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and tree convexity in the light of relational consistency. These results significantly improve our
understanding of convex, tight and loose constraints, and demonstrate that set intersection is a
promising and powerful tool for studying consistency in a constraint network.

Categories and Subject Descriptors: F.2.2 [Analysis of Algorithms and Problem Com-
plexity]: Nonnumerical Algorithms and Problems— Computations on discrete structures; F.4.1
[Mathematical Logic and Formal Languages|: Mathematical Logic—Set theory; 1.2.4 [Ar-
tificial Intelligence]: Knowledge Representation Formalisms and Methods—Relation systems;
G.2.2 [Discrete Mathematics]: Graph Theory— Trees

General Terms: Algorithms, Theory
Additional Key Words and Phrases: Constraint-based reasoning, constraint networks, local con-
sistency, relations, tree convex sets, tree convex constraints, weakly m-tight constraint networks

Some of the results reported in this paper have previously appeared as Zhang, Y., and Yap, R.H.C.,
“Consistency and Set Intersection”, Proceedings of the 18th International Joint Conference on
Artificial Intelligence, 2003, pp. 263-268.

Author’s addresses: Yuanlin Zhang, Cork Constraint Computation Center, University Col-
lege Cork, Cork, Ireland. Email: yzhang@4c.ucc.ie; Roland H. C. Yap, Department of Com-
puter Science, National University of Singapore, 3 Science Drive 2, Singapore 117543. Email:
ryap@comp.nus.edu.sg

Permission to make digital/hard copy of all or part of this material without fee for personal
or classroom use provided that the copies are not made or distributed for profit or commercial
advantage, the ACM copyright/server notice, the title of the publication, and its date appear, and
notice is given that copying is by permission of the ACM, Inc. To copy otherwise, to republish,
to post on servers, or to redistribute to lists requires prior specific permission and/or a fee.

© 20YY ACM 0004-5411/20YY/0100-0001 $5.00

Journal of the ACM, Vol. V, No. N, Month 20YY, Pages 1-20.



2 . Y. Zhang and R. H. C. Yap

1. INTRODUCTION

A constraint network consists of a set of variables, over some finite domains, to-
gether with an associated system of constraints over those variables. An important
task is to find an assignment for all the variables such that all the constraints in
the network are satisfied, If such an assignment exists, the network is satisfiable
or globally consistent and the assignment is called a solution. The problem of de-
termining the global consistency of a general constraint network is known to be
NP-complete. Usually a search procedure is used to find a solution. In practice,
due to efficiency considerations, the search is usually equipped with a filtering al-
gorithm which prunes values of a variable or the combinations of values of a certain
number of variables which cannot be part of a solution. The filtering algorithm can
make a network locally consistent in the sense that a consistent assignment of some
variables can always be extensible to a new variable. An important and interesting
question on local consistency is:

Is the local consistency obtained sufficient to determine global consis-
tency of the network without further search? As the filtering algorithm
is of polynomial complexity, the positive answer would mean that the
network can be solved in polynomial time.

Much work has been done to explore the relationship between local and global
consistency (in particular) and the properties of local consistency in general. One
direction is to make use of the topological structure of the graph representation
of a constraint network. A classical result is that when the graph of a constraint
network is a tree, arc consistency in the network is sufficient to make it globally
consistent [Freuder 1982].

The second direction makes use of semantic properties of the constraints. For
monotone constraints, path consistency implies global consistency [Montanari 1974].
Van Beek and Dechter [1995] generalize monotone constraints to a larger class of
row convez constraints. Dechter [1992] shows that a certain level of consistency in
a network whose domains are of limited size ensures global consistency. Later, Van
Beek and Dechter [1997] study the consistency of a network with tight and loose
constraints.

The existing work along the two approaches has used specific and different tech-
niques to study local and global consistency. In particular, there is little com-
monality in the details of the existing work. In much of the existing work, the
techniques and consequently the proofs given are developed specifically for the re-
sult concerned.

In this paper, we show how much of this work can be connected together. A
new approach is used to study consistency in a constraint network. We unite two
seemingly disparate areas: the study of set intersection on special sets and the
study of k-consistency in constraint networks. We show that k-consistency can
be expressed in terms of set intersection. This allows one to obtain relationships
between local and global consistency in a constraint network in terms of properties
of set intersection on special sets. The main result of this approach is a proof
schema which can be used to lift results from set intersection, which are rather
general, to particular consistency results on constraint networks. One benefit of
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the proof schema lies in that it provides a modular way to greatly simplify the
understanding and proof of results on consistency. This benefit is considerable as
often the proof of many existing results is complex and “hard-wired”. Using this
new approach, we show that it is precisely the various properties of set intersection
that lead to the results in most existing work.

The following sketch illustrates briefly the use of our approach. One property of
set intersection is that if the intersection of every pair (2) of tree conver sets (see
Section 3) is not empty, the intersection of the whole collection of these sets is also
not empty. From this property, we can see that local information on intersection of
every pair of sets gives global information on intersection of all sets. Intuitively, this
relationship between local and global information corresponds to obtaining global
consistency from local consistency. The proof schema is used to lift the result on
tree convex sets to the following result on consistency. For a binary network of tree
convex constraints, (2+1)-consistency (path consistency) implies global consistency.

The usefulness of our new set-based approach are many fold. Firstly, it gives a
clear picture of many of the existing results and is a unifying theoretical tool for
studying consistency. For example, many well known results in the second direction
based on semantic properties of the constraints (including [van Beek and Dechter
1995; 1997]) but also results from the first direction can be shown with easy proofs
which make use of properties of set intersection. Secondly, it is useful for improving
some of the existing results and for deriving new results as is demonstrated in
sections 5—9. Thirdly, we believe it introduces a new direction to understanding
consistency in constraint networks and gives a general tool for analysing new kinds
of constraints, local consistency and topologies.

