
Arc Consistency in MAC: A New Perspective?

Chavalit Likitvivatanavong, Yuanlin Zhang,
James Bowen, and Eugene C. Freuder

Cork Constraint Computation Centre, University College Cork, Ireland
{chavalit, yzhang, j.bowen, e.freuder}@4c.ucc.ie

Abstract. AC refers to algorithms that enforce arc consistency on a
constraint network while MAC refers to a backtracking search scheme
where after each instantiation of a variable, arc consistency is main-
tained (or enforced) on the new network. In this paper, we use mac to
denote maintaining arc consistency in MAC. In all existing studies, mac

is simply taken as an associate of an AC algorithm. In this paper, we
argue that it is worth taking mac as an entity separated from AC. Based
on an observation that mac is invoked many times during a search, we
propose three schemes to improve the efficiency of mac. First, the results
of constraint checks are cached. Second, values remained in the auxiliary
data structures used by sophisticated AC algorithms are better exploited.
Third, we adopt a non-invariant ordering on domain values. Algorithms
are also presented for these schemes. Their performances are discussed
in terms of time complexity, space complexity, number of checks, and
running time. In our experimental setting, we find that it is possible to
design a mac algorithm which is simple to implement and runs faster as
well as uses less space.

1 Introduction

AC refers to algorithms that enforce arc consistency on a constraint network
while MAC refers to a backtracking search scheme where after each instantiation
of a variable, arc consistency is maintained (or enforced) on the new network.
MAC is regarded as one of the best search schemes not only by the researchers
in the community, but also by the practitioners in the industry. It has been
employed by many constraint solvers, for instance ILOG solver and CHOCO.

We will use mac to denote the maintaining arc consistency component of
a MAC algorithm. It is taken for granted that to improve the efficiency of a
MAC algorithm, one needs to focus on the AC algorithm employed by MAC;
conversely, the effectiveness of AC algorithm is usually shown in the context of
MAC. This reasoning works well and produces significant insight on the effi-
ciency of AC algorithms. Unfortunately as a result, the larger context of MAC is
completely ignored. In other words, AC is simply equated to mac . In this paper
we argue that although mac is similar to AC, it deserves separate treatment.

? This work has received support from Science Foundation Ireland under Grant
00/PI.1/C075.



2 Authors Suppressed Due to Excessive Length

A number of AC algorithms have been designed since Waltz first proposed a
scene filtering algorithm in [9]. Fundamentally, they fall into two classes: coarse-
grained (e.g. AC3 [5], AC3.1 [10] and AC2001 [2]) and fine-grained (e.g. AC6
[1]). When a value is removed from a domain, algorithms in the former class
will revise any affected domain with respect to the corresponding constraint,
whereas algorithms in the latter class will revise only the affected values. There
are algorithms in both classes which have optimal worst-case time complexity
and perform well in empirical studies. Sabin and Freuder [7] proposed MAC in
1994 and it becomes so well accepted in the last decade by the community that
to show the efficiency of a new AC algorithm, one has to test it in MAC. It has
been shown that most efficiency improvements of AC algorithms could also lead
to the improvements of MAC.

The most obvious difference between AC and mac is that an AC algorithm is
executed only once, but due to backtracking and failed assignment of a variable,
a mac algorithm may be executed many times (tens of thousands of times in a
difficult random problem instance with 150 constraints and 50 variables, each of
which has a domain with 30 values). Taking this massive number of executions
into account, we propose three improvements for mac .

The fist idea involves caching the results of constraint checks. Unlike AC, for
mac the same constraint checks may be repeated enormous amount times (in
one of our experiments, for a problem that can be solved in 10 to 20 minutes, mac

needs billions of checks whereas AC uses only millions.) Therefore, not only is it
sensible to memorize the results for future use, it is essential for hard problems
or the problems in which the cost of constraint checks is high.

