Functional Elimination and 0/1/All Constraints

Yuanlin Zhang, Roland H.C. Yap and Joxan Jaffar *
{zhangyl, ryap, joxan}@comp.nus.edu.sg

Abstract

We present new complexity results on the class of
0/1/All constraints. The central idea involves func-
tional elimination, a general method of elimination
whose focus is on the subclass of functional constraints.
One result is that for the subclass of “All” constraints,
strong n-consistency and minimality is achievable in
O(en) time, where e,n are the number of constraints
and variables. The main result is that we can solve
0/1/All constraints in O(e(d + n)) time, where d is
the domain size. This is an improvement over known
results, which are O(ed(d + n)). Furthermore, our al-
gorithm also achieves strong n-consistency and mini-
mality.

1. Introduction

Constraint Satisfaction Problem(s) (CSP) are known to
be NP-complete in general (Mackworth 1977). There
are two approaches for attacking the computational in-
tractability. One way is to identify those tractable class
of problems by suitable restrictions so that it can be
solved in polynomial time. A restriction is on the topo-
logical structure of the CSP constraint network, one
example is (Freuder 1982). Another restriction is to
exploit semantic properties of special classes of con-
straints, examples of this approach are (Dechter 1992;
Van Beek and Dechter 1995; Cooper et al. 1994). (Van
Beek and Dechter 1995) introduces the class of row-
convex constraints which under some conditions can be
solved in polynomial time. (Cooper et al. 1994) identi-
fies a class of 0/1/All constraints, a special case of row-
convex constraints, and proves that the class of prob-
lems generated by any set of constraints not contained
in that class is NP-complete.

A different approach is to improve the efficiency of
the basic step in searching the solution space of a CSP.
Consistency techniques, especially arc-consistency, have
been the method of choice for solving finite domain
problems (Van Hentenryk 1989). Much effort has been
made to find fast algorithms for arc-consistency. For
a general CSP, we have AC-3 (Mackworth 1977), AC-
4 (Mohr and Henderson 1986) which has an optimal

* School of Computing, National University of Singa-
pore, Lower Kent Ridge Road, Singapore 119260

worst-case time complexity O(ed?), and AC-6 which
provides a better space complexity and average time
complexity while giving the optimal worst-case time
complexity, where e is the number of constraints and
d the size of the largest domain. In addition, many arc-
consistency algorithms have been proposed for dealing
with CSPs with special properties. The algorithms of
interest here are: (Van Hentenryck et al. 1992) gives an
arc-consistency algorithm for special constraints such as
functional constraints and monotone constraints in time
O(ed), and (Liu 1995) gives another algorithm to deal
with increasing functional constraint where each func-
tional constraint is only checked once. (Affane and Ben-
naceur 1996) and (Zhang 1998) also study functional
constraints in CSP.

In this paper we investigate the class of 0/1/All con-
straints. These 0/1/All constraints, also called im-
plicational constraints, represent a significant class of
scene labeling problems (Kirousis 1993). The class of
functional constraints, which arises frequently in prac-
tice (Van Hentenryck et al. 1992), is in fact a sub-
lass of 0/1/All constraints. Using a central idea of
functional elimination, which is a general method of
elimination on functional constraints, we obtain new
complexity results for 0/1/All constraints. First, we
prove that for the subclass of “All” constraints, strong
n-consistency and minimality is achievable in O(en)
time, where e, n are the number of constraints and vari-
ables. The main result is that we can solve 0/1/All con-
straints in O(e(d+n)) time, where d is the domain size.
This is an improvement over known results, which are
O(ed(d 4+ n)). Furthermore, our algorithm also achieves
strong n-consistency and minimality.

The paper is organized as follows. We start with
background material on consistency techniques. Next,
we investigate the properties of functional constraints
(section 3) and two-fan constraints (section 4). Sec-
tion 5, gives the elimination method and an algorithm
for solving mixed 0/1/All CSPs. We conclude with a
discussion on related work and the application of elim-
ination method in general CSP.

2. Preliminaries

Definitions on general CSP follow (Montanari 1974;
Mackworth 1977; Freuder 1978; Freuder 1982).