There is a difference between the work reported here and the work that studys
the tractability of constraint languages(e.g., [Schaefer 1978; Jeavons et al. 1997]).
The latter considers the problems whose constraints are from a fized set of relations
while the work here concerns with the problems (constraint networks) with special
properties.

This paper is organized as follows. Section 2 gives some basic definitions. Section
3 presents properties of the intersection for tree convez sets, small sets and large
sets. Section 4 develops a characterisation of k-consistency utilising set intersection
and develops the proof schema which gives a generic way to obtain consistency
results from properties of set intersection. We demonstrate the power of the new
approach by applying it to derive three new classes of results on global and local
consistency as detailed below as well as a number of well known results. The first is
presented in Section 5. It is a generalization of row convex constraints to tree convex
constraints. On a network of tree convex constraints local consistency ensures
global consistency. The second is on global consistency on weakly tight networks
and presented in Section 6. These networks only require certain constraints to
be m-tight rather than all constraints as shown in [van Beek and Dechter 1997].
Section 7 revisits the results on the intrinsic consistency of loose networks. The
third result in Section 8 is on networks which are properly m-tight. It advances the
previous work [van Beek and Dechter 1997] since networks with certain constraints
satisfying tightness restrictions can be made globally consistent by enforcing some
level of relational consistency. Lastly, Section 9 gives new versions of weak tightness
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and tree convexity using relational consistency. Section 10 discusses related work
and concludes.

2. PRELIMINARIES

A constraint network R is defined as a set of variables N = {z1,%2,---,Zn}; a set
of finite domains D = {D;, D,,---, D, } where domain D;, for all i € 1..n, is a set
of values that variable z; can take; and a set of constraints C = {cg,,¢s,,"*,¢s.}
where S;, for all 7 € 1..e, is a subset of {z1, 22, -, Z,} and each constraint cg; is a
relation defined on domains of all variables in S;. The arity of constraint cg; is the
number of variables in S;. For a variable z, D, denotes the domain of variable x.

An instantiation of variables Y = {z;,---,z;} is denoted by a = (a1,---,a;)
where a; € D; for i € 1..j. An extension of @ to a variable z(¢ Y') is denoted by
(@,u) where u € D,. An instantiation of a set of variables Y is consistent if it
satisfies all constraints in R which don’t involve any variable outside Y.

A constraint network R is k-consistent if and only if for any consistent instan-
tiation @ of any distinct & — 1 variables, and for any new variable x, there exists
u € D, such that (a,u) is a consistent instantiation of the k variables. R is strongly
k-consistent if and only if it is j-consistent for all j < k. A strongly m-consistent
network is called globally consistent.

More information on constraint networks and consistency can be found in [Mack-
worth 1977; Freuder 1978; Dechter 2003].

3. PROPERTIES ON SET INTERSECTION

In this section, we develop the underlying set intersection results which are useful
for the later results on consistency. The set intersection property which we are
concerned with is:

Given a collection of | finite sets, under what conditions is the intersec-
tion of all | sets not empty?

This property is not very useful for collections of arbitrary sets. Here, we study
sets with two restrictions: convexity and cardinality.

3.1 Sets with Convexity Restrictions

We first define the convexity of sets, especially including discrete sets.

Definition 1. Given a set U and a total ordering “<” on it, aset A C U is convex
if the elements in it are consecutive under the ordering, that is if u,w € A then for
anyv €U and u R v S w, v € A.

Definition 2. Given a collection of sets S, let the union of all the sets in S be
U. The sets in S are convex under a total ordering on U if every set in S is convex
under the ordering. The sets in S are said to be convex if they are convex under
some total ordering on U.

Example 1. The set of real numbers between 1 and 2 is convex under the usual
ordering of numbers. {1,9} and {3,9} are convex with a total ordering 1 < 9 <
3. However, {1,9},{3,9} and {5,9} are not convex under any total ordering on
{1,3,5,9}.
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The following result shows a property on the intersection of convex sets.

LEMMA 1 CONVEX SETS INTERSECTION. Given a finite collection of conver sets
S, N E#0iff forall E1,Ex€ S, Ex(Ex # 0.

EcS

This result lies in the heart of Lemma 3.1 in [van Beek and Dechter 1995] which
is based on the concept of constraints and the matrix representation of constraints.
However, Lemma 3.1 does not introduce the concept of convex sets explicitly.

The concept of convex sets imposes a strong requirement that the sets are “dense”
under a common total ordering. In fact, the total ordering here can be generalized
to a tree for discrete sets as follows.

Definition 3. Given a discrete set U and a tree 7 with vertices U. A set A C U
is tree convex under T iff there exists a subtree of 7 whose set of vertices is exactly
A.

Definition 4. Given a collection of discrete sets S, let the union of the sets in S
be U. The sets in S are tree convex under a tree 7 on U if every set in S is tree
convex under 7.

Fig. 1. A tree with nodes a,b,c,d,e

Ezample 2. Consider a set U = {a,b,c,d,e} and a tree given in Fig 1. The
subset {a, b, c,d} is tree convex. So is the set {b,a,c,e} since the elements in the
set consists of a subtree. However, {b, c, e} is not tree convex as it does not form a
subtree of the given tree.

Consider § = {{1,9},{3,9},{5,9}}. A tree can be constructed on {1,3,5,9}
with 9 being the root and 1,3, 5 being its children. Each set in S covers the nodes
of exactly one branch of the tree. Hence, the sets in S are tree convex.

Tree convex sets have the following intersection property.

LEMMA 2 TREE CONVEX SETS INTERSECTION. Given a finite collection of fi-
nite sets S, assume the sets in S are tree conver. (| E # 0 iff for all E1,E5 € S,

EeS
Ei N\ E» # 0.

