Proposition 4 The weak m-tightness at level k of a constraint network is preserved by the
process of enforcing relational consistency on the network.

Proof. Let R be the constraint network before relational consistency enforcing and R1

the network after consistency enforcing. Clearly, R and R1 have the same set of variables.
Consider any set of variables {x1, x2, . . . , xl} (k ≤ l < n) and a new variable x. Since
R is weakly m-tight at level k, there exists a properly m-tight constraint c among the
relevant constraints on x with respect to {x1, x2, . . . , xl}. Enforcing relational consistency
on a constraint network will only tighten a constraint. So, the proper m-tightness of c is
preserved. Hence, R1 is weakly m-tight at level k. 2

Now we have the main result of this subsection.

Theorem 3 A constraint network weakly m-tight at level (m + 1)(r − 1) + 1, where r is
the maximal arity of the constraints of the network, is globally consistent after it is made
strongly relationally (m + 1)-consistent.

Proof. By Proposition 4, the network is still weakly m-tight at (m+1)(r− 1)+1 after
enforcing strong relational (m + 1)-consistency on it. Let r1 be the maximal arity of the
constraints of the new network after consistency enforcing. Clearly, r1 ≥ r. So, the network
is m-tight at (m + 1)(r1 − 1) + 1 by Proposition 6. The theorem follows immediately from
Theorem 8 in Section 7. 2

The implication of this theorem is that as long as we have certain properly m-tight con-
straints on certain combinations of variables, the network can be made globally consistent
by enforcing relational (m + 1)-consistency.

We have the following observation on the weak m-tightness of a network.

Proposition 5 A constraint network is weakly m-tight at any level if the constraint between
every two variables in the network is properly m-tight.

Proof. Consider any level k, any set of variables Y = {x1, x2, . . . , xl}(k ≤ l ≤ n), and
any new variable x /∈ Y . Since the constraint between any two variables is properly m-tight,
the constraint c{x1,x} on x1 and x is properly m-tight. Therefore, there is a properly m-tight
constraint c{x1,x} among the relevant constraints after an instantiation of Y . 2

This observation shows that the proper m-tightness of the constraints on every two
variables is sufficient to determine the level of local consistency needed to ensure global
consistency of a constraint network.

Remark. Proposition 5 assumes there is a constraint between every two variables. If
there is no constraint between some two variables, a universal constraint is introduced. In

455

Zhang & Yap

this case, we can enforce path consistency on the constraint network to make the binary
constraints tighter so that lower level of relational consistency is needed to make the network
globally consistent.

6.3 Properties of Weakly Tight Constraint Networks

Since for a weakly m-tight constraint network global consistency can be achieved through
local consistency, it is interesting and important to investigate the conditions for a network
to be weakly m-tight. Although Proposition 5 shows a sufficient condition, it requires every
binary constraint be tight. As we can see from Example 9(a), the required number of
tight constraints for a constraint network to be weakly tight can be further reduced. This
subsection is focused on the understanding of the relationship between the number of tight
constraints and the weak tightness of a constraint network.

There is a strong relationship among different levels of weak tightness in a network.

Proposition 6 If a constraint network is weakly m-tight at level k for some m, it is weakly
m-tight at any level j > k.

Proof. For any j > k, we prove that the network is weakly tight at level j. That is, for
any set of variables Y = {x1, . . . , xj}(k ≤ j < n) and a new variable x, we show that there
exists an m-tight relevant constraint on x with respect to Y . Since the network is weakly
tight for k < j, there exists an m-tight relevant constraint on x with respect to a subset of
Y . This constraint is still relevant on x with respect to Y , and thus the one we look for. 2

In the following, we present two results on sufficient conditions for a constraint network
to be weakly m-tight.

Theorem 4 Given a constraint network (V,D,C) and a number m, if for every x ∈ V ,
there are at least n− 2 properly m-tight binary constraints on it, then the network is weakly
m-tight at level 2.

