
Incrementally Solving Functional Constraints

Yuanlin Zhang and Roland H.C. Yap
School of Computing, National University of Singapore

3 Science Drive 3, 117543, Singapore
Email: {zhangyl, ryap}@comp.nus.edu.sg

Introduction

Binary functional constraints represent an important
constraint class in Constraint Satisfaction Problems
(CSPs). They have been studied in different contexts
[for example (van Hentenryck et al. 1992; Kirousis 1993;
van Beek and Dechter 1995; David 1995; Zhang et
al. 1999)]. Functional constraints are also a primitive
in Constraint Programming (CP) systems. In a CP
system (Jaffar and Maher 1994), constraints are in-
crementally added to and removed from its constraint
store which can be modeled as a CSP. The success of
CP systems illustrates the need to have efficient incre-
mental CSP algorithms. Existing work on functional
constraints deals mainly with static CSPs where all con-
straints are known a priori. We show that an incremen-
tal CSP with pure functional constraints can be solved
in almost the same time complexity as a static one. To
solve more constraints (not only pure functional con-
straints) in a mixed CSP with both functional and non-
functional constraints, we propose an algorithm with
complexity comparable to the cost of enforcing arc con-
sistency.

Notation A Constraint Satisfaction Problem (N, D,
C) consists of a finite set of variables N = {1, · · · , n},
a set of domains D = {D1, · · · , Dn}, where Di is the
set of values that i can take, and a set of constraints
C = {cij | i, j ∈ N}, where each constraint cij is a
binary relation between variables i and j. We require
that (x, y) ∈ cij , iff (y, x) ∈ cji. It is convenient to view
a CSP as a graph whose nodes are variables and edges
are constraints. When we say a CSP is solved, we mean
either a solution of the CSP is found or it is unsatisfi-
able. Throughout this paper, n denotes the number of
variables, d the size of the largest domain, e the number
of constraints. A constraint cij is functional iff for all
v ∈ Di (respectively w ∈ Dj) there exists at most one
w ∈ Dj (respectively v ∈ Di) such that cij(v, w). This
definition means that cij is a function from Di to Dj

and vice versa. A CSP is functional if all its constraints
are functional. Otherwise it is mixed. A functional

Copyright c© 2002, American Association for Artificial In-
telligence (www.aaai.org). All rights reserved.

block of a mixed CSP is the maximal connected sub
graph of the graph of the CSP which has a spanning
tree containing only functional constraints. For exam-
ple, Figure 1(a) is a functional CSP and Figure 1 (b) is
a functional block.

Solving Incremental Functional CSP

Arc consistency can be enforced on a static func-
tional CSP in time O(ed) (van Hentenryck et al. 1992).
(Zhang et al. 1999) shows that it can be solved in the
same time complexity by introducing variable elimina-
tion. In this section we further show that an incremen-
tal functional CSP can be solved in almost the same
time complexity.
An obvious application of the static elimination al-

gorithm will lead to an algorithm with O(e2d) time.
Here we want a more incremental and efficient algo-
rithm. A key observation is that it is not necessary to
apply the complete elimination algorithm every time a
new constraint is added when solving the system. It
is only necessary to do so when the newly added con-
straint forms a circuit with those already in the sys-
tem. Consider example (a) in Figure 1. There are

a b c

a b c a b c

a b c

a b c
1

2

3

4

a b c a b c

a b c a b c

5

3

4

1

2

(a) (b)

Figure 1: (a) A Functional CSP; (b) A Functional Block

four variables {1, 2, 3, 4} with the domain {a, b, c} in
the system. Constraints are added into the system in
the following order. Firstly, c12 = {(a, a), (b, b), (c, c)}.
We need to mark a variable, say 2, with respect to
c12 as eliminated. Then we mark 1 as free and re-
vise the domain of 1 with respect to c21, i.e. remove
values in D1 which are not allowed by c21. Secondly,
c34 = {(a, a), (b, c), (c, b)}. Mark 4 as eliminated and 3
as free, revising D3. Thirdly, c13 = {(a, a), (b, b), (c, c)}.

Both 1 and 3 are free variables. The property we
want is that in any connected component of the con-
straint graph, there is only one free variable. Thus,
we keep, say 1, as free and eliminate 3. Then re-
vise D1 with respect to c31. So far, no real elimina-
tion has occurred but we can verify that there is a
solution for the current CSP since D1 is not empty.
Lastly, c24 = {(a, a), (b, c), (c, b)}. But both variables
2 and 4 have been eliminated. Here we want to en-
sure that a new constraint is only on free variables
and not eliminated ones. Since an eliminated variable
is marked with respect to a particular constraint, we
can follow this until a free variable is found. From 4
we get 3 and from 3 we get 1 which is free. Elim-
ination also occurs during this tracing. A new con-
straint c14 = {(a, a), (b, c), (c, b)} is obtained by com-
posing c13 and c34, and 4 is marked as eliminated with
respect to c14. Discard c34 from the system. Simi-
larly we trace 2 to 1. The fact that 2 and 4 share the
same free variable 1, implies a circuit is formed. We
can further eliminate 2 and 4 (compose c12, c24, and
c41) in sequence resulting in a new unary constraint
c11 = {(a, a), (b, c), (c, b)}. We cannot assign variable b
and c simultaneously to variable 1. RevisingD1 with re-
spect to c11 gives D1 = {a}. Discard constraint c24 and
c11 from the system. Now the system contains {c12, c14,
c13} and is satisfiable.
The above example of incremental solving can be im-

plemented efficiently by disjoint set union algorithms
(Tarjan 1975):

Theorem 1 Given at time t, a total of e constraints
are added into an incremental functional CSP which
has n variables. Using disjoint set union with union by
rank and path compression, the satisfiability of the in-
cremental system can be determined in worst case time
complexity of O(edα(2e, n)), where α is the inverse Ack-
erman function.

