Arc Consistency on n-ary Monotonic and Linear
Constraints

Zhang Yuanlin and Roland H.C. Yap

School of Computing
National University of Singapore
3 Science Drive 2
Republic of Singapore 119260
{zhangyl,ryap}@comp.nus.edu.sg

Abstract. Many problems and applications can be naturally modelled
and solved using constraints with more than two variables. Such n-ary
constraints, in particular, arithmetic constraints are provided by many
finite domain constraint programming systems. The best known worst
case time complexity of existing algorithms (GAC-schema) for enforcing
arc consistency on general CSPs is O(ed™) where d is the size of domain, e
is the number of constraints and n is the maximum number of variables
in a single constraint. We address the question of efficient consistency
enforcing for n-ary constraints. An observation here is that even with
a restriction of n-ary constraints to linear constraints, arc consistency
enforcing is NP-complete. We identify a general class of monotonic n-ary
constraints (which includes linear inequalities as a special case). Such
monotonic constraints can be made arc consistent in time O(end). The
special case of linear inequalities can be made arc consistent in time
O(en*d) using bounds-consistency which exploits special properties of
the projection function.

1 Introduction

Arc Consistency (AC) is an important technique for solving Constraint Satis-
faction Problems (CSPs) [17]. A large part of the literature is thus on efficient
algorithms for enforcing arc consistency on CSPs. The focus is usually on binary
CSP where each constraint involves at most two variables. The well-known al-
gorithms for arc consistency in binary CSPs include Waltz’s filtering algorithm
[30], AC-3 [17], AC-6 [4], AC-5 [28] and many others.

Constraint programming has shown that consistency techniques, in partic-
ular, AC-based methods are effective and useful for solving practical problems
[27]. However, many real-life problems can be modelled naturally as a non-binary
CSP where a constraint involves more than two variables. We call a constraint
which involves an arbitrary number of variables an n-ary constraint. An n-ary
CSP is then one where the maximum number of variables in constraints is at
most n. Some typical examples of n-ary constraints include the all different con-
straint, the cardinality constraint [24] and linear arithmetic constraints. Such

n-ary constraints are provided by many constraint programming languages and
libraries.

There are two main approaches to deal with n-ary CSPs. The first approach
is to avoid altogether the question of an n-ary CSP. This is achievable since it is
always possible to translate an n-ary CSP into a different binary CSP [10, 25].
The standard techniques in binary CSP can be used to solve the transformed
CSP thus solving the original n-ary CSP also. A recent paper [1] is a detailed
examination of the translation approach.

The second approach is to develop consistency techniques directly applicable
to m-ary constraints. One direction is to extend techniques developed in the bi-
nary case for general n-ary CSPs. The other is to develop specialised techniques
which can exploit the semantics of the particular n-ary constraints. Some repre-
sentatives of first direction are as follows. Mackworth [18] generalized AC-3 to
NC to deal with n-ary constraints. This is improved by GAC-4 [19] which is a
generalization of AC-4. GAC-4 improves the complexity of NC, at the cost of a
higher space complexity and a bad average time complexity. The time complex-
ity of GAC-4 is O(ed™) where e is the number of constraints and d is the size of
the domain. We see that in contrast to their binary CSP AC versions, NC and
GAC-4 may not be practical due to their high time complexity. A more efficient
approach is the GAC-schema [5] based on single support and multidirectionality
but it has the same worst case time complexity as GAC-4. The second direc-
tion is consistency algorithms for particular classes of constraints which can lead
to more efficient algorithms, for example the global all different constraint and
cardinality constraint [24].

The main contributions of this paper are the following. We address the prob-
lem of efficient consistency enforcing for n-ary constraints. An observation here
is that even with a restriction of n-ary constraints to linear constraints, arc
consistency enforcing becomes intractable. We identify a general class of mono-
tonic n-ary constraints (which includes linear inequalities as a special case). Such
monotonic constraints can be made arc consistent in time O(en3d). The special
case of linear inequalities can be made arc consistent using bounds-consistency
which exploits special properties of the projection function in time O(en?d).