Proof. Let I be the number of sets in S, and 7 a tree such that there exists a
subtree T; for each E; € S such that the set of vertices of T; is E;. We can regard
T as a rooted tree and thus every T; (i € 1..I) can be regarded as a rooted tree
whose root is exactly the node nearest to the root of 7. Let r; denote the root of
T; for i € 1..1.
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To prove () E; # 0, we want to show the intersection of the trees {T; | i € 1..l}
i€l.l
is not empty. The following propositions on subtrees are necessary in our main

proof.

PROPOSITION 3. Let Ty,T> be two subtrees of a tree T, and T =T, NT,. T is
a tree.

If T =0, it is a trivial tree. Now let T # . Since T is a portion of T}, there is
no circuit in it. It is only necessary to prove T is connected. That is to show, for
any two nodes u,v € T, there is a path between them. w,v € T} and u,v € T5
respectively imply that there exist paths P, : u,---,vin T} and P : u,---,v in T5
respectively. Recall that there is a unique path from u to v in T and that T} and
T, are subtrees of 7. Therefore, P, and P, cover the same nodes and edges, and
they are in T', the intersection of 77 and T5. P; is the path we want.

PROPOSITION 4. Let Ty,T5 be two subtrees of a tree T, and T =Ty NTs. T is
not empty if and only if at least one of the roots of Ty and T is in T.

Let r; and 72 be the roots of 77 and T respectively. If r; € T, the proposition is
correct. Otherwise, we show 7, € T. Assume the contrary ro ¢ T. Let r be the
root of T and v the root of T' (T is a tree in terms of Proposition 3). We have paths
Po:iry,---yvinTy; Pyirg,---yvin To; and Py :7y--- 1y, and Py :ry---,rg in T
The assumption tells that r; # ro. From the closed walk P3P, PyP; where Pj and
Pj are the reverse of P, and P, respectively, we can construct a circuit containing
at least r; and ro. It contradicts that there is no circuit in 7.
Further we have the following observation.

PROPOSITION 5. Let the root of T ber. Given two subtrees Ty and Tz of T with
roots r1 and r2 respectively. Let r1 be not closer to r than ro, and T the intersection
of Ty and Ts. 7y is the root of T if T is not empty.

Let r; be farther to the r than ro. Assume r9 is the root of T'. Since r; is farther
to r than 7o, ro is not possible to be a node of T;. It contradicts that r» € T'.

Let T = [\ 7;. We are ready now to prove our main result 7' # (). We select a
i€l..l
tree Tiax from T4, T, - -, Ty such that its root ryay is the farthest away from r of

T among the roots of the concerned trees. In terms of Proposition 5, that Ti,ax
intersect with every other trees implies that rpyax is a node of every T; (i € 1..0).
Therefore, rpax € T. O

Remark. Recall that a partial order can be represented by an acyclic directed
graph. It is tempting to further generalize the tree convexity to partial convexity
in the following way.

Definition 5. Given a set U and a partial order on it. A set A C U is partially
convez if and only if A is the set of nodes of a connected subgraph of the partial
order. Given a collection of sets S, let the union of the sets of S be U. The sets in
S are partially convez if there is a partial ordering on U such that every set in S is
convex under the ordering.

However, with this generalization, we do not get a result similar to Lemma 2.
This is illustrated by the following counterexample. Consider three sets {c,b,d},
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{d, f,a} and {a,e,c} which are the nodes of some subgraph given in Fig 2. These
sets are partially convex and intersect pairwise. However, the intersection of all

three sets is empty.
‘b\
\//""\/ |
e f

Fig. 2. A partial order with nodes {a,b,c,d,e, f}

3.2 Sets with Cardinality Restrictions

Another useful restriction which we will use on sets is to restrict their cardinality.
The following results are on arbitrary finite sets where the only restriction is on the
size of sets.

LEMMA 6 SMALL SET INTERSECTION. Given a number m and a finite collection
of l sets S, let m < 1. Assume one set from S has at most m elements.

() E#0
EeS
iff the intersection of any m + 1 sets from S is not empty.
Proof. The necessary condition is immediate.
The sufficient condition is proved by induction on I. It is obviously true when
I < m+ 1. Assuming that k (> m) sets intersect, we show that any k + 1 sets
intersect. Without loss of generality, the subscripts of the k + 1 sets are numbered

from 1 to k+ 1 and let |Eq| < m. Let A; be the intersection of all the k + 1 sets
except Ej;:

Ai=EN---NE_1NExN---NEgy, for1<i<k+1.
If A;NA; # 0 for some i,j € 2.k + 1,7 # j,
ﬂ EzZAZﬂAJ#(D
i€l..k+1

Assume the contrary that A; N A; = () for all distinct ¢ and j. According to the
construction of A4;’s,

E 2 U Ai,
i€2..k+1
and |A;| > 1 by the induction assumption. Henceforth,
B> Y Al >k>m

i€2..k+1
Journal of the ACM, Vol. V, No. N, Month 20YY.
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which contradicts |Eq1| <m. O
An immediate corollary of this lemma is when all the sets of concern have at
most m elements.

COROLLARY 7 SMALL SETS INTERSECTION. Given a number m and o finite col-

lection of | sets S, let m < 1. For every E € S, assume E is finite and |E| < m.
N E # 0 iff the intersection of any m + 1 sets from S is not empty.

EcS

The small sets intersection lemma singles out the essential component of Lemma
3.2 in [van Beek and Dechter 1997]: The property of sets determines the behavior
of the corresponding constraints (or relations). This observation is not explicit
in Lemma 3.2 and its proof since Lemma 3.2 takes constraints (or relations) as a
primitive concept. By shifting the primitive concept from constraints to sets, the
foundamental properties (leading to consistency results) become more prominent,
and both the results and reasoning process are simplified and made more focused.
It is the emphasis on set intersection properties that results in the discovery of
Lemma 6.