Proof. For any two variables {x, y} and a third variable z, the relevant constraints
on z with respect to {x, y} are cxz and cyz. We know that the number of relevant binary
constraints on z with respect to V is n− 1. That n− 2 of them are properly m-tight means
either cxz or cyz must be properly m-tight. 2

In fact, for the weak tightness at a higher level, we need fewer constraints to be m-tight
as shown by the following result.

Theorem 5 A constraint network (V,D,C) is weakly m-tight at level k if for every x ∈ V ,
there are at least n− k properly m-tight binary constraints on it.

Proof. For any set Y of k variables and a new variable z, we show that there is a
properly m-tight relevant constraint on z with respect to Y . Otherwise, none of the k
binary constraints on z is properly m-tight. Since the total number of the relevant binary
constraints on z is n− 1, the number of properly m-tight binary constraints on z is at most
(n−1)−k, which contradicts that z is involved in n−k properly m-tight binary constraints.
2

456

Set Intersection and Consistency in Constraint Networks

This result reveals that for a constraint network to be weakly tight at level k, it could
need as few as n(n− k + 1)/2 properly m-tight binary constraints, in contrast to the result
in Theorem 3 where all binary constraints are required to be properly m-tight.

An immediate question is: What is the minimum number of m-tight constraints required
for a network to be weakly tight? It can be answered by the following result on weak
tightness at level 2.

Theorem 6 Given a number m, for a constraint network to be weakly m-tight at level 2,
it needs at least

n(n− 1)/2− 2bn/3c if n = 0, 1 (mod 3)

or otherwise
(n− 2)(3n− 1)/6

m-tight binary or ternary constraints.

Proof. Given a network, its weak m-tightness at level 2 depends on the tightness
of only binary and ternary constraints. Among all weakly m-tight (at level 3) constraint
networks with n variables, let R1 be the network that has a minimal set of properly m-tight
binary and ternary constraints.

In the following exposition, a constraint is denoted by its scope. For example, we
use {u, v, w} and {u, v} to denote ternary constraint c{u,v,w} and binary constraint cuv

respectively. A constraint is non-properly-m-tight if it is not properly m-tight.
The proof consists of three steps.
Step 1. While preserving the weak m-tightness of R1 and the number of properly m-

tight constraints in R1, we modify, if necessary, the proper m-tightness of some constraints
in R1 such that, for any properly weak m-tight constraint {u, v, w}, none of the binary
constraints {u, v}, {v, w}, and {u, w} is properly m-tight.

To modify the proper m-tightness of a constraint c in R1 is to remove c from the network
and introduce a new constraint on the same set of variables of c with the desirable proper
m-tightness.

We claim that, for any properly m-tight constraint {u, v, w}, at most one of {u, v},
{v, w}, and {u, w} is properly m-tight. Otherwise, at least two of them are properly m-
tight, which means {u, v, w} can be modified to be not properly m-tight, contradicting the
minimality of the number of properly m-tight constraints in R1.

Assume {u, v} is properly m-tight. Since {u, v, w} is properly m-tight, there should be
a reason for {u, v} to be properly m-tight. The only reason is that there exists another
variable z such that one of {u, z} and {v, z} is not properly m-tight, and {u, v, z} is not
properly m-tight, too. See Figure 5. Without loss of generality, let {u, z} be properly m-
tight, implying that the constraint {v, z} is not properly m-tight. The constraint {z, v, w}
is properly m-tight because {v, z} and {v, w} are not properly m-tight.

Now we modify the constraints {u, v, w} and {z, v, w} to be not properly m-tight and
modify the constraints {z, v} and {v, w} to be properly m-tight. This modification preserves
the number of properly m-tight constraints in R1 and the weak m-tightness of R1.

Step 2. While preserving the weak m-tightness ofR1 and the number of properly m-tight
constraints in R1, we next modify, if necessary, the proper m-tightness of the constraints
in R1 such that no two properly m-tight ternary constraints share any variables.

457

Zhang & Yap

...........................
.....

...........................
.....

.............
........
.........
.........
...........

..............
...
.............
..........
.........
.........
........
......

.......................................

......................................

...............
...

...

.....................
.....................

.....................
.....................

.....................
..............