This paper is organized as follows. First, we present some background ma-
terial for n-ary CSP and the generalization of AC used here. We then formalize
bounds based propagation as bounds-consistency for linear constraints. We give
an efficient bounds-consistency algorithm for linear constraints. In Section 4, we
look at arc consistency for linear inequalities and define a new class of mono-
tonic constraints which is tractable. We then examine arc consistency for linear
equations. Finally, we discuss related work.

2 Preliminaries

In this section we will give some definitions and notation for general n-ary CSPs
[17,19)].

Definition 1. An n-ary Constraint Satisfaction Problem (N, D, C) consists of
a finite set of variables N = {1,---,m}, a set of domains D = {Dy,---,Dp,},
where D; is a finite set of values that i can take, and a finite set of constraints
C = {cx | X C N}, where each constraint cx is a relation on variables of set
X and thus cx is a subset of D;; X Dy, X ---x D;, where iy € X,k € {1,...,l}.
The arity of the CSP is defined as n = Maz{|X| | cx € C}.

Throughout this paper, the number of variables is denoted by m, the maxi-
mum arity of constraints in the n-ary CSP is n, the size of largest domain is d,
and the number of constraints is e. Thus, a binary CSP is simply a 2-ary CSP.

A constraint in an n-ary CSP may be defined and represented in a number
of ways. It can be represented explicitly as a set of tuples (either allowed or
disallowed), a conjunctive constraint, implicitly as an arithmetic expression, or
by any predicate whose semantics is defined by a particular definition/program
code. In this paper, we will use the notation cx to represent both the form of a
constraint and the set of tuples that satisfy the constraint.

Definition 2. Given a CSP (N,D,C) and a constraint cx € C. We define a
solution of constraint cx to be any tuple (v;,,---,v;.) € cx. If cx is empty, we
say that there is no solution for cx.

We are now in a position to define arc consistency for n-ary CSPs. The
following definition from Mackworth [17] is one natural generalization of arc
consistency.

Definition 3. Given an n-ary CSP (N,D,C), a constraint cx € C is arc con-
sistent with respect to D iff Vi € X and Vv € D;, v is a component of a solution
of cx in which case v is said to be valid with respect to cx. A CSP (N,D,C) is
arc consistent iff all cx € C are arc consistent.

In this paper, we will employ this particular definition of arc consistency for
n-ary CSPS which is sometimes also called hyper-arc consistency. We remark
that our definition of arc consistency is similar to relational arc consistency [26].
Enforcing higher consistency such relational path consistency on the n-ary CSPs
is NP-complete in general (see Section 5).

The task of an arc consistency algorithm is then to remove those invalid val-
ues from the n variables in each constraint. In a binary CSP, the representation
of a constraint may not be so important for this process. In the n-ary CSP case,
the precise representation may fundamentally affect the efficiency of the arc con-
sistency algorithm. For example, the all different constraint can be represented
in a number of ways. Suppose that we represent the all different constraint using
an explicit tuple representation as in GAC-4, the set of allowed tuples could be
huge which may be impractical in terms of space and time. The GAC-schema
of [5] is proposed to partly address this problem. However, GAC-schema is a
general framework and does not address how to deal with special constraints
such as linear arithmetic constraints efficiently.

3 Bounds consistency on linear constraints

The first part of this section introduces the specialization of n-ary CSPs to linear
arithmetic constraints and defines bounds-consistency on them. The second part
presents bounds-consistency algorithms and their associated complexity analysis.
We denote the set of integers by Z.