Another special case is that some set has only one element.

COROLLARY 8 SINGLETON SET INTERSECTION. Given a collection of sets S,

assume one set from S has only one element. (| E # O iff all sets mutually
EeS

intersect.

Based on sets, rather than constraints, this result is straightforward. Since E has
only one element and its intersection with any other set is not empty, the element
in FE is the one shared by all sets. In a simple and clear way, this corollary presents
the foundamental property leading to the consistency results reported in [David
1993].

Motivated by [van Beek and Dechter 1997, lemma 4.1 in page 561], we consider
the following restrictions on a collection of sets: (1) each set has size larger than
some number m; but (2) there is a small number of sets in the collection; and
(3) the union U of all sets has limited size d. The name of the lemma, large sets
intersection, is after the first restriction. In this case, if the intersection of all sets
is empty, then for any a € U, a is excluded by some set E;. However, since E; is
large, it can exclude at most d —m elements in U. All sets in S can exclude at most
I x (d —m) elements in U. When [ is also small (such that I(d — m) < d), some
element in U may not be excluded by any set, which means that the intersection
of all sets is not empty.

LEMMA 9 LARGE SETS INTERSECTION. Given a number m and a collection of
I discrete sets S, for all E € S, assume E is finite and |E| > m. Let | |J E|=d.

Ee€
If 1<[d/(d—m)] -1, then (| E#0.
EeS
Proof. Let S={E1,Es,...,E}, U= |J E;,and 4; =U—E;foralli <I[. It
iel.l

is immediate that

U A; CU.

i€l.l
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We know

U Al <) 14l

i€l..l iel..l
For |A;| < d —m, we have

Y A< ) (d—m) =1(d—m) <d.

i€l..l i€l..l

Hence, |J A; is a proper subset of U. There exists x € U such that = ¢ A; for all
iel..l
1 <1, which implies that z € E; for all ¢ <[. O

4. SET INTERSECTION AND CONSISTENCY

In this section, we first relate consistency in constraint networks to set intersection.
Using this result, we present a proof schema which allows us to study the relation-
ship between local and global consistency from the properties of set intersection.
Underlying the concept of k-consistency is whether an instantiation of some vari-
ables can be extended to a new variable such that all relevant constraints to the
new variable are satisfied. A relevant constraint to a variable z; is a constraint
where only z; is uninstantiated (and the others are instantiated). Each relevant
constraint allows a set (possibly empty) of values for the new variable. This set is
called extension set below. The satisfiability of all relevant constraints depends on
whether the intersection of their extension sets is non-empty (see lemma 10).

Definition 6. Given a constraint cg,, a variable € S; and any instantiation a
of S; — {z}, the extension set of @ to 2 with respect to cg, is defined as

E;.(a) ={be D, | (a,b) satisfies cg,}
An extension set is trivial if it is empty; otherwise it is non-trivial.

Remember that D, refers to the domain of variable 2. Throughout the paper, it
is often the case that an instantiation @ of S — {z} is already given, where S — {z}
is a superset of S; — {z}. Let b be the instantiation obtained by restricting a to
the variables only in S; — {z}. For ease of presentation, we continue to use E; ,(a),
rather than E;.(b), to denote the extension of b to = under constraint cs,. To
make the presentation easy to follow, some of the three parameters i, @ and x may
be omitted from an expression hereafter whenever they are clear from the context.
For example, given an instantiation @ and a new variable z, to emphasize different
extension sets with respect to different constraints Rg,, we write E; instead of
E,; (@) to simply denote an extension set.

Ezample 3. Consider a network with variables {z1, z2, z3, %4, Z5 }:

Cs, = {(a>b7 d)a(aaba a)}; S, = {$1,.’L‘2,.’L‘3};

Cs, {(b7 a, d)7 (baaa b)}: Sy = {$27-'L'4;-'173}§

CS; {(b, d)a( 70)}7 53 = {$27$3};

¢s, = {(ba a, d)7 (baaa a)}a Sy = {$27$5;m3};
D]_ = D4 = D5 = {a},D2 = {b},D3 = {a,b,c, d}

Journal of the ACM, Vol. V, No. N, Month 20YY.
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Let @ = (a,b,a) be an instantiation of variables Y = {z1,22,24}. The relevant
constraints to x3 are cg,, cs,, and cg,. cs, is not relevant since it has two unin-
stantiated variables. The extension sets of @ to x3 with respect to the relevant
constraints are:

E, (C_l) = {d7 a},E2((_l) = {da b}7E3(a) = {da C}'

The intersection of the extension sets above is not empty, implying that a can be
extended to satisfy all relevant constraints cg,, cs, and cg,.

Let @ = (b, ¢) be an instantiation of {z2,z3}. E1 4, (@) = 0 and thus it is trivial.
In other words, being a trivial extension set, an instantiation can not be extended
to satisfy the constraint of concern.

The relationship between k-consistency and set intersection is characterized by
the following lemma which is a direct consequence of the definition of k-consistency.

LEMMA 10 SET INTERSECTION AND CONSISTENCY; LIFTING. A constraint net-
work R is k-consistent if and only if for any consistent instantiation a of any (k—1)

distinct variables Y = {x1,%2,- -+, zr—1}, and any new variable xy,
N By, #0
jet.d
where E;; is the extension set of a to xy, with respect to €Sy and cg; "+, Cs;, are

all relevant constraints.

Proof. It follows directly from the definition of k-consistency (in Section 2) and
the definition of extension set. [

The insight behind this lemma, is to examine consistency from the perspective of
set intersection.