Indeed, the number of constraint checks alone cannot be used to determine
precisely the empirical performance of an algorithms due to the uncertainty on
the cost of a constraint check. By using cache, we are able to deal with this
uncertainty better in mac , making the impact of the cost of constraint checks
more controllable. In our experiments, the performance of mac3 is significantly
improved by using cache, even under reasonably cheap constraint checks. More
details will be presented in Section 3.

The second idea involves passing information from one execution of mac

to another. Most AC algorithms uses auxiliary data structures to speed up the
execution time in standalone preprocessing but they cannot be used effectively in
mac . The main problem lies in the rigid invariant associated with this structure
and the total ordering of variable domains, which require expensive maintenance
when backtrack. In section 4, we will present a method that relax the invariant
and better exploit this auxiliary data structures. This also lead to the third idea
which involves adaptive domain ordering, to be presented in Section 5. Section 6
describes related works. The paper is concluded in Section 7.

These issues will be studied using coarse-grained algorithms, specifically AC3
and AC3.1. The reason lies in their simplicity, and in the case of AC3.1, its
optimal worst-case time complexity. Both algorithm are also empirically efficient.



Arc Consistency in MAC: A New Perspective 3

2 Preliminaries

In this section we review AC3, AC3.1, and MAC. We introduce mac and exper-
imental settings used in next few sections.

Definition 1 (Binary Constraint Network) A binary constraint network is
a triplet (V ,D, C) where V is a finite set of variables, D = {DV | V ∈ V} where
DV is a finite set of possible values for V , and C is a finite set of constraints
such that each CXY ∈C is a subset of DX×DY indicating the compatible pairs
of values for X and Y , where X 6=Y . Deciding whether (a, b) ∈ CXY is called a
constraint check ; this is sometimes written as a boolean function CXY(a, b). If
CXY ∈C, then CYX = {(y, x) | (x, y) ∈ CXY } is also in C.

For (a, b) ∈ CXY , b is called a support of a in Y . If a value a ∈ DX has
no support in Y where CXY ∈ C then a is invalid. A constraint CXY is arc

consistent if every value a ∈ DX has a support in DY . A constraint network is
arc consistent if all constraints are arc consistent. If a constraint network is not
arc consistent, it can be made so by removing invalid values. Such an algorithm
is called Arc Consistency (AC) algorithm.

Throughout this paper, we use n, e, and d to denote the number of variables,
the number of constraints, and the maximum domain size in the network. We
use D0

V to distinguish the original domain of V , while DV denotes the current

domain, which may change in the course of search. Deciding whether a value is
in the current domain is called a domain check. A value in D0

V is alive if it is in
DV ; otherwise it is said to be pruned.

Function succ(b, DY ) is a successor function defined in the usual sense.
head and tail denote the start and the end of a domain, of which they are not
members. succ(head) gives the first value while succ of the last value returns
tail; if the domain is empty then succ(head) = tail. Function cirSucc (“circular
successor”) is defined as follows: cirSucc(x) = head if succ(x) = tail; otherwise
cirSucc(x) = succ(x)

2.1 AC3 and AC3.1

AC3 and AC3.1 are two representatives of coarse-grained algorithms. A basic
operation a constraint revision, that is, removing invalid values in order to make
the network arc consistent. The results are then propagated to other connecting
variables, entailing more revisions. The generic algorithm AC() for coarse-grained
algorithms is listed below. We also list AC3 and AC3.1 whose pseudo-code in-
clude only procedures different from the generic algorithm. In both algorithms,
we assume a total ordering on each domain.

The difference between AC3 and AC3.1 lies in the routine hasSupport. AC3
finds a support from scratch while AC3.1 finds it by using the support found in
the previous revision as a starting point. AC3.1 uses a data structure last(X, a, Y )
to remember the last support of a in DY , where a ∈ DX .