3.1 Linear constraint and bounds-consistency

Definition 4. A linear arithmetic constraint cy,,} s of the form
a1z +asxs + -+ a4, O b
a;i,beZ <e{=<}

where vars(c) and |c| is used to denote the set and the number of variables that
occur in c respectively. A linear constraint system representing a n-ary CSP is
one where all constraints are linear arithmetic constraint and all domains contain
only integers. Other linear arithmetic constraints with (<, >, >) can be rewritten
in the above form.

Essentially, the problem of enforcing n-ary arc consistency is related to that
of finding all solutions satisfying the given linear constraint. This may be quite
expensive. One well known way to reduce this cost is to relax domains of the
variables so that they form a continuous real interval bounded by the maximum
and minimum values of the corresponding domains. Since variables can now
take real values and are no longer discrete, it is easy to make the constraint arc
consistent. We now make this precise. First, we introduce some basic interval
arithmetic operations [20] which will simplify our presentation.

Assume that each variable z is associated with an interval [I, u]. We use [z]
and (z) to denote two kinds different kinds of operations: an interval operation;
and a literal operation on x respectively. Let [, u denote the interval associated
with z, we use the following notation:

(2] = L, @ =)

Given [z] = [l1,u1] and [y] = [l2, uz], the interval operations are defined in
the usual fashion:

[z] + [y] = [l + Iz, w1 + uz),
[1:] - [y] = [ll — U2,U1 — l2],
[z] —a=][l; —a,u; — qa],

[[aly,au1],a >0
alz] = { [au,ali],a <0,

[z] N [y] = [maz(ly,12), min(u1,uz) | .

The literal operations unlike the interval operations are defined as a pairwise
tuple operation, which differs in subtraction from the interval counterpart:

@xw=(252).

Uy :|:’LL2

We will for convenience also overload the [| and () notation. We use ([z])
to mean a substitution of the literal operation for the interval operation.

The following example is now used to motivate the use of interval reasoning
for consistency,

3z —4y =0, [z] = [y] = [1,10].

Clearly, y cannot take the value 10 no matter what value x takes. More precisely,
given any value of z in [1,10], y can only take a value in [3/4, 30/4]. So the set of
valid values of y with respect to the above constraint is [3/4, 30/4] N [1,10]=[3/4,
30/4]. The above process to remove invalid values can be formalized as follows.

Definition 5. The projection function m; of a constraint ¢ on x; is

mi(c) = ?(alxl +eotaiamio1+aiaTip + oo+ an, — b).

Given intervals on all the variables, we can define the interval version of the
projection of ¢ on xz; as:

We call II;(c) the natural interval extension of m;(c).

We now define the function Proj;(c) as follows:

1I;(c) if O is =
Proj;(c) = ¢ [—00,Ub(II;(c))] if O is <
[Lb(IT;(c)), +oo] if O is >

where
o > if a; is negative and < is <
< otherwise

and Ub([l,u]) = u, Lb([l,u]) = L.
As a consequence of the intermediate value theorem from calculus, we have
the following property.

Property 1. Given a constraint ¢ with initial domains ([z1],---, [zs]), the con-
straint ¢ is arc consistent with respect to the new domain ([z1]NProji(c),- -, [zn]N

Proj,(c)).

The relaxation of the domain of a variable from discrete to a continuous real
interval allows efficient arc consistency enforcement for a single linear constraint
in the time needed for computing n operations of Proj;(c). However for a system
of constraints, this process may not terminate [13].

We now define bounds-consistency. Instead of using the real interval re-
laxation, we restrict the interval to the Z-interval whose upper bound and
lower bound are integers. The Z-interval representation of a set S C R is
0S = [[u], |v]] where v and v is the minimum and maximum real values in
S respectively.

Definition 6. A constraint c is bounds-consistent with respect to (0D, ,---,0D,)
iff Va; € vars(c) OD,, C OProj;(c;). A linear constraint system (N, D, C) is
bounds-consistent with respect to (0Dy,---,0D,,) iff every ¢; € C is bounds-
consistent.