Example 4. Consider again the previous example. We would like to check whether
the network is 4-consistent. Consider the instantiation @ of Y again. This is a triv-
ial consistent instantiation since the network doesn’t have a constraint among the
variables in Y. To extend it to z, we need to check the first three constraints.
The extension is feasible because the intersection of Ey, E», and Ej3 is not empty.
We show the network is 4-consistent, by exhausting all consistent instantiations of
any three variables. Conversely, if we know the network is 4-consistent, we can
immediately say that the intersection of the three extension sets of @ to x is not
empty.

The usefulness of this lemma is that it allows consistency information to be
obtained from the intersection of extension sets, and also vice versa. Using this
view of consistency as set intersection, some results on set intersection properties,
including all those in section 3, can be lifted to get various consistency results for a
constraint network by making use of the following proof schema.

Proof Schema

1. (Consistency to Set) From a certain level of consistency in the constraint net-
work, we derive information on the intersection of the extension sets by Lemma 10.

2. (Set to Set) From the local intersection information of sets, information may
be obtained on intersection of more sets.
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3. (Set to Consistency) From the new information on intersection of extension
sets, higher level of consistency is obtained according to Lemma 10.

4. (Formulate conclusion on the consistency of the constraint network). [
In the proof schema, step 1 (consistency to set), step 3 (set to consistency), and
step 4 are straightforward in many cases. So, Lemma 10 is also called the lifting
lemma because once we have a set intersection results (step 3), we can easily have
consistency results on a network (step 4). The proof schema establishes a direct
relationship between set intersection and consistency properties in a constraint
network.

In the following sections, we demonstrate how the set intersection properties and
the proof schema are used to obtain new and also well known results on consistency
of a network.

5. APPLICATION I: GLOBAL CONSISTENCY OF TREE CONVEX CONSTRAINTS

The notion of extension set plays the role of a bridge between the restrictions to
set(s) and properties of special constraints. The sets in Lemma 2 are restricted to
be tree convex. A constraint is tree convez if all extension sets with respect to the
constraint are tree convex.

Definition 7. A constraint cg is tree conver with respect to x; and a tree T; on
D; if and only if the sets in

A ={Es, | Esg, is a non-trivial extension of some instantiation of S — {z;}}

are tree convex under T;. A constraint cg is tree convez under a tree T on the union
of the domains of the variables in S, if it is tree convex wrt every z € S under T'.

Ezxample 5. Tree convex constraints could occur in practice where there is a
structure among the values of a variable. Consider the constraint on the accessibility
of a set of facilities by a set of persons. The personnel includes a network engineer,
web server engineer, application engineer, and a team leader. The relationship
among the staffs is that the leader manages the rest, which forms a tree structure
shown in Fig. 3(b). There are different accessibilities to a system which include
basic access, access to the network routers, access to the web server, and access
to the file server. In order to access the routers and servers, one has to have the
basic access right, impying a tree structure (Fig. 3(c)) on the accessibilities. The
constraint is that the leader is able to access all the facilities while each engineer
can access the corresponding facility (e.g., the web server engineer can access the
web server). This tree convex constraint is shown in Fig. 3(a) where the rows are
named by (the initials of) staffs and the columns by (the initials of) accessibilities.
The tree on the union of personnel and the accessibilities can be obtained from
their respective trees (in Fig. 3(b) and (c)) by adding an edge, say between web
server and leader.

Tree convex constraints can also be used to model scene labeling problems nat-
urally as shown in [Zhang and Freuder 2004].

Definition 8. A constraint network is tree convez if there exists a tree 7 on the
union of all its variable domains such that all constraints are tree convex under 7.
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leader basic access

r w f b
n * *
w * *
a *

1| * * * network web  application t web file

engineer  engineer engineer O ver  server

(a) (b) (c)

Fig. 3. A tree convex constraint between accessibilities and staffs

Convex sets naturally give rise to convex constraints which is a special case of
tree convex constraints.

Definition 9. A constraint cg is row conver with respect to z if and only if the
sets in

A ={Es, | Es, is a non-trivial extension of some instantiation of S — {z}}

are convex. It is row convex if under a total ordering on the union of involved
domains, it is row convex wrt every x € S. A constraint network is row convez iff
there exist a total ordering on the union of all domains such that all constraints
are row convex under the ordering.

Ezample 6. For the constraint ¢ in Example 5 to be row convex, b(basic access)
has to be the neighbor of r(routers), w(web server), and f(file server). However, in
a total ordering, a value can be the neighbor of at most two other values. Hence, ¢
is not row convex.

The consistency results on these networks can be derived from the property of
set intersection using the proof schema. We obtain the main result of this section.

THEOREM 11 TREE CONVEXITY. Let R be a network of constraints with arity
at most r and strongly 2(r — 1) + 1 consistent. If R is tree convex then it is globally
consistent.

Proof. The network is strongly 2(r — 1) + 1 consistent by assumption. We prove
by induction that the network is k consistent for any k € {2r,---,n}.

Consider any instantiation a of any k — 1 variables and any new variable x. Let
the number of relevant constraints be [. For each relevant constraint there is one
extension set of @ to . So we have [ extension sets. If the intersection of all [ sets
is not empty, we have a value for x such that the extended instantiation satisfies
all relevant constraints.

(Consistency to Set) Consider any two of the | extension sets: E; and E,. The
two corresponding constraints involve at most 2(r — 1) + 1 variables since the arity
of a constraint is at most r and each of the two constraints has x as a variable.
According to the consistency lemma, that R is 2(r — 1) + 1-consistent implies that
the intersection of Fy and E5 is not empty.

(Set to Set) Since all relevant constraints are tree convex under the given tree,
the extension sets of a to = are tree convex. Henceforth, the fact that every two of
the extension sets intersect shows that the intersection of all [ extension sets is not
empty, in terms of the tree convex sets intersection lemma.
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(Set to Consistency) From the consistency lemma, we have that R is k-consistent.
Since a row convex constraint is tree convex, we have the following result.