...............

u

vw

z

Figure 5: The circle represents the properly m-tight ternary constraint {u, v, w}. An edge
between two variables indicates a binary constraint. A tick besides an edge means
it is properly m-tight while a cross means it is not.

Case 1: Two properly m-tight constraints {u, v, w} and {u, v, z} share two variables
{u, v}. See Figure 6(a). Since {w, u} and {u, z} are not properly m-tight (in terms of step
1), {w, u, z} has to be properly m-tight. Since {w, v} and {v, z} are not m-tight, {w, v, z}
has to be m-tight.

We modify the four ternary constraints to be not properly m-tight and modify the four
binary constraints {w, u}, {u, z}, {z, v} and {v, w} to be properly m-tight. This preserves
the weak m-tightness of R1 and the number of properly m-tight constraints in R1.

w

x

u

y

v

v

z

w

z

(a) (b)

w w

u vu

x

vu

y

Figure 6: A dotted ellipse together with the three variables inside it represents a ternary
constraint. (a) Left: Two ternary constraints share two variables {u, v}. Right:
The ternary constraints have to be properly m-tight. (b) Left: Two ternary
constraints share one variable w. Right: The ternary constraints have to be
properly m-tight.

Case 2: Two properly m-tight constraints {u, v, w}, and {w, x, y} share one variable
w. Since {u, w} and {w, x} are not properly m-tight, {u, w, x} has to be properly m-tight.
Since {v, w} and {w, y} are not properly m-tight, {v, w, y} has to be properly m-tight.
Similarly, {u, w, y} and {v, w, x} have to be properly m-tight. Now, if we modify the four
binary constraints {u, w}, {w, x}, {v, w}, and {w, y} to be properly m-tight and the six
ternary constraints to be non-properly-m-tight, the new network is still weakly m-tight
with fewer m-tight constraints. This contradicts the minimality of the number of properly
m-tight constraints in R1. Hence, case 2 is not possible.

Step 3. As a result of the first two steps, in the network R1, the scopes of the properly
m-tight ternary constraints are disjoint, and the binary constraint between any two variables
of a properly m-tight ternary constraint is not properly m-tight.

458

Set Intersection and Consistency in Constraint Networks

Let B (and T respectively) be the set of the properly m-tight binary (and ternary
respectively) constraints of R1.

Assume |T | = k. Since it is difficult to count B, we count the maximum number of
non-properly-m-tight binary constraints in R1. We have 3k non-properly-m-tight binary
constraints due to T . We should not have any non-properly-m-tight binary constraints
between a variable in T and a variable outside T . Let V ′ be the variables outside T . We
have |V ′| = n− 3k. The other non-properly-m-tight constraints fall only between variables
in V ′. Since R1 is weakly tight at level 2, there is no two non-properly-m-tight constraints
on any variable in V ′. Hence, there are at most (n−3k)/2 non-properly-m-tight constraints
if n− 3k is even, and otherwise at most (n− 3k− 1)/2 ones. So the number, denoted by δ,
of the properly m-tight constraints in R1 would be the sum of the cardinality of T and B:

δ = k + (n(n− 1)/2− 3k − b(n− 3k)/2c) = n(n− 1)/2− 2k − b(n− 3k)/2c.

The fact that δ is minimal implies that k should be maximized. If n is a multiple of 3, the
number of properly m-tight constraints is n(n− 1)/2− 2n/3; if n is 1 more than a multiple
of 3, the number is n(n− 1)/2− 2(n− 1)/3; otherwise the number is (n− 1)(3n− 1)/6. 2

This result shows that under the concept of k-consistency we still need a significant
number of constraints to be properly m-tight to predict the global consistency of a network
in terms of constraint tightness.

6.4 Dually Adaptive Consistency

A main purpose of our characterization of weak m-tightness of a network is to help identify a
consistency condition under which a solution of a network can be found without backtrack-
ing, i.e., efficiently. We have studied constraint tightness under the concept of k-consistency
in the previous subsections. In this subsection, we introduce dually adaptive consistency to
achieve backtrack free search by taking into account both the tightness of constraints and
the topological structure of a network.