3.2 Bounds consistency algorithm and its complexity

Although the definition of bounds-consistency holds for n-ary linear constraints,
it fits well in an AC-3 style computation framework which is normally only used
for binary constraints. We now describe a AC-3 like algorithm to achieve bounds-
consistency on a system of linear constraints. We chose this presentation for two
reasons. It is a simple and natural algorithm and for that reason would be similar
to general propagation and filtering based algorithms as well. Unlike AC-3, the
basic unit of manipulation here is a single constraint. A queue is employed to
hold those constraints needing update when the domain of some of its variables
is changed. The algorithm BC is listed in figure 1. The difference between BC
and AC-3 is that the REVISE procedure is specialized for bounds-consistency
and linear constraints.

We point out that the operation in line 1 of BC is different from the narrow-
ing operation [3] in that the Z-interval representation performs inward rounding
while for continuous intervals represented by floating point numbers it an out-
ward rounding operation. Note that the narrowing operation on c; defined by
REVISE is no longer idempotent given inward rounding.

Lemma 1. Given a linear constraint system (N, D, C), the worst case time com-
plezity of algorithm BC is O(en3d)

Proof. The worst case complexity of BC depends on the number of constraints
ever entering the Queue Q). A constraint ¢ enters @ iff some value in some
domain involved in c is deleted. For each variable z; € N, assume it appears
in k; constraints. In total, we have md values in the system where m is the
number of variables in C'. Thus the number of constraints ever entering @ is
at most > ;- d-k;. Let o be Y ;v k;i. A loose estimate of k; can be simply e
which means the variable can appear in any constraint in the system. However,
a relatively tighter estimation for « is as follows. Consider the bipartite graph
Gm,e with vertices sets NV and C. There is an edge between z; € N and ¢; € C

Algorithm BC
begin
Q < {cilei € Ol
while (Q not empty)
begin
select and delete ¢; from Q;
REVISE(ci, Q);
end
end
procedure REVISE(c;, Q)
begin
for each z; € vars (c;)
begin
if [z;] € OProji(c;)
begin
1. [zi] < [z:] N OProji(cj);
2. Q <+ {cx € C | z; € vars (ck)}
end
end
end

Fig. 1. Algorithm BC

iff z; appears in c;. o is exactly the number of edges of G, .. Since the degree of
c; is not more than n we have that the number of edges in G, . is less than ne,
that is @ < ne. The complexity of procedure REVISE is at most n?. Therefore
the complexity of BC is O(en3d). O

The naive algorithm can be improved by making REVISE more efficient using
the following result.

Proposition 1. Given an n-ary linear arithmetic constraint system (N, D, C),
bounds-consistency can be achieved in time O(en?d)

Proof. To improve the efficiency of BC, one way is to make REVISE faster. Let
constraint c; be
aj,T1 +aj, T2+ -+ aj, c, < bj.
Let
fi=a;z1 +ajz2+ - +aj,z0 —b;
Let F; be the natural interval extension of f;. Now, for any z; € c;

i(c;) = ——[(F3) — (aj[a:)]-

aj;

i

since we have that

(Fj) — (aj;[zi]) = ([aj,[z1] + -+ - aj;[z:] + -+ - aj, [2a] — b)) — (aj,[z:])
=aj [z1] + - +aj, [zioa] + aj, [Tia] + o +ag 0] = b;

Note the f; is not a projection function and the use of the literal () operations in
IT;(c;j). According to the definition of Proj;(c;), REVISE can be implemented in
linear time of n. So, the BC algorithm can be implemented in time of O(en?d).
O

4 Linear inequalities and monotonic constraint

We will now consider a system of linear inequalities. For a system of linear
inequalities, we have the following result without any relaxation of the Z domain
to Z-intervals.

Proposition 2. Given an n-ary CSP (N,D,C) which consists only of linear
inequalities, it will be arc consistent after bounds-consistency is enforced on it.