Definition 1 A Constraint Satisfaction Problem (N,
D, C) consists of a finite set of variables N =
{1,---,n}, a set of domains D = {Dy,---, D,}, where
i € D;, and a set of constraints C' = {¢;; | i,j € N},
where each constraint c;; 1s a binary relation between
variables i and j. For the problem of interest here, we
require that (z,y) € ¢;; if and only if (y, &) € ¢;;. There
is always a graph G = (V, E) associated with the CSP
where V. = N and E = {(4,j) | Je;; € C'}. A solution
to a constraint satisfaction problem is an instantiation
of the variables which satisfies all the constraints in the
problem.

Throught this paper, we will use n to represent the
number of variables, d the size of the largest domain, C
the set of constraints of the CSP, and e the number of
constraints in C'.

Definition 2 A CSP is k-consistent if and only if given
any instantiation of any k — 1 variables satisfying all of
the constraints among those variables, there exists an
winstantiation of any kth variable such that the k values
taken together satisfy all of the relations among the k
variables. A CSP is stongly k consistent «f and only if
it 1s t-consistent for all v < k. A CSP is minimal if
each pair of values allowed by each of the constraints s
a part of a solution of the CSP.

Well known consistency techniques like arc and
path consistency correspond to strong two and three-
consistency.

We now recall definitions of constraints with some
special properties.

Definition 3 (Cooper et al. 1994) A constraint, ¢;;, is
a directed 0/1/All constraint if for each value x € D;,
¢;; satisfies the following:

1. for any value y € D;, (z,y) ¢ ¢, or

2. for any value y € D;, (x,y) € ¢ij, or

3. there is a unique value y € D;, (2,y) € ¢;j.

A constraint s called functional if either condition 1
or condition 3 1s satisfied. A two-fan constraint, also
called an “All” constraint, c;; s a constraint where
there erists * € D; and y € Dj; such that ¢;; =
(zx D;)U(yx D;). Afan-out constraint is a constraint
¢ij such that 3z € D; and Yy (z,y) € ¢;j.

Property 1 (Cooper et al. 1994) After enforcing arec-
consistency on 0/1/All constraints, any 0/1/All con-
straint 1s either a trivial relation, a biyjective function
or a two-fan constraint. A trivial relation c;; s either
empty or Dy x D;.

An example of two-fan (left) and fan-out (right) con-
straints are illustrated as follows:

Property 2 (Cooper et al. 1994) The set of 0/1/All
constraints is closed under the operations involved in
path consistency:

1. Intersection of constraints.
2. Composition, o, where ¢;; o ¢;5 = {(p,q) | Ir €
D;, such that (p,r) € ci; A(r,q) € ¢ji}.

Definition 4 (Van Beek and Dechter 1995) A binary
relation ¢;; represented as a (0, 1)-matriz is row convex
of and only if in each row all of the ones are consecutive;
that is, no two ones within a single row are separated
by a zero in that same row.

Both functional and 0/1/All constraints are row con-
vex. For row convex constraints there is the result:

Theorem 1 (Van Beek and Dechter 1995) For a path-
consistent CSP, if there exists an ordering of the do-
mains D1, -+, Dy such that all constraints are row con-
vex, the CSP is minimal and strongly n-consistent.

It is obvious that a path consistency enforcing algo-
rithm will make the 0/1/All constraint system minimal
by theorem 1 and property 1 and 2, and thus the prob-
lem is solved. However, the complexity of a typical path
algorithm is high, such as @(n®d®) in (Mohr and Hen-
derson 1986). In this paper, we obtain more efficient
algorithms.

3. The O (one) algorithm

We first present an algorithm for a CSP (N, D, C) which
contains only functional constraints (functional CSP for
short) and then give the analysis of certain properties
of these constraints.
For the sake of simplicity and clarity, we assume the
graph of the CSP is connected without loss of generality.
The algorithms are shown in figure 1 and figure 2.