Solving the Functional Block in a Mixed

CSP

In a mixed CSP, the algorithm described in pre-
vious section does not prune as much as it could
given the presence of non-functional constraints. Con-
sider the example (b) from Figure 1. There are
variables {1, 2, 3, 4, 5, . . .} with domain {a, b, c} in the
CSP. Constraints are added into the system as fol-
lows. Firstly, c12 = {(a, a), (b, b), (c, c)}. Secondly,
c34 = {(a, a), (b, c), (c, b)}. They are processed as
before. Thirdly, a non-functional constraint, c13 =
{(a, c), (b, b), (b, a), (c, c)}, so ignore. Fourthly, some
other constraints on 5 are added. Fifthly, c15 =
{(a, a), (b, b), (c, c)}. Because of the other functional
constraints on 5, we mark 5 as free and 1 as eliminated.
Lastly, c53 = {(a, a), (b, b), (c, c)}. Mark 5 as free and 3
as eliminated.
In this example, nothing is pruned although c13 could

have be actively used to prune D5. To get better prun-
ing, we propose an algorithm which eliminates a vari-

able as soon as possible. Consider the same example
again.
Firstly, c12. Revise D1 with respect to c21. Sec-

ondly, c34. Repeat first step. Thirdly, c13. Fourthly,
some other constraints on 5. Fifthly, c15. Eliminate 1
immediately. As a consequence two new constraints
are added. The first is c52 = {(a, a), (b, b), (c, c)},
the composition of c51 and c12. The second is c53 =
{(a, c), (b, b), (b, a), (c, c)} (composition of c51 and c13).
Revise D5 with respect to the two new constraints. Dis-
card c12 and c13. Sixthly, c

′

53 = {(a, a), (b, b), (c, c)}.
Eliminate 3. Add c54 = {(a, a), (b, b), (c, c)} (composi-
tion of c′53 and c34) and c55 = {(a, c), (b, b), (b, a), (c, c)}
(composition of c53 and c

′

35). D5 is revised to be {b, c}.
Discard c53 (non-functional) and c55. Now the final sys-
tem has constraints {c51, c52, c53, c54} and is satisfiable.

Theorem 2 Given at time t, a total of e constraints
are added into an incremental functional CSP which
has n variables. By appropriate choice of elimination
variable, any functional block of a CSP can be solved in
a worst case time complexity of O(ed2 log e).

When adding a functional constraint, the rule is that
we choose to eliminate the variable with more con-
straints incident on it.

Discussion and Conclusion

The most related work in CSP is bucket elimination
(Dechter 1999), which is designed for a general CSP
(NP-complete) and thus the complexities of correspond-
ing algorithms are high. It may not directly lead to ef-
ficient algorithms for both static and incremental func-
tional systems. The effort here may motivate work on
more efficient bucket elimination algorithms for special
classes of constraints.
Two algorithms are proposed to solve functional con-

straints in an incremental system. They are especially
useful for CP systems (Jaffar and Maher 1994). When
applied to a CP system, the first algorithm is more effi-
cient while the second may achieve more pruning than
the first. The choice of the two algorithms in a CP sys-
tem will depend on the tradeoff between efficiency and
pruning ability.

References

van Beek, P. and Dechter, R. 1995. On the Minimal-
ity and Global Consistency of Row-Convex Constraint
Networks. Journal of the ACM, 42(3):543–561.

David, P. 1995. Using Pivot Consistency to Decom-
pose and Solve Functional CSPs. Journal of Artificial
Intelligence Research, 2:447–474.

Dechter, R. 1999. Bucket Elimination: A unify-
ing framework for reasoning. Artificial Intelligence
113:41–85.

Jaffar, J. and Maher, M.J. 1994. Constraint Logic Pro-
gramming. Journal of Logic Programming 19/20:503–
581.

van Hentenryck, P., Deville, Y., and Teng, C.M. 1992.
A Generic Arc-Consistency Algorithm and its Special-
izations. Artificial Intelligence 58:291–321.

Kirousis, L.M. 1993. Fast Parallel Constraint Satisfac-
tion. Artificial Intelligence 64:147–160.

Tarjan, R.E. 1975. Efficiency of a good but not linear
set union algorithm. Journal of the ACM, 22(2):146–
160.

Zhang, Y., Yap, R.H.C., and J. Jaffar 1999. Functional
Elimination and 0/1/All Constraints. Proceedings of
the 16th AAAI:275–281.