Proof. Assume CSP (N, D,(C) is bounds-consistent. Now we show that any
constraint c; is arc consistent with respect to D. Consider any variable z;, z; €
vars(c;), and any value v, v € D;. Let [and g be the least and greatest integers
in D;. Without loss of generality, assume that a; > 0, we have z; < m;. Because
the system is bounds-consistent, we have [l, g] C OProj;(c;), which means that
v < g < Ub(Proji(cj)) where Ub(Proj;(c;j)) is obtained by letting zs = vy, k :
1...n,k # i where vy is either the lower bounds or the upper bounds of Dy
depending on the interval operation. So, (v1,--,v;—1,V, Vi1, "+, V) satisfies
c;. Similarly, when a; < 0, we can prove v is part of a solution of c;.

It follows immediately that a system of linear inequalities can be made arc
consistent in worst case time complexity of O(en?d).

This result can be generalized to a bigger class of n-ary constraints, the n-ary
monotonic constraints. We begin by recalling the definition of binary monotonic
constraint in [28]. From now on, we assume that all the domains D; are finite
and have a total ordering.

Definition 7. [28] Given a binary CSP (N,D,C), a constraint ¢ € C' is mono-
tonic with respect to domain TD = U2, D; iff there exists a total ordering on
TD such that for all values v,w € TD and c(v,w) implies c(v',w') for allv' <wv
and w' > w.

An example of an arithmetic constraint which is monotonic under this def-
inition is z < y,[z] = [y] = [1,10]. However, with this definition, the linear
inequality z+y < 10, [z] = [y] = [1, 10] is not a monotonic constraint. For exam-
ple, consider £ = 5,y = 5 as an a valid pair, then ' = 5,3y’ = 6 is not consistent
using the natural ordering. There is no total ordering on T'D which makes this
constraint monotonic.

However applying algorithm BC, a binary system of both kinds of constraints
can be made arc consistent in time O(ed). Thus we see that this definition of
monotonicity is stronger than necessary and does not fully exploit the special
properties of inequalities which give more efficient arc consistency algorithms.
We now give the following generalization of binary monotonic constraint which
remedies this problem by relaxing the total ordering requirement on the union
of all the domains.

Definition 8. Given a binary CSP (N,D,C), a constraint cy; j; € C is mono-
tonic iff there exists a total ordering on D; and D; respectively such that Vv €
D;,Yw € D; c¢(v,w) implies c(v',w") for all v/ <v and w' > w.

Consider again the example, z + y < 10,[z] = [y] = [1,10]. This is now
monotonic. A possible ordering is the natural one on z, and on y we have the
reverse ordering. Now we have a natural extension of monotonicity to n-ary
general constraints.

Definition 9. Given an n-ary CSP (N,D,C), a constraint cx € C is mono-
tonic with respect to variable i € X iff there exists a total ordering on D; to D,
respectively such that Vv € D;,Yv; € Dj cx (v1,- -, Vi—1,V,Vit1," -, Vp) implies
(Vs s v,V Vi, e, 0y) for all v < v oand v > vy for j € X, # 0. A
constraint cx € C is monotonic iff cx is monotonic with respect to all variables

of X.

It is easy to verify that any n-ary linear arithmetic inequality is monotonic.
Another example of a monotonic constraint is, x xy < 2,D, = Dy, = D, =
{1,...,100}. For finite domain constraints, our definition of monotonic con-
straints is more general than the monotonic functions defined in [11].

In order to achieve arc consistency on monotonic constraints, the REVISE
in algorithm BC should be modified as in Figure 2. It is important to note that
in the new algorithm, an explicit projection function is not required. At the
initialization phase of BC, for any constraint ¢ and i € wars(c), we explicitly
store the particular ordering of each domain involved which makes ¢ monotonic
with respect to 1.