The idea of adaptive consistency (Dechter & Pearl, 1987) is to enforce only the necessary
level of consistency on each part of a network to ensure global consistency. It assumes an
ordering on the variables. For any variable x, it only requires that a consistent instantiation
of the relevant variables before x can be consistently extensible to x. Other variables do not
play any direct role on x and thus are ignored when dealing with x.

We first introduce some notations used in adaptive consistency.
The width of a variable with respect to a variable ordering is the number of constraints

involving x and only variables before x. See Figure 7 for an example.
Given a network, a variable ordering, and a variable x, the directionally relevant con-

straints on x are those involving x and only variables before x. In the following, DR(x) is
used to denote the directionally relevant constraints on x, and S used to denote all variables
occurring in the constraints of DR(x).

The constraints of DR(x) are consistent on x if and only if, for any consistent instan-
tiation ā of S − {x}, there exists u ∈ Dx such that (ā, u) satisfies all the constraints of
DR(x).

We next define the adaptive consistency of a network.

459

Zhang & Yap

...

...
...........
..........
.........
.........
........
........
........
........
........
.........
.........
..........

...........
..............

x1

x2

x3

x4

x5

Figure 7: The variables {x1, x2, . . . , x5} are ordered according to their subscripts. For ex-
ample, x1 is before x2. The width of x2 is 1.

Definition 11 Given a constraint network and an ordering on its variables, the network is
adaptively consistent if and only if for any variable x, its directionally relevant constraints
are consistent on x.

The adaptive consistency is presented as an algorithm by Dechter (2003) although, for
the purpose of this paper, we prefer a declarative characterization.

For an adaptively consistent network, a solution can be found without backtracking.

Proposition 7 Given a constraint network and an ordering on its variables, a backtrack
free search is ensured if the network is adaptively consistent.

Proof. Assume we have found a consistent instantiation of the first k variables (in terms
of the given ordering). They can be consistently extended to xk+1 because all directionally
relevant constraints on xk+1 are consistent on xk+1. 2

When a network is not adaptively consistent, the algorithm by Dechter (2003, p. 105)
can be used to enforce adaptive consistency on it.

Adaptive consistency is not only more accurate in estimating the local consistency that
ensures global consistency, but also makes intuitive the algorithms to enforce consistency
and to find a solution.

With the knowledge of constraint tightness presented in the previous subsections, we
know that for a network to be adaptively consistent, it is sufficient to make sure that only
some, not all, directionally relevant constraints on a variable are consistent. We are now in
a position to define dually adaptive consistency of a constraint network.

Definition 12 Consider a constraint network and an ordering of its variables. For any
variable x in the network, let cx be one of the tightest directionally relevant constraints on
x and cx be properly mx-tight. The network is dually adaptively consistent if and only if

1) for any variable x whose width is not greater than mx, its directionally relevant
constraints are consistent on it, and

2) for any variable x whose width is greater than mx, cx is consistent with every other
mx directionally relevant constraints on x.

Thanks to the set intersection result of Lemma 2, we have the main result on dually
adaptive consistency.

460

Set Intersection and Consistency in Constraint Networks

Theorem 7 Given a constraint network and an ordering of its variables, a backtrack free
search is ensured if it is dually adaptively consistent.

Proof. We only need to prove that the network is adaptively consistent: For any
variable x, its directionally relevant constraints DR(x) are consistent on x. Let S be the
variables involved in DR(x). Consider any consistent instantiation ā of S − {x}. We show
that there exists u ∈ Dx such that (ā, u) satisfies constraints in DR(x). Let l be the number
of constraints in DR(x), and let cx be one of the tightest constraint in DR(x) with proper
tightness mx. For any constraint ci ∈ DR(x), let ā’s extension set to x under ci be Ei. It
is sufficient to show

∩
ci∈DR(x)Ei 6= ∅.

We know cx is consistent with every other mx constraints. Hence, Ex, ā’s extension set
under cx, intersects with every other mx extension sets of ā. Lemma 2 implies that

∩
ci∈DR(x)Ei 6= ∅.