4 Authors Suppressed Due to Excessive Length

AC

AC()
1 ACInitialize()

2 Q ← {(X, Y ) | CXY ∈ C}
3 return propagate(Q)

propagate(Q)

4 while Q 6= ∅ do

5 select and delete an arc (X, Y ) from Q

6 if revise(X, Y ) then

7 if DX = ∅ then return failure
8 Q ← Q ∪ {(W, X) | CWX ∈ C, W 6= Y }

9 return success

revise(X, Y )
10 delete ← false

11 foreach a ∈ DX do

12 if not hasSupport(X, a, Y ) then

13 remove a from DX

14 delete ← true

15 return delete

hasSupport(X, a, Y ) {}

ACInitialize() {}

AC3

hasSupport(X, a, Y )
1 b ← head
2 while b ← succ(b, DY ) and b 6= tail do

3 if CXY(a, b) then return true

4 return false

AC3.1

ACInitialize()
1 foreach CXY ∈ C and a ∈ DX do last(X, a, Y ) ← head

hasSupport(X, a, Y )
2 b ← last(X, a, Y )
3 if b ∈ DY then return true

4 while b ← succ(b, DY ) and b 6= tail do

5 if CXY(a, b) then

6 last(X, a, Y ) ← b

7 return true

8 return false



Arc Consistency in MAC: A New Perspective 5

The worst-case time complexity of AC3 is O(ed3) [5], while the worst-case
complexity of AC3.1 is optimal at O(ed2). AC3 does not use any auxiliary data
structure, whereas the space complexity of the auxiliary data structure of AC3.1
is O(ed).

One way to evaluate the empirical performance of the AC algorithms is to
count the number of constraint checks they conduct. However, an algorithm
that has fewer number of constraint checks may consume more CPU time than
another one with more checks. In our experiment, we also count the number of
domain checks whose cost become more significant as the cost of a constraint
check goes down.

2.2 MAC

MAC [7] is a backtracking search scheme (see Fig. 1) for finding a solution of a
constraint network. Under this scheme, the network is preprocessed by an AC
algorithm. During search, arc consistency is maintained (or enforced) after each
instantiation of a variable in order to prune the search space. This process of
maintaining arc consistency is denoted by mac ; in the figure, V denotes the
most recent assigned variable. Obviously, a key component of mac is AC, i.e.
mac subsumes AC. In this paper, mac based on AC3 is called mac3, and mac

based on AC3.1 called mac3.1. A generic pseudo-code for mac is listed below.

search

backtracker

domain wipeout

failure

success

preprocessing()

mac(V)

no unassigned variable

nothing left to try

Fig. 1. MAC schema

The main difference between mac and AC is that AC is executed only once,
but mac is executed whenever a variable is instantiated or when backtracking
occurs. Given an AC algorithm, it is easy to design a mac algorithm based on
it. For instance, mac3 is derived from AC3 and functions exactly like AC3. In
the following sections we will add more functionalities that take advantage of
the MAC environment.



6 Authors Suppressed Due to Excessive Length

mac

mac(V )
1 macInitialize()

2 Q ← {(U, V ) | CUV ∈ C}
3 return propagate(Q)

macInitialize() {}

2.3 Repeated Constraint Checks

During search in MAC, some constraint checked may be repeated even though
an individual run of mac is optimal. We identify the following types of repeated
constraint check during search:

– positive repeat A constraint check between a and b is performed, and as a
result b supports a. Later in the search, during which period a and b remain
in their respective domains at all time, (a, b) is checked again.

– negative repeat A constraint check between a and b is performed, and
as a result b does not support a. Later in the search, during which period a

and b remain in their respective domains at all time, (a, b) is checked again.

2.4 Experimental Settings

We use a backtracking algorithm that dynamically picks a variable with mini-
mum domain to be instantiated first. Since both AC and mac involve frequent
operations on a variable domain, we design a domain as a random-accessed dou-

bly linked-list. Under this implementation, the following operations take constant

time: (1) deleting a value, (2) checking whether a value is in the current domain
(3) given a value, returning the next value in the current domain.