COROLLARY 12 Row CONVEXITY. [van Beek and Dechter 1995] Let R be a net-
work of constraints with arity at most r and strongly 2(r —1)+1 consistent. If there
exists an ordering of the domains Dy,---,D, of R such that R is row conver, R
s globally consistent.

This can also be proved directly by lifting the convex sets Lemma 1. In other
words, by the property of the intersection of convex sets, we can straightforwardly
have the row convexity result by the lifting lemma and proof schema. This straight-
forwardness is not obvious in [van Beek and Dechter 1997].

An associated question with Theorem 11 is how efficient it is to check whether
a constraint network is tree convex. Recently, Yosiphon [2003] has proposed an
algorithm to recognize a tree convex constraint network in polynomial time.

6. APPLICATION II: GLOBAL CONSISTENCY ON WEAKLY TIGHT NETWORKS

In this section, we study networks with some tight constraints. The m-tight property
of a constraint is related to the cardinality of the extension set in the following way.

Definition 10. [van Beek and Dechter 1997] A constraint cg, is m-tight with
respect to = € S; iff for any instantiation @ of S; — {z},

|Eie| <m or |Eig| = |Dgl.
A constraint cg, is m-tight iff it is m-tight with respect to every x € S;.

Given an instantiation, if its extensition set with respect to z is the same as the
domain of variable z (|E; ;| = |Dz|), the instantiation is supported by all values of z
and thus easy to be satisfiable. Hence, in the definition above, these instantiations
do not affect the m-tightness of a constraint.

Definition 11. A constraint network is weakly m-tight at level k iff for every set
of variables {z1,---,z;}(k <1 < n) and a new variable, there exists an m-tight
constraint in the relevant constraints after the instantiation of the [ variables.

The small set intersection lemma (Lemma 6) gives the following theorem.

THEOREM 13 WEAK TIGHTNESS. If a constraint network R with constraints of
arity at most r is strongly ((m + 1)(r — 1) + 1)-consistent and weakly m-tight at
level ((m +1)(r — 1) + 1), it is globally consistent.

Proof. Let j = (m+1)(r — 1) + 1. The constraint network R will be shown to be
k-consistent for all k (j < k < n).

Let Y = {x1,---,zx_1} be aset of any k—1 variables, and a@ be an instantiation of
all variables in Y. Consider any additional variable x;. Without loss of generality,
let the relevant constraints be cg,,---,cs,, and E; be the extension set of @ to xy,
with respect to cg, for i <.

(Consistency to Set) Consider any m + 1 of the !/ extension sets. All the corre-
sponding m + 1 constraints contain at most (m + 1)(r — 1) 4+ 1 variables including
xy. Since R is (m + 1)(r — 1) + 1-consistent, according to the set intersection and
consistency lemma, the intersection of m + 1 extension sets is not empty.
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(Set to Set) The network is weakly m-tight at level ((m+1)(r —1) +1). So, there
must be an m-tight constraint among the relevant constraints cg,,---,cs,. Let it
be cg,. We know its extension set |E;| < m. For the intersection of every m + 1
of the extension sets is not empty, all / extension sets share a common element in
terms of the small set intersection lemma.

(Set to Consistency) From the lifting lemma, R is k-consistent. [
Immediately we have the following result which is a main result in [van Beek and
Dechter 1997].

COROLLARY 14 TIGHTNESS. [van Beek and Dechter 1997] If a constraint net-
work R with constraints that are m-tight and of arity at most r is strongly ((m +
1)(r — 1) 4+ 1)-consistent, then it is globally consistent.

This result can of course be directly lifted from the small sets Corollary 7. There is
no difference between this proof and the proofs for other resutls (e.g., tree convexity
and weak tightness theorems). This uniformness is absent from the proofs in the
existing work (e.g., [Dechter 1992; van Beek and Dechter 1995; 1997; David 1993]).

Corollary 14 requires every constraint to be m-tight. The weak tightness theorem,
on the other hand, does not require all constraints to be m-tight. The following
example illustrates this difference.

extension relevant constraints

1234 — 5, 125%, 135 , 145 , 235, 245, 345, 15+, 25 , 35, 45
2345 — 1, || 231 , 241 , 251%, 341, 351, 451, 21 , 31 , 41 , 5l+
3451 — 2, || 132 , 142 , 152%, 342, 352, 452, 12 , 32+, 42 , 52
4512 — 3, 123 ,  143%, 153 , 243, 253, 453, 13 , 234, 43 , 53
5123 — 4, || 124 , 134%, 154 , 234, 254, 354, 14 , 24 , 34+, 54

Table I. Relevant constraints in extending an instantiation of four variables to a new variable

Ezxample 7. For a weakly m-tight network, we are interested in its topological
structure. Thus we have omitted the domains of variables here. Consider a network
with five variables labelled {1,2,3,4,5}. In this network, for any pair of variables
and for any three variables, there is a constraint. Assume the network is already
strongly 4-consistent.

Since the network is already strongly 4-consistent, we can simply ignore the
instantiations with less than 4 variables. This is why we introduce the level at
which the network is weakly m-tight. The interesting level here is 4. Table I shows
the relevant constraints for each possible extension of four instantiated variables to
the other one. In the first row, 1234 — 5 stands for extending the instantiation of
variables {1,2,3,4} to variable 5. Entries in its second column denote a constraint.
For example, 125 denotes ¢125. If the constraints on {1,2,5} and {1, 3,4} (suffixed
by * in the table) are m-tight, the network is weakly m-tight at level 4. Or, if the
constraints {1,5}, {2,3} and {3,4} (suffixed by +) are m-tight, the network will also
be weakly m-tight. However, the tightness corollary requires all binary and ternary
constraints to be m-tight. The weak m-tightness theorem needs significantly less
constraints to be m-tight. Further results are given in Section 9.
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7. APPLICATION IIl: CONSTRAINT LOOSENESS

The next result is a consequence of the large sets intersection lemma. For large
sets, their intersection is not empty as long as they are large enough. It means that
there is certain level of consistency in a constraint network characterized by a large
set. This is in contrast to the previous results where global consistency is implied
by certain level of local consistency.