Algorithm O((N, D, C)) {
ViVe, x € D; x.louched + false;
Select any variable i € N
for each value x of ¢ {
z.touched + true;
z.delete «+ false;
if not Propagate(z, 7) then z.delete « true;

ViVe,x € D;
if (not z.touched) or (x.coordinate).delete then
remove z from i;

Figure 1: O-algorithm for functional CSP

The O-algorithm uses an adaptation of brute force
searching (Garey and Johnson 1979; Cooper et al. 1994)
which takes advantage of the properties of functional
constraints. In contrast, other known algorithms (Van
Hentenryck et al. 1992) etc. are based on arc consis-
tency where the emphasis is on finding those values

Function Propagate (in z,4) {
L {(w,i))
for each j € N z; « null;
x; —
repeat
Delete first element (y, j) from L;
for each c;i
if 3z such that (y, z) € ¢j; then
if 2; = null then {
z.coordinate < x;
z.touched + true;
Tg — 2,
Lo DU{(k)
} end else if 2, # z then return false;
until (L = 0);

return true;

Figure 2: Propagate algorithm for functional CSP

which can be immediately removed by checking only
a single constraint. The direct brute force searching
method here gives a simpler algorithm. The intuition
behind the O-algorithm is that if at some point in the
search we cannot continue because of inconsistency, we
simply restart at the initial starting point since the path
propagated between the start point and the current fail-
ure point is unique in a functional CSP.

Definition 5

Given a functional CSP (N, D,C), its value graph is
G = (V,E) where V.= {(Dj,z) : # € D;,;i € N} and
E = (Dj,z), (D;,y)) | 3, such that (z,y) € ¢;;}. A
spanning tree of G with respect to (Dy, x) is the maxi-
mal sub-graph G satisfying:

1. QDZ', l‘) e,

2. G 1s a tree, and ~

3. (Dj,y) € G and (D, z) € G implies y = 2.

A value graph G is stable wrt. (D;, z) if all spanning
trees of G wrt. (D;,x) have the same vertices. Here,
we may say that the spanning tree is unique. Finally,
a spanning tree is complete if it has n — 1 edges.

Property 3 In a functional CSP, © € D; is a part of
a solution if and only if its value graph G wrt. (D;, z),
and any spanning tree is complete.

Proof. Obviously, if the spanning tree is not com-
plete, then # cannot be extended to a solution of the
functional CSP. The proof of stability is by contradic-
tion. Assume there are two different complete spanning
trees G’ and G" wrt. (D;,), then 3(D;,y) € G’ and
(Dj,z) € G" where y # z. That means, according to
the definition of functional constraint, when variable ¢
takes x, variable j has to be both y and z, which is a
contradiction. O

It is easy to see that if a spanning tree of z € D; is
not complete, or if it is not unique, then all values in
possible spanning trees wrt. (D;, #) will also be invalid.

The x here is called the coordinate of all other nodes on
the spanning tree and ¢ is called the origin. In the O-
algorithm, we associate the following attributes to any
value y € D;:

e y.touched indicates if this value has been tried,;
e y.delete indicates if the value should be removed;

e y.coordinate 1s the coordinate of y with regard to an

origin 2.

Theorem 2 Given a functional CSP | the O-algorithm
1s correct and enforces the CSP to be munimal and
strongly n-consistent. The complexity of O-algorithm
is O(ed).

Proof.

(1) In order to find all the solutions, the algorithm
need only check one domain, say D;, because if there 1s a
solution for the CSP it must contain a value of ;. The
purpose of Propagate is to identify whether a spanning
tree with regard to € D; is complete and unique. The
repeat loop is to find the maximal spanning tree of
x. The condition statement is to check the uniqueness
of the spanning tree. The Propagate can only detect
one spanning tree. Suppose the tree is not complete
or unique, the question is how to delete the nodes of
the other spanning trees? We use the property that all
nodes of other spanning trees will never be visited again,
or even if it i1s visited, its coordinate will labeled as
deleted. That property is implemented by the variable
z.touched.

(2) The minimal and strong n-consistency is imme-
diate by the above proof.

(3) Tt is straightforward to show that the complexity
of O-algorithm is O(ed). O

4. The A (“All”) algorithm

In this section, we analyse two-fan constraints (also
called “All” constraints) and give an algorithm for this
class. Without loss of generality, we will assume that
the CSP only contains “All” constraints.