In the experiments reported in this paper we compare a number of algorithms
against AC3, so to be fair we try to reduce as much as possible the amount of time
needed to perform constraint checks, which dominates the overall running time
of AC3. To this end, we use explicit constraint storage in our implementation.
However, given wide-ranging applications of CSPs, it is better to make use of a
function call that determines whether a given tuple is allowed by a constraint.
As a result, the total cost of a constraint check in our implementation is the
overhead of a function call plus the cost for memory lookup.

We use random problems to compare the experimental performance of our
proposals, based on model B [3]. It is parameterized as (n, d, e, tightness) where
tightness is the number of tuples disallowed by a constraint. We control the dif-
ficulty of the generated instances by varying the tightness. Results are averaged
over 10 different instances. Since we observed a large variance on easy problems,
all statistic on easy problems are averaged over three batches of executions, each
containing 10 instances.

The algorithms are written in C++ and compiled with g++. Running time
of specific routines are profiled using gprof. The experimental platform is Linux



Arc Consistency in MAC: A New Perspective 7

2.4.20 running on a Dell PowerEdge 4600 which has two Intel Xeon 2.80GHz
CPU’s and 4GB of RAM.

3 Caching Constraint Checks

Our proposal relies the fact that mac will be called many times and thus the
consistency of the same tuple may be checked repeatedly. Given the uncertainty
of the cost of constraint checks, it is worth recording the result so that the next
time the same check is requested it will be answered with little cost.

For simplicity, we cache the result of every possible constraint check. In a
binary constraint network, the size of the cache is O(ed2) because there are e

constraints and for each constraint there are at most d2 tuples.

An immediate consequence of this approach is that the performance of mac

with cache would be significantly improved even if each constraint check is mod-
erately expensive. Another benefit of this approach is that we can now assume
the constraint check is reasonably cheap because the cost of the management of
the cache and the cost of the initial O(ed2) raw constraint checks are amortized
over a large amount of repeated checks.

The cache idea is tested by using AC3. The reason for this choice of algorithm
is that the physical CPU time of AC3 is good but the number of its constraint
checks is usually several times of those of more sophisticated algorithms. Using
cache may benefit AC3 the most. The new algorithm is named mac3cache and
listed below.

mac3cache

preprocessing()
1 AC3()

ACInitialize()

2 foreach CXY ∈ C and a ∈ DX and b ∈ DY do cache(CXY, a, b) ← nil

hasSupport(X, a, Y )

3 b ← head
4 while b ← succ(b, DY ) and b 6= tail do

5 if cache(CXY, a, b) = nil then

6 cache(CXY, a, b) ← CXY(a, b)

7 if cache(CXY, a, b) then return true

8 return false

We design the following experiments in order to benchmark mac3 and mac3cache.
The main purpose is to test how the cache performs in the case where a con-
straint check is extremely cheap (whose cost is the cost of function call + the
cost of memory lookup, as mentioned in Section 2.4).

In implementing the cache, we try to make its access as fast as possible.
When a constraint CXY is revised, we first locate the cache area for CXY , and
before looking for a support for a ∈ DX , we locate the cache area that stores the



8 Authors Suppressed Due to Excessive Length

relationship between a and values in DY . In this way, when checking a against
a value b ∈ DY , the value of b is used directly as an index to the cached content.

mac3 mac3cache MAC3 MAC3cache

P1 (easy problems) 0.56s 0.38s 0.62s 0.48s

P2 (hard problems) 382s 293s 474s 396s

Table 1. mac3 vs mac3cache. P1=(50, 30, 150, 560). P2=(50, 30, 150, 580). The number
of constraint checks for P1 and P2 are 11.0M and 5.35B respectively.

From the experiment, we see that, although the constraint check is very cheap
already, by using cache we are able to speed up mac3 by 30% for hard problems.
This result implies that mac3 is very sensitive to the cost of constraint checks.

The idea of caching results of constraint checks is applicable to mac derived
from most AC algorithms, with the exception of AC4, which builds complex data
structures during its initialization phase and does not need to do more constraint
checks afterward.