2

By this theorem, we need only the tightest of the directionally relevant constraint on
each variable, totally n− 1 such constraints, to predict the global consistency of a network.
This could be considered a significant improvement over the results in the previous two
subsections.

Compared with the result by Dechter and Pearl (1987), this theorem also provides a
lower level (the smaller of tightness or width) of consistency ensuring global consistency.

When a constraint network is not dually adaptively consistent with respect to a variable
ordering, it can be made so by enforcing the required consistency on each variable, in the
reverse order of the given variable ordering. To make the procedure more efficient, we
should chose a better variable ordering, depending on both the topological structure of the
network and the tightness of the constraints.

7. Tightness and Convexity Revisited

The consistency results derived from small set intersection and tree convex set intersection
in Section 5 and Section 6.1 can be rephrased in a relational consistency setting. For
example, a new version of weak tightness based on relational consistency is given as follows.

Theorem 8 (Weak Tightness) If a constraint network R of constraints with arity of at
most r is strongly relationally (m+1)-consistent and weakly m-tight at level of (m+1)(r−
1) + 1, it is globally consistent.

Proof. Let j = (m + 1)(r − 1) + 1. The constraint network R will be shown to be
k-consistent for all k (j < k ≤ n).

Let Y = {x1, . . . , xk−1} be a set of any k−1 variables, and ā a consistent instantiation of
all variables in Y . Consider any new variable xk. Without loss of generality, let cS1 , . . . , cSl

be the relevant constraints on xk, and Ei the extension set of ā to xk with respect to cSi

for i ≤ l.

461

Zhang & Yap

(Consistency to Set) Consider any m + 1 of the l extension sets. Since R is relationally
(m + 1)-consistent, the intersection of m + 1 extension sets is not empty.

(Set to Set) The network is weakly m-tight. So, there must be a properly m-tight
constraint in the relevant constraints cS1 , . . . , cSl

. Let it be cSi . Its extension set |Ei| ≤ m.
Since every m + 1 of the extension sets have a non-empty intersection, all l extension sets
share a common element by the small set intersection result (Corollary 1).

(Set to Consistency) From the lifting lemma, we have that R is k-consistent. 2

Compared with the weak tightness theorem in Section 6.1, the exposition of the result
is neater and the proof is simpler.

For completeness, we also include here a new version of the tree convex theorem using
relational consistency. The proof is omitted since it is a simplified version of the one in
Section 5 as hinted by the proof above.

Theorem 9 (Tree Convexity) Let R be a tree convex constraint network. R is globally
consistent if it is strongly relationally path consistent.

8. Conclusion

Through the lifting lemma and proof schema, we have shown that set intersection results can
be easily lifted to consistency results in a constraint network. There are a few advantages
for this approach of studying consistency.

Firstly, although this approach does not offer a “completely new” way to prove consis-
tency results, it does provide a uniform way to understand many seemingly different results
on the impact of convexity and tightness on global consistency. In addition to the results
shown here, some other results can also be obtained easily by the lifting lemma and proof
schema. For example, the work by David (1993) can be obtained by lifting the corollary of
Lemma 2 (Zhang & Yap, 2003). The work by Sam-Haroud and Faltings (1996) on convex
constraint networks with continuous domains can be lifted from Helly’s theorem (Eckhoff,
1993) on the intersection of convex sets in Euclidean spaces.

Secondly, the establishment of the relationship between set intersection and consistency
in a constraint network makes it easier to communicate the consistency results to the re-
searchers outside the constraint network community. It is also made possible for them to
contribute to consistency results by exploiting their knowledge on set intersection properties.

More importantly, this approach singles out the fact that set intersection properties play
a fundamental role in determining the consistency of a constraint network. This perspective
helps us focus on properties of set intersection and discover or generalize the intersection
properties of tree convex sets and sets with cardinality restrictions. The corresponding
consistency results have extended our understanding of the convexity and tightness of con-
straints since Dechter and van Beek’s work (1995, 1997). We identify a new class of tree
convex constraints for which global consistency is ensured by a certain level of local consis-
tency. This generalizes row convex constraints by van Beek and Dechter (1995). We also
show that a weakly m-tight constraint network can be made globally consistent by enforcing
local consistency. This type of result on tightness is new. Detailed study has been carried
out on when a constraint network is weakly m-tight. To make full use of the tightness of
the constraints, we propose dually adaptive consistency that exploits both the topology and

462

Set Intersection and Consistency in Constraint Networks

the semantics of a constraint network, which again results from the relation between set
intersection and consistency. Under dually adaptive consistency, the topology of a network
and the tightest relevant constraint on each variable determine the local consistency that
ensures backtrack-free search.