Procedure REVISE(c;, Q)
begin
for each z; € vars (c;)
begin
Vj,v; < the greatest value in D; wrt z;
DELETE = 0;
1. while (not c(v1,---,vn))
begin
remove v; from D;;
DELETE = 1;
v; < the greatest value in D;
end
if DELETE
Q <« {ck € C | z; € vars (c&)}
end
end

Fig. 2. REVISE for monotonic constraint

Proposition 3. Given a CSP (N,D,C) which contains only monotonic con-
straints, it can be made arc consistent in time complexity of O(en3d) if the
complezity of evaluating c(v1,--+,v,) is O(n).

The sketch of the proof is as follows. In a similar fashion to Proposition 2, we
can show that arc consistency can be achieved on monotonic constraints. The
complexity of the algorithm depends on the execution times of line 1 in the
REVISE of Figure 2. If we expand one execution of the algorithm according to
line 1, executions of line 1 can be separated into two groups. One group contains
executions without any value removed and the other group contains executions
with at least one value removed. Because REVISE can be executed at most n?ed
times, the complexity of executions of the first group is n3ed according to the
linear time evaluation of c. As for the second group, we cluster the computation
around variables. Now the total computation is

in-(dm—l-'--—l-di,k)Sin-dﬁmnd
i=1

i=1

where d; (I : 1..k) denotes the number of elements removed from D; in some
execution of the while loop in line 1 on i. Because m < ne, the complexity of
the second group will be smaller than the first group and thus the complexity of
the algorithm is O(end). O

We remark that, as in proposition 1, by using the special semantics of mono-
tonic constraint, it may be possible to decrease the complexity of the arc con-
sistency algorithm by a factor n.

We now would like to briefly discuss how to embed the monotonic arc con-
sistency algorithm into a general algorithm. AC-5 [28] does not discuss how this
is to be done and leaves it as an implementation detail. The AC-6 algorithm is a
suitable candidate for this. To simplify the discussion, we will illustrate the idea
using a binary monotonic cy, ,} given in Figure 3.

In the initialization phase of AC-6 for cy, ,}, we only need the least value in =
and greatest value in y. The ordering used here gives a as the least value in z and
g as the greatest value in y. In the implementation, we can easily associate the
values a and g with the revision process for c(, ;. Now, any deletion of values of
b,c,e, or f by other constraints will not invoke the revision of constraint cy, 3.
Only when a (or g) is removed will monotonic constraint revision be invoked.
After the monotonic revision process finishes, it will associate the revision process
again to the new least (or greatest) values left. This approach conforms to the
lazy principle behind AC-6.

5 Linear equations

We now consider n-ary CSPs where the constraints are linear equations. The
importance of this section is that the complexity results are very different from
the < case. In the equation case when the domains are considered to be discrete,

Clz,y}

S
o
c\\g

T Yy

Fig. 3. A monotonic constraints embedded in AC-6

bounds-consistency does not imply arc consistency. It is only if we relax the
domains to be Z-intervals that bounds-consistency implies arc consistency.

Unfortunately, the problem of enforcing arc consistency on a single linear
equation is a very hard problem. Recall that arc consistency in the n-ary case
means that we need to show that single constraints are satisfiable by themselves.
Consider the one-line integer programming problem: Is there a 0-1 n-vector z
such that

aixry +asxy + - +apnt, =0

where b, a1, - - -, a, are given positive integers? The above problem is NP-complete
[23]. Obviously, enforcing arc consistency on a system of linear equations is also
NP-complete. It is also immediate that enforcing arc consistency on any single
arbitrary n-ary constraint is NP-complete in the worst case.

This observation highlights the computational difficulty with n-ary constraints
and arc consistency. Arc consistency on linear inequalities (also monotonic con-
straints) is tractable, however generalizing to arbitrary linear constraints such
as linear equations makes arc consistency intractable. This distinction can also
be viewed as the difference in arc consistency between different representations.
One can choose to represent linear equations as two inequalities per equation,
eg. exp = b as exp < b,exp > b. In the continuous case, arc consistency on the
original and double inequality representation gives the same resulting domains
in the same time complexity. In the discrete case, the two inequality represen-
tation can be made arc consistent as in Section 4. It does not however make
the original equations arc consistent since arc consistency treats each inequality
separately.