4 Exploiting the Residues

AC3 is one of the algorithms that simply revise a constraint without using any
historical memory. Getting mac3 from from AC3 is straightforward. For algo-
rithms that use auxiliary data structures however, there are two conventional
methods. In this section we focus only on AC3.1.

The first approach involves re-initializing the structure and establishing sup-
ports from scratch every time the algorithm is invoked, in the same fashion as
mac3. Even though the value remained in the auxiliary structure is not exploited
to its full potential, this approache is widely used due to its simplicity and low
overhead.

The second approach takes advantage of the value in the last structure carried
over from the previous execution. Since the search for support proceeds only in
one direction, in order for the algorithm to be correct we need to record all
the past supports during search, so that we can start from the exact same state
when backtrack. We will call this algorithm mac3.1. It is observed that the worst-
case space complexity is not the same as AC3.1, which is O(ed2), but a larger
O(ed min(n, d) [8]. A trace of the algorithm is given in the following example; it
shows that mac3.1 cannot avoid both positive and negative repeat.

Example 1. Assume there are two neighboring variables X and Y , where a ∈
DX , DY = {x, y, z, u, v} ordered from left to right, and CXY = {(a, y), (a, u)}.
During an execution of mac3.1 (a, y) is checked and last(X ,a,Y ) becomes [y]
(the structure last is a now stack in which the top is the left-most value). Later,
suppose that y is removed from DY ; thus a new support for a must be found.



Arc Consistency in MAC: A New Perspective 9

Consequently, (a, z) and (a, u) are checked and last(X ,a,Y ) becomes [u, y]. Now
suppose that backtracking occurs and y is restored. As a result last(X ,a,Y ) is
rolled back to its previous state of [y]. Suppose the process repeats: y is again
removed and a new support for a must be found. (a, z) and (a, u) would be
checked more than once.

4.1 Flexible Domain Search

The major problem with mac3.1 lie in its overhead in maintaining the auxiliary
structure. This is necessary because the search always proceeds from the last
support found. We can avoid this cost simply by restarting the search from
the beginning again; however, this comes at the expense of optimality, since
a constraint may be revised many times. We call this algorithm mac3.1residue.
Note that in the pseudo-code we change the term from last to support to indicate
that no invariant on its position is assumed.

Figure 2(i) shows the search for support from Example 1: suppose that the
last support of a is y and that it is no longer available. The search would restart
from the beginning until the next support (u) is reached. If u is later deleted then
the entire domain must be searched. Note that this is conceptually the same as
having a circular domain, although in practice it is easier to restart the search
and have a normal domain.

mac3.1residue takes O(ed3) constraint checks in the worst-case while occu-
pying O(ed) space. It can avoid positive repeat but not negative repeat.

1

2

2

zx y u v

a

1

(i)

1

2

2

zx y u v

a

1

(ii)

Fig. 2. Searching for support of a.

4.2 Optimal Worst-Case Flexible Domain Search

To make mac3.1residue optimal in the worst-case, we mark the first value that
is checked when the constraint is revised for the first time in order to tell the
search to stop as soon as this point is reached. This value, called start in the



10 Authors Suppressed Due to Excessive Length

mac3.1residue

preprocessing()

1 AC3.1()

hasSupport(X, a, Y )

2 b ← support(X, a, Y )
3 if b ∈ DY then return true

4 b ← head
5 while b ← succ(b, DY ) and b 6= tail do

6 if CXY(a, b) then

7 support(X, a, Y ) ← b

8 return true

9 return false

pseudo-code, is initialized each time mac is called and it does not need to be
reset when backtrack.

Figure 2(ii) shows how the search for support progresses. As in the case of
mac3.1residue, we can implement this as a circular domain or starting out from
the beginning, as shown in the bottom of Figure 2(ii). We choose the circular
domain implementation because the supports found are more robust. Indeed,
during search, the deeper the level in which a support is found, the more robust

it is (also observed in [4].) This is due to fact a support found at a deeper level
usually stays on in the current domain even after backtrack.