For the ease of presentation, we introduce the follow-
ing notations:

Definition 6 Given a two-fan constraint ¢;;, a pivot
of ¢;; with respect to i, ts denoted by the notation pjj.
The pivot pzj 15 defined to be the value & € Dy such that
Vy € D; (2,y) € ¢ij. The coordinate 0fp§»j with respect
to D; is defined to be pjj.

A two-fan constraint ¢;; can be simply represented
by the two pivots (ij’ p?j). The use of coordinate here
is analogous to its use in functional constraints. In the
A-algorithm the coordinate is the only value in D; such
that j can take any value; and furthermore for values
other than the coordinate there is a unique choice in j.
Thus, the role of coordinates in the A-algorithm is an
adaptation of that in the O-algorithm.

Like the O-algorithm, the A-algorithm is also based
on a search procedure. Before we present the algorithm,

we will first highlight some important properties of two-
fan constraints. We begin by recalling an important
observation mentioned in (Cooper et al. 1994). Here
we formalize it to emphasize 1ts importance.

Definition 7 Given a CSP (N, D, ('), an instantiation
of a set of variables S C N is separable, if it satisfies
all constraints among S, and any constraint ¢;; € C
between variables 1t € S and j € N — S allows j to take
any value under the current instantiation of 1.

For a single two-fan constraint ¢;;, it is immediate
that the instantiation of ¢ by the pivot p}’ is separable.

Proposition 1 Given any CSP (N, D,C) and a sep-
arable instantiation of a set of variables. If the CSP
has a solution, then the instantiation is part of some
solution.

The correctness of the above proposition is immedi-
ate. The usefulness of this proposition, is that after a
separable instantiation is found, we can subtract out
those variables and all constraints involved in at least
one of those variables. and thus we get a smaller prob-
lem to work on (search). By continuing in this fashion,
at the end, the combination of all the separable instan-
tiations is a solution to the original problem. One task
of the A-algorithm is to identify some set of variables
whose instantiation is separable since the two-fan con-
straint gives a strong hint on how to achieve that goal.

The rationale for identifying the separable instantia-
tions, by using some special properties of two-fan func-
tions, is that a faster algorithm can be achieved. The
identification step is achieved using the A-propagate
procedure in a similar fashion to Propagate in the O-
algorithm. It works as follows. First, select a starting
variable and instantiate it to a value . The next step
is to try to instantiate its uninstantiated neighbor vari-
ables. For any uninstantiated k& such that there exists
cik € C', we have two choices. In one case, we have
that « is pi* | and this stops the identification procedure
along direction of ¢;;. In the other case, by definition,
we have a unique choice in Dj and thus we need repeat
the propagation above to deal with the neighbors of &
because 1n the direction of ¢;; the instantiation has not
vet been found to be separable. Finally we get a set
of variables whose instantiation is separable. A trivial
case 1s that the set of variables is N itself. One prob-
lem in the procedure is that the instantiation step for
a variable may fail. Fortunately, this failure case only
occurs when the instantiation step tries to set a vari-
able to two different values which is a contradiction. In
(Cooper et al. 1994), they simply return to the starting
variable and select the next value available. However,
there is a better and faster way for resolving the failure
because of the following properties.

The values of D; fall into two classes. One, called the
ptvot class P, contains all the pivots while the other,
called the nonpivot class NP, contains all the other
values.

Definition 8 Given a two-fan CSP, a value x € i is
valid if x s part of a solution of the CSP.

Property 4 Given a two-fan CSP and a variable @
with domain D;, we have for the

e NP class of D;: if two of the values are valid, then
any value will also be valid;

e P class of D;: if three of the values are valid, then
any value will also be valid.

Proposition 2 In the procedure of identifying the set
of variables with separable instantiations, if there is a
contradiction, then for the starting variable there are at
most two valid values from the P class and no value
from the NP class.

Proof. It is obvious for NP class. For P class, only
coordinates of the two contradicted values are possible.
For all other values, contradiction still remains. O

The A algorithm is given in figures 3 and 4.