Now consider relational consistency as defined in [26]. On a system of lin-
ear inequalities, relational arc consistency can be achieved in polynomial time,
however enforcing relational path consistency is NP-complete.

6 Discussion and Conclusion

We now discuss the relationship of our work with that in the continuous domain.
A substantial body of work in n-ary constraints comes from the continuous do-

main rather than the discrete domain. The early work [11,22] focused mainly
on issues of correctness, convergence, searching strategy, etc. In more recent
work the emphasis is on using numerical methods such as Newton methods [2]
and Aitken acceleration [15] to speedup convergence. Our definition of bounds-
consistency is similar to arc B consistency [16] and interval consistency [2,9]
but differs in that bound-consistency uses an inward rounding operation. The
time complexity of filtering algorithms in the continuous domain, on the other
hand, is usually not treated for the following reasons. Firstly for real/rational
intervals, the interval Waltz filtering algorithm may not terminate given arbi-
trary linear constraints [8]. Secondly for floating point intervals, the domain is
huge and thus the worst case time complexity may not be of practical relevance
and efficiency is gained not so much by reducing the time complexity, but by
faster convergence using numerical methods. In [16], existing complexity results
from general discrete arc consistency algorithm are used to bound their filter-
ing algorithms. Thus, the work in the continuous case does not directly help in
getting more efficient algorithms and their resulting time complexity analysis in
the discrete case.

n-ary discrete constraints, including integer linear constraints [21], are widely
used for modelling and solving many problems in systems for constraint program-
ming using finite domain solvers [7,12,27]. Such solvers use various techniques
based on the propagation of bounds for arithmetic constraints [14]. The use of
bounds based propagation techniques is not new and originates as early as in
1978 [14]. However, the efficiency and level of consistency of such techniques is
not studied and described in detail. In this paper, we address the question of what
level of consistency can be achieved efficiently on n-ary linear constraints. The
observation from Section 5 shows that arc consistency on n-ary linear equations
is not tractable. We carefully introduce and formalize the notions of bounds-
consistency in the context of discrete CSP. It is shown that arc consistency for
linear inequalities system can be achieved with a simple AC-like algorithm in
time complexity O(en3d). Where an efficient implementation of REVISE is pos-
sible as is the case with the projection of linear inequalities, the time complexity
is improved to O(en?d).

Given that arc consistency on a single n-ary constraint can be NP-complete,
we identify a general class of monotonic constraints (which need not be linear)
for which arc consistency can be efficiently enforced. Monotonic constraints are
actually a special case of row convex constraints [26]. [26] presents an algorithm
achieving relational path consistency for row convex constraints but it behaves
exponentially even for a system of two n-ary monotonic constraints (since it is
an NP-complete problem).

The work in this paper also extends the results in [28] and complements the
GAC-schema [5].

Some open questions suggested by the results here are the following. What
are other general classes of n-ary constraints for which enforcing arc consistency
is efficient. What is the optimal time complexity for arc consistency on linear
inequalities and monotonic constraints?

References

1.

2.

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.
21.

22.

23.