We call this algorithm mac3.1resOpt. It uses O(ed) space in the worst-case.
Like mac3.1residue, it can avoid positive repeat but not negative repeat.

mac3.1resOpt

preprocessing()

1 AC3.1()

macInitialization()

2 foreach CXY ∈ C and a ∈ DX and b ∈ DY do start(X, a, Y ) ← support(X, a, Y )

hasSupport(X, a, Y )

3 b ← support(X, a, Y )
4 if b ∈ DY then return true

5 while b ← cirSucc(b, D0

Y
) and b ∈ DY and b 6= start(X, a, Y ) do

6 if CXY(a, b) then

7 support(X, a, Y ) ← b

8 return true

9 return false

The pseudo-code for mac3.1resOpt is presented in such a way that the idea
is made as clear as possible; this should not be taken as the real implementation,
especially the routine macInitialization(), in which each component of the
structure start is reset. In fact we initialize start in a lazy way. Moreover, we only
iterate through values in the current domain, rather than the original domain
shown in line 6 of hasSupport. Using current domain involves more complex



Arc Consistency in MAC: A New Perspective 11

terminating condition since value of start(X, a, Y ) may not be in the current
domain, thus rendering the condition b 6= start(X, a, Y ) incorrect.

4.3 Experimental Results

The empirical performance of mac3.1, mac3.1residue, and mac3.1resOpt are
shown in the following table. The running time for MAC includes that of its
corresponding mac , e.g. for P1 the running time for MAC3.1 = 0.75s, 0.66s of
which is the time taken up by mac3.1. There are no extra checks in MAC beyond
mac .

P1 (easy problems) P2(hard problems) P3(over-constrained)
#checks time #checks time #checks time

mac3 11.0M 0.56s 5.35B 398s 10.36B 713s

mac3.1 7.3M 0.66s 3.46B 519s 6.38B 1185s

mac3.1resOpt 2.9M 0.55s 1.43B 472s 2.69B 668s

mac3.1residue 7.1M 0.46s 3.30B 310s 6.14B 465s

MAC3 - 0.62s - 493s - 848s

MAC3.1 - 0.75s - 615s - 1314s

MAC3.1resOpt - 0.65s - 561s - 796s

MAC3.1residue - 0.56s - 400s - 590s

Table 2. Performance of various algorithms. #checks = #constraint checks + #do-
main checks. P1 = (50, 30, 150, 560). P2 = (50, 30, 150, 580). The time for mac3.1 in-
cludes that for restoring the auxiliary data structure last.

From the table, it is not surprising to see both mac3.1residue and mac3.1resOpt
do better than mac3.1 in all three categories, due to the absence of overhead in
maintaining the auxiliary data structure. However, we observe two unexpected
results. The first is that the non-optimal algorithm mac3.1residue conducts even
fewer checks than the optimal mac3.1; it is worth emphasizing that optimality is
a property of a single execution of arc consistency algorithm, whereas the data
gathered in this experiments is accumulated over the entire course of solving
a problem. The other is that mac3.1resOpt uses less than half the number of
checks performed by mac3.1. This can be explained by the robustness of the
residue.

mac3.1 is the slowest algorithm in the table. There are a few possible reasons.
One is that the most frequent operations like value accessing and constraint
checks are reasonably cheap (and thus the saving on checks does not compensate
the cost). Another is that when we maintain its auxiliary data structures, we use
a library class stack. The implementation could be made more efficient. There
may exist more efficient ways to maintain support incrementally. However, the
running time is very unlikely to be lower than those of macusing residues because
of the larger number of checks.



12 Authors Suppressed Due to Excessive Length

mac3.1resOpt runs much slower than mac3.1residue although it conducts
significantly less number of checks. The code at the innermost loop of our imple-
mentation of mac3.1resOpt is several times longer than that of mac3.1residue as
a result of complex terminating condition remarked previously. The experiments
show that the saving of checks does not compensate for the cost of the extra
instructions in mac3.1resOpt. On the other hand, mac3.1residue is faster than
mac3 because it takes advantage of the last residue without incurring the heavy
overhead associated with mac3.1. In fact, the code of routine hasSupport for
mac3.1residue is only a few more instructions than that of mac3.