Acknowledgments

We are indebted to Dr. Peter van Beek and Dr. Fengming Dong for very helpful discussions.
The constructive comments from the anonymous referees of various versions of this paper
have improved its quality. This material is based on works partially supported by a grant
under the Academic Research Fund of National University of Singapore and by Science
Foundation Ireland under Grant 00/PI.1/C075. Some materials of this paper appeared in
the Proceedings of the International Joint Conference on Artificial Intelligence 2003 (Zhang
& Yap, 2003) and the Proceedings of Principles and Practice of Constraint Programming
2004 (Zhang, 2004).

References

David, P. (1993). When functional and bijective constraints make a CSP polynomial. In
Proceedings of Thirteenth International Joint Conference on Artificial Intelligence,
Vol. 1, pp. 224–229 Chambery, France. IJCAI, Inc.

Dechter, R. (1992). From local to global consistency. Artificial Intelligence, 55, 87–107.

Dechter, R. (2003). Constraint Processing. Morgan Kaufmann, San Francisco, CA.

Dechter, R., & Pearl, J. (1987). Network-based heuristics for constraint satisfaction prob-
lems. Artificial Intelligence, 34, 1–38.

Eckhoff, J. (1993). Helly, Radon, and Carathéodory type theorems. In Gruber, P. M.,
& Wills, J. M. (Eds.), Handbook of Convex Geometry, pp. 389–448. North Holland,
Amsterdam.

Freuder, E. (1978). Synthesizing constraint expressions. Communications of ACM, 21 (11),
958–966.

Freuder, E. (1982). A sufficient condition for backtrack-free search. Journal of The ACM,
29 (1), 24–32.

Jeavons, P. G., Cohen, D. A., & Gyssens, M. (1997). Closure properties of constraints.
Journal of The ACM, 44 (4), 527–548.

Mackworth, A. K. (1977). Consistency in networks of relations. Artificial Intelligence, 8 (1),
118–126.

Montanari, U. (1974). Networks of constraints: fundamental properties and applications.
Information Science, 7 (2), 95–132.

Sam-Haroud, D., & Faltings, B. V. (1996). Solving non-binary convex CSPs in continous
domains. In Proceedings of International Conference on Principles and Practice of
Constraint Programming 1996, pp. 410–424 Cambridge, Massachusetts. Springer.

463

Zhang & Yap

Schaefer, T. J. (1978). The complexity of satisfiability problems. In Proceedings of 10th
ACM Symposium on the Theory of Computing, pp. 216–226.

van Beek, P., & Dechter, R. (1995). On the minimality and global consistency of row-convex
constraint networks. Journal of The ACM, 42 (3), 543–561.

van Beek, P., & Dechter, R. (1997). Constraint tightness and looseness versus local and
global consistency. Journal of The ACM, 44 (4), 549–566.

Yosiphon, G. (2003). Efficient algorithm for identifying tree convex constraints. Manuscript.

Zhang, Y. (2004). On the tightness of constraints. In Proceedings of Principles and Practice
of Constraint Programming 2004, pp. 777–781 Toronto, Canada. Springer.

Zhang, Y., & Freuder, E. C. (2004). Tractable tree convex constraints. In Proceedings of
National Conference on Artificial Intelligence 2004, pp. 197–202 San Jose, CA, USA.
AAAI press.

Zhang, Y., & Yap, R. H. C. (2003). Consistency and set intersection. In Proceedings of
International Joint Conference on Artificial Intelligence 2003, pp. 263–268 Acapulco,
Mexico. IJCAI Inc.

464