F. Bacchus and P. van Beek, “On the conversion between non-binary and binary
constraint satisfaction problems”, Proceedings of AAAI-98, Madison, WI, 1998

F. Benhamou, D. McAllester, and P. van Hentenryck, “CLP (intervals) Revisited”,
Proceedings of 1994 International Symposium on Logic Programming, 124-138,
1994

F. Benhamou and W. Older, “Applying Interval Arithmetic to Real Integer and
Boolean Constraints”, Journal of Logic Programming 32(1), 1997

C. Bessiere, “Arc-consistency and arc-consistency again”, Artificial Intelligence
65:179-190, 1994

C. Bessiere and J. Regin, “Arc consistency for general constraint networks: pre-
liminary results”, Proceedings of IJCAI-97, Nagoya, Japan, 1997

C. Bessiere and J. Regin, “MAC and combined heuristics: two reasons to forsake
FC(and CBJ?) on hard problems”, Proceedings of Principles and Practice of Con-
straint Programming, Cambridge, MA. 61-75, 1996

P. Codognet and D. Diaz, “Compiling Constraints in CLP(FD)”, Journal of Logic
Programming 27(3), 185-226, 1996

E. Davis Constraint Propagation with Interval Labels Artificial Intelligence 32,
281-331, 1987

R. Dechter, I. Meiri and J. Pearl Temporal constraint networks Artificial Intelli-
gence 49, 61-95, 1992

R. Dechter and J. Pearl, “Tree clustering for constraint networks”, Artificial Intel-
ligence 38:353-366, 1989

E. Hyvonen Constraint reasoning based on interval arithmetic: the tolerance prop-
agation approach Artificial Intelligence 58, 71-112, 1992

ILOG, ILOG SOLVER Reference Manual

Joxan Jaffar, Michael J. Maher, Peter J. Stuckey and Roland H.C. Yap Beyond
Finite Domains PPCP’9): Proceedings of the Second Workshop on Principles and
Practice of Constraint Programming, 1994, 86-94

J. Lauriere, “A language and a program for stating and solving combinatorial
problems”, Artificial Intelligence 10:29-127, 1978

Y. Lebbah and O. Lhomme Acceleration methods for numeric CSPs Proc. of AAAI-
98 1998

Lhomme, Olivier, Consistency Techniques for Numeric CSPs, Proceedings of
IJCAI-93,Chambery,France,232-238, 1993

A. K. Mackworth, “Consistency in Networks of Relations”, Artificial Intelligence
8(1):118-126, 1977

A. K. Mackworth, “On reading sketch maps”, Proceedings of IJCAI-77, 598—606,
Cambridge MA, 1977

R. Mohr and G. Masini , “Good old discrete relaxation”, Proceedings of ECAI-88,
651-656, Munchen, FRG, 1988

R. E. Moore, Interval Analysis, Prentice Hall, 1966

G. L. Nemhauser and L. A. Wolsey, Integer and Combinatorial Optimization, New
York, Wiley, 1988

Older, W. and Vellino,A. Constraint Arithmetic on Real Intervals Constraint Logic
Programming:Selected Research, Benhamou, F. and Colmerauer, A. (eds.), 175—
195,1993

C. H. Papadimitriou, “On the complexity of integer programming”, J. of the ACM
28(4):765-768, 1981

24.

25.

26.

27.

28.

29.

30.

J. C. Regin, “Generalized arc consistency for global cardinality constraint”, Pro-
ceedings of AAAI-96, 209-215, Portland, OR, 1996

F. Rossi, C. Petrie, and V. Dhar, “On the equivalence of constraint satisfaction
problems”, Proceedings of the 9th European Conference on Artificial Intelligence,
550-556, Stockholm, Sweden, 1990

P. van Beek and R. Dechter, “On the minimality and global consistency of row-
convex constraint networks”, Journal of the ACM 42(3):543-561, 1995

P. van Hentenryck, Constraint Satisfaction and Logic Programming, MIT Press,
Cambridge, 1989

P. van Hentenryck, Y. Deville, and C. M. Teng, “A Generic Arc-Consistency Al-
gorithm and its Specializations”, Artif. Int. 58(1992):291-321, 1992

P. van Hentenryck, L. Michel, and Y. Deville, Numerica: A Modeling Language for
Global Optimization, MIT Press, Cambridge

D. L. Waltz, “Generating semantic descriptions from drawings of scenes with shad-
ows”, MAC-AI-TR-217, MIT, 1972