5 Adaptive Domain Ordering

Some AC algorithms like AC3.1 demand an ordering on the values of the domains
of variables. The key idea behind is to find a support of a value a of DX with
respect to a constraint CXY by going through the values of the domain DY only
once. For this purpose, an ordering of the values is needed so that we never
make the same constraint check twice when looking for a support for a during
the execution of AC3.1. One implementation of AC3.1 in mac could assume a
total ordering on the values of the domain of variables during the whole search
procedure. Since the values in a domain are removed in an arbitrary order, it
may be time-consuming to keep to the order when these values are restored.

As mentioned before, we implement a domain as a doubly linked list. When
we put back a removed value back to a domain, to keep the correct ordering of
the values, we need to go through the list and insert it in the correct position.

In this section, we use mac3.1resOpt as the basic algorithm. Our observation
is that to keep the optimality of mac3.1resOpt, it is only necessary to guarantee
the ordering of values in a domain in a single execution of mac . It implies that
when we restore a domain at backtracking or failure of assignment, we can simply
append the pruned values to the linked list. The additional benefit is that all
negative repeat can be avoided.

We test the idea on random problems. In the following table, mac-order is
mac3.1resOpt where the ordering of values are kept during the whole search
process by using restoreDomain-order, and mac-tail is mac3.1resOpt in which
pruned values are appended to the end of the domains by restoreDomain-tail.

Even though appending the removed values to the end of a domain is 20%
better in term of runing time than inserting the removed values to a domain
according to the ordering, the performance of mac-tail is, surprisingly, inferior
to that of mac-order. One explanation is that mac-order is optimized over the
entire period of search, which can not be done for mac-tail since the ordering on
domain values is different from one execution to another.

6 Related Works

In boolean satisfiability problem, the time needed to find the clause suitable for
unit propagation is recognized to be the most expensive part. In [6] the authors



Arc Consistency in MAC: A New Perspective 13

P1 (easy problems) P2(hard problems)

#checks time #checks time

restoreDomain-order - 0.10s - 92s

restoreDomain-tail - 0.06s - 77s

mac-order 2.88M 0.55s 1.43B 494s

mac-tail 2.87M 0.70s 1.42B 525s

MAC-order - 0.65s - 588s

MAC-tail - 0.77s - 605s

Table 3. Performance of adaptive domain algorithm.

suggest that the solver keep track of two literals (called watched literals) so that
a single unvalued literal could be detected quickly.

Watched literals and the variants of mac presented here have some important
features in common. First, the search direction is not fixed. Second, nothing
needs to be restored upon backtracking.

7 Conclusions

In this paper we propose studying mac and AC algorithms separately. Given
the observation that mac will be executed many times, we have presented a few
strategies that improve the efficiency of mac algorithms. They are analyzed in
terms of time complexity, space complexity, number of checks (including con-
straint checks and domain checks), and running time.

First we study mac that caches the results of constraint checks. This proposal
applies to most mac except those derived from AC4. On the one hand, the
cache makes the cost of a constraint check almost constant over long period.
Space permitting, most mac algorithms could be equipped with a cache. This
would make the comparison of the performance of different mac algorithms more
meaningful. The space complexity of the cache is the same as that of mac derived
from an optimal AC algorithm. One the other hand, the cache also speeds up the
running time of mac . In our experiment on hard problems, mac3cache saves 20%
to 30% running time even under cheap constraint checks. On hard problems,
mac3cache is the fastest among all algorithms reported in this paper. Given
sufficient RAM, mac3cache is a good choice given its efficiency and simplicity.