The m-loose property of a constraint is related to the cardinality of the extension
set in the following way.

Definition 12. [van Beek and Dechter 1997] A constraint cg, is m-loose with
respect to z € S; if and only if for any instantiation & of S; — {z},

|Ei| > m.
A constraint cg, is m-loose if and only if it is m-loose with respect to every = € S;.

For example, the constraint z < y, wherez € {1,2,---,10}and y € {1,2,---,10},
is 1-loose.

The large set intersection lemma is lifted to the following result on constraint
looseness.

THEOREM 15 LOOSENESS. Given a constraint network with domains that are of
size at most d and constraints that are m-loose and of arity r, r > 2. It is strongly
k-consistent, where k is the mazimum value such that

binomial(k — 1,7 — 1) < [d/(d —m)] — 1.

Proof. Let Y = {z1,22,---,2K_1} be a set of any K —1 variables where K <k,
a a consistent instantiation of the variables in Y, and 2k be any new variable. Let
I be the number of relevant constraints to . It can be shown that (see [van Beek
and Dechter 1997])

I < binomial(K — 1,r — 1) < binomial(k — 1,r — 1) < [d/(d —m)] — 1.

So, according to Lemma 9, the intersection of extension sets to zx is not empty.
Hence, the constraint network is strongly k-consistent. [

We remark that Theorem 15 is a revised version of the one in [van Beek and
Dechter 1997] which may overestimate the level of consistency. For a further dis-
cussion on the looseness of constraints and a tighter bound on the inherent level of
consistency, see [Zhang and Yap 2003].

8. APPLICATION IV: MAKING WEAKLY TIGHT NETWORKS GLOBALLY CON-
SISTENT

Consider the weak m-tightness Theorem 13 in Section 6. Generally, a weakly m-
tight network may not have the level of local consistency required by the theorem.
It is tempting to enforce such a level of consistency on the network to make it
globally consistent. However, this procedure may result in constraints with higher
arity.

Ezample 8. Consider a network with variables {z,z1,z2,23}. Let the domains
of x1, 2, z3 be {1,2,3}, the domain of z be {1,2, 3,4}, and the constraints be that
all the variables should take different values:
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T F# T1,T F T2, T F T3,T1 # T2,T1 # T3,T2 F T3.

This network is strongly path consistent. In checking the 4-consistency of the
network, we know that the instantiation (1,2, 3) of {z1, 2,2} is consistent but can
not be extended to z3. To enforce 4-consistency, it is necessary to introduce a
constraint on {z1, 22,2} to make (1,2,3) no longer a valid instantiation.

To make the new network globally consistent, the newly introduced constraints
with higher arity may in turn require higher local consistency in accordance with
Theorem 13. Therefore it is difficult to predict an exact level of consistency (variable
based) to enforce on the network to make it globally consistent.

In this section, relational consistency will be used to make a constraint network
globally consistent.

Definition 13. [van Beek and Dechter 1997] A constraint network is relationally
m-consistent iff given (1) any m distinct constraints cg,,---,cs,., and (2) any x €
N, S;, and (3) any consistent instantiation @ of the variables in (UZ,S; — {z}),
there exists an extension of @ to z such that the extension is consistent with the
m relations. A network is strongly relationally m-consistent if it is relationally
j-consistent for every j < m.

Variables are no longer of concern in relational consistency. Instead, constraints
are the basic unit of consideration. Intuitively, relational m-consistency concerns
whether all m constraints agree at every one of their shared variables. It makes
sense because different constraints interact with each other exactly through the
shared variables.

Relationally 1-, and 2-consistency are also called relationally arc, and path con-
sistency, respectively.

Using relational consistency, it is possible to obtain global consistency by enforc-
ing local consistency on the network. In order to achieve our main result we need
a stronger version of m-tightness — proper m-tightness.

Definition 14. A constraint cg, is properly m-tight with respect to z € S; iff for
any instantiation a of S; — {z},

|Ei,w| S m.

A constraint cg, is properly m-tight iff it is properly m-tight with respect to every
T € S;.

A constraint is m-tight if it is properly m-tight. The converse may not be true.
For example, the constraint z < y, where z € {1,2,---,10} and y € {1,2,---,10},
is 9-tight but not properly 9-tight. It is properly 10-tight since |E,(10)| = 10 when
y = 10.

A weakly properly m-tight network is defined by replacing “m-tight” with “prop-
erly m-tight” in definition 11 (section 6).

Definition 15. A constraint network is weakly properly m-tight at level k if and
only if for every set of variables {z1,---,z;}(k < < n) and a new variable, there
exists a properly m-tight constraint among the relevant constraints after an instan-
tiation of the [ variables.
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We have the following observation on the weak m-tightness and weak proper
m-tightness of a network.

PROPOSITION 16. A constraint network is weakly properly m-tight (and weakly
m-tight respectively) at any level if the constraint between every two wvariables in
the network is properly m-tight (m-tight respectively).

Proof. Consider any level k, any set of variables Y = {z1, 2o, --,2;}(k <1 < n),
and any new variable z ¢ Y. Since the constraint between any two variable is
properly m-tight, the constraint cg,, ,; on 1 and z is properly m-tight. Therefore,
there is a properly m-tight constraint c,, ,} among the relevant constraints after
an instantiation of Y. 0O

Now we have the main result of this section.