For mac based on AC algorithms that use auxiliary data structures, we
propose two schemes that reuse the residual value from previous execution:
one keeps the worst-case running time optimal while the other concerns only
about simplicity. Specifically, we present algorithm mac3.1resOpt using the for-
mer scheme and mac3.1residue using the latter. The conventional mac based on
AC3.1 takes O(ed min(n, d)) worst-case space complexity while mac3.1resOpt
and mac3.1residue takes only O(ed). Moreover, both algorithms do not main-
tain the last structure, thus avoiding the costly overhead suffered by mac3.1. An
unexpected discovery through our experiment is that the robustness of residue



14 Authors Suppressed Due to Excessive Length

play a major role in the efficiency of mac . The number of checks performed by
mac3.1residue and mac3.1resOpt are significantly lower than those of mac3 and
mac3.1 respectively (mac3.1residue performs even fewer checks than mac3.1).
It is worth emphasizing that although mac3.1residue has a worst-case complex-
ity of O(ed3), it is the fastest among mac algorithms that have O(ed) space
complexity. Moreover, mac3.1residue is just as easy to implement as mac3. In
retrospect, mac3.1residue can also be understood as a mac algorithm that uses a
much smaller cache, recording only a single support for each value with respect
to affiliated constraints.

We could apply the same idea to non-binary constraint networks. AC3.2
[4] generalizes AC3.1 to address non-binary constraints and takes advantage of
positive multi-directionality by setting the current support found, which is a
tuple for non-binary CSPs, as an external support for all other values in that
tuple. This requires an extra storage apart from last because if it were to be used
for this purpose then some values could be overlooked due to the fixed direction
and range for support search. By using circular domain last can be used to store
external support as well. It remains to be seen how this approach compares to
AC3.2 and AC3.3, which counts all external supports and requires maintenance.

Finally we introduce adaptive domain ordering for mac , which in theory can
avoid all negative repeat. In practice however, our experiment shows that mac

that uses adaptive domain is worse off than that one that uses ordinary domain.
The lesson learned here is that consistency processing in the context of search

deserved to be studied separately from its standalone version.

References

1. Christian Bessière and Marie-Odile Cordier. Arc-consistency and arc-consistency
again. In Proceedings of AAAI-93, pages 108–113, Washington, DC, USA, 1993.

2. Christian Bessière and Jean-Charles Régin. Refining the basic constraint propaga-
tion algorithm. In Proceedings of IJCAI-01, pages 309–315, Seattle, Washington,
2001.

3. Ian P. Gent, Ewan MacIntyre, Patrick Prosser, Barbara M. Smith, and Toby Walsh.
Random constraint satisfaction: Flaws and structure. Constraints, 6(4):345–372,
2001.

4. Christophe Lecoutre, Frédéric Boussemart, and Fred Hemery. Exploiting multidi-
rectionality in coarse-grained arc consistency algorithms. In Proceedings of CP-03,
pages 480–494, Kinsale, Ireland, 2003.

5. Alan K. Mackworth. Consistency in networks of relations. Artificial Intelligence,
8(1):99–118, 1977.

6. M. Moskewisz, C. Madigan, Y. Zhao, L. Zhang, and S. Malik. Chaff: Engineering
an efficient SAT solver. In The 39th Design Automation Conference, 2001.

7. Daniel Sabin and Eugene C. Freuder. Contradicting conventional wisdom in con-
straint satisfaction. In Proceedings of ECAI-94, pages 125–129, Amsterdam, The
Netherlands, 1994.

8. M. R. C. van Dongen. To avoid repeating checks does not always save time.
In Proceedings of AICS’2003: The 14th Irish Artificial Intelligence and Cognitive

Science, Dublin, Ireland, 2003.



Arc Consistency in MAC: A New Perspective 15

9. D. L. Waltz. Generating semantic descriptions from drawings of scenes with shad-
ows. Technical Report MAC-AI-TR-271, MIT, Cambridge, MA, 1972.

10. Yuanlin Zhang and Roland H. C. Yap. Making AC-3 an optimal algorithm. In
Proceedings of IJCAI-01, pages 316–321, Seattle, Washington, 2001.