THEOREM 17 WEAK PROPER-TIGHTNESS. Given a constraint network whose
constraint on every two variables is properly m-tight, it is globally consistent after
it is made relationally m + 1-consistent.

Proof. It can be verified that the proper m-tightness of the binary constraints
is preserved during the procedure to enforce certain level of consistency in the
network. So, after enforcing strong relational m + 1-consistency on the network, it
is still weakly properly m-tight. The theorem follows immediately from Theorem 18
in the next section. [

The implication of this theorem is that as long as we have certain properly m-
tight constraints on certain combinations of variables, the network can be made
globally consistent by enforcing relational m + 1-consistency.

Remark. Proposition 16 and Theorem 17 assume there is a constraint between
every two variables. If there is no constraint between some two variables, a universal
constraint is introduced. In this case, we can apply path consistency to the con-
straint network to make binary constraints tighter so that lower level of relational
consistency is sufficient to make the network globally consistent.

9. APPLICATION V: TIGHTNESS AND CONVEXITY REVISITED

All the results on small set intersection and tree conver set intersection in section 3
can be rephrased in a relational consistency setting. For example, a new version of
weak tightness based on relational consistency is given as follows.

THEOREM 18 WEAK TIGHTNESS. If a constraint network R of constraints with
arity of at most r is strongly relationally (m + 1)-consistent and weakly m-tight at
level of (m + 1)(r — 1) + 1, it is globally consistent.

Proof. Let j = (m + 1)(r — 1) + 1. The constraint network R will be shown to
be k-consistent for all k (j < k < n).

Let Y = {z1,---,zk_1} a set of any k — 1 variables, and @ be an consistent
instantiation of all variables in Y. Consider any new variable xy. Without loss of
generality, let Rg,,-- -, Rs, be the relevant constraints, and E; be the extension set

of @ to x with respect to Rg, for i <.

(Consistency to Set) Consider any m + 1 of the | extension sets. Since the R is
relationally (m+ 1)-consistent, the intersection of m+ 1 extension sets is not empty.
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(Set to Set) The network is weakly m-tight. So, there must be an m-tight con-
straint in the relevant constraints Rg,,---,Rs,. Let it be Rs,. We know its ex-
tension set |E;| < m. For every m + 1 of the extension sets have a non-empty
intersection, all [ extension sets share a common element in terms of the small set
intersection lemma (Lemma 6).

(Set to Consistency) From the lifting lemma, we have that R is k-consistent. [

Compared with the weak tightness theorem in the previous section, the exposition
of the result is neater and the proof is simpler.

For completeness, we also include here a new version of the tree convex theorem
using relational consistency. The proof is omitted since it is a simplified version of
the one in Section 5 as hinted by the proof above.

THEOREM 19 TREE CONVEXITY. Let R be a tree convex constraint network. R
is globally consistent if it is strongly relationally path consistent.

10. DISCUSSION

The lifting lemma and proof schema proposed in this paper allows us to study
consistency in constraint networks through properties of set intersection. We have
demonstrated how to infer properties of consistency on a network purely by making
use of set intersection properties. There are a few advantages for this approach.

Firstly, although this approach does not offer “new” way to prove consistency
results, it does provide a uniform way to understand many seemingly different
results on the impact of convexity and tightness on global consistency. In addition
to the results shown here, some other results can also be obtained easily by the
lifting lemma and proof schema. For example, the work of David [1993] can be
obtained by lifting the singleton set Corollary 8. The work of Faltings and Sam-
Haroud [1996] is on convex constraint networks in continuous domains and the
idea there is to lift Helly’s theorem [Eckhoff 1993] on intersection of convex sets in
Euclidean spaces.

Furthermore, this approach singles out the fact that set intersection properties
play a fundamental role in determining the consistency of a constraint network.
With the help of this perspective, we identify a number of new consistency results
which we believe are significant progress to convexity and tightness of constraints
since van Beek and Dechter’s work [1995; 1997]. We identify a new class of tree
convex constraints which is a generalization of row convex constraints [van Beek
and Dechter 1995]. In a network of tree convex constraints, global consistency is
ensured by a certain level of local consistency. We also show that in a network
of arbitrary constraints, local consistency implies global consistency whenever there
are m-tight constraints on certain variables (e.g. Theorem 13). However, when the
network does not have the required local consistency, global consistency may not be
simply obtained by enforcing such a level of local consistency. A surprising result
is that as long as the constraint between every pair of variables is properly m-tight
in an arbitrary network, global consistency can be achieved by enforcing a certain
level of relational consistency (Theorem 17). In previous work (e.g. [van Beek and
Dechter 1997]), all constraints are required to be m-tight which may be violated
by newly introduced constraints in the process of enforcing the intended relational
consistency.
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We would like to emphasize that the proof schema greatly ease the study of the
consistency of a network. In the case of tightness, from the point view of set inter-
setion, the tight set intersection lemma is technically a straightforward extension of
the tight sets intersection lemma (an essential but not explicitly expressed middle
result in [van Beek and Dechter 1997]). This small improvement on set intersection
result has resulted in significant improvement on consistency results.

Secondly, the establishment of the relationship between set intersection and con-
sistency in a constraint network does not only make it easier for researchers outside
the constraint network community to understand the existing consistency results,
but also makes it possible for them to contribute to consistency results by exploiting
their knowledge on set intersection properties.

In addition to k-consistency and relational consistency, there are other types of
consistency like directional consistency [Dechter and van Beek 1997] and adaptive
consistency [Dechter and Pearl 1987] where the proof schema are equally applicable.
Under these types of consistency, the conditions of many theorems in this paper
can be further relaxed and thus the results are more effective in practice since they
need less computation and require weaker properties on the constraint network.
More work on tightness of constraints can be found in [Zhang 2004].

In the future, we plan to explore existing properties on set intersection and hope
to derive from them useful consistency results.
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