Algorithm A (in (N, D,C)) {
Select any value € D; for any variable ¢ € N
A-Propagate(z, ¢, N, M, consistent, p1, pa);
if not consistent then {
A-Propagate(z, p1, N, M, consistent, —, —);
if not consistent then
A-Propagate(x, p2, N, M, consistent, —, —);

if consistent then {
N« N—M:
if N # 0 then A((N, D, C));
} else report no solution for (N, D,)

Figure 3: Algorithm for Two-fan Constraints

Theorem 3 Given a two-fan CSP, there exists an al-
gorithm such that strong n-consistency can be enforced
in time complerity O(en).

Proof. The A-algorithm is correct according to
proposition 1 and 2. The complexity of A-Propagate
is at most e and it is called at most n times. The A-
algorithm finds one solution to the CSP. To achieve the
strong n-consistency and minimality, it can be slightly
modified using property 4 to check each variable rather
than a set of variables in the main loop. The time com-
plexity is still O(en),the same as in the A-algorithm.
O

5. The OA algorithm

Now we are in a position to deal with a CSP with
0/1/All constraints. First we simplify the CSP by re-
moving those values not allowed by any complete or
two-fan constraint. Secondly, we remove those complete
constraints and trivial two-fan functions. The above
procedure will take no more than O(ed) time. Now,
the new CSP, called a mixed 1/All CSP, contains only

Procedure A-Propagate(in z,¢, N, out M, con,p1,p2) {

L+ 0;

for each j € N
con < true;
for each j such that ¢;; € C {

p;»] .coordinate = py’;

L+ Lu{(p i)k

z; + null;

repeat {
Delete first element (y, j) from L
for each c;i
if there is only one z such that (y, z) € ¢;; then
if 2; = null then {
Le Lui(s k)
Tg — 2;
z.coordinate < y.coordinate;
} else if @, # z then {
con + false;
p1 = y.coordinate;
pa = z.coordinate;

M + all the other uninstantiated variables

} until (L = §) or (not con);

1

Figure 4: A-Propagate for two-fan CSP

functional and two-fan constraints. While it may be
possible to directly use O- and A-algorithms to design
an algorithm for the mixed system, we however use an
integrated approach using follwing theorem.

Theorem 4 Given a CSP, two variables ¢ and j with
¢;; being functional, we can eliminate one of vartable ¢
or j, to give a new CSP which leaves the solution of the
original CSP unchanged.

The motivation of this theorem comes from the O-
algorithm. If there is a functional constraint between i
and j, we can eliminate variable j and redirect all con-
straints involving 7 to 7. We remark that other elimi-
nation methods in symbolic computation, eg. Gaussian
elimination, can also be thought of as a specialization
of the this elimination idea.

The Eliminate algorithm given in figure 5 uses the
result of theorem 4 but specialized to the context of
0/1/All constraints. In figure 5, FC = {¢;; | ¢;; €
C'is functional} and FV = {4,j | ¢;; € FC} . The al-
gorithm for solving the mixed CSP is shown in figure 6.

Theorem 5 Given a mized CSP, the OA-algorithm
has a time complexity of O(ed + en) and enforces the
CSP to be minimal and strongly n-consistent.

Proof. Without loss of generality, in this proof we as-
sume all the functional constraints are connected. After
the elimination procedure, there are only two-fan func-
tions. So, the algorithm is correct and the resulted CSP

Procedure Eliminate (inout (N, D, C), out consistent) {

consistent « true;
Let i€ FV, L+ {j | 3¢;; € FC}
repeat {
Select and delete 57 € L
for each ¢;; € C' {
C;’k < Cij O Cjk;
it Jey, € C i then + ¢ N ey
switch (cf,.) {
case () : consistency < false;
return;
case functional: L « LU {k};
Cik 4 Cips

case fan-out: if the pivot appears in D;, remove

the other values, and vice versa;
C+C-— {Cik};

. . /.
case two-fan: ¢;; ¢y;

}
} until L = §;
}

Figure 5: Elimination algorithm for functional Con-
straints

Algorithm O A-algorithm {
Eliminate (N, D, '), consistent);
if consistent then A((N, D, ()

else report inconsistency

1

Figure 6: Algorithm for mixed CSP

is minimal and strongly n-consistent. For the elimina-
tion procedure, each for loop takes at most d * d; times
where d; 1s the degree of node i because all operations
on constraint manipulation can be done in d time. Al-
together, we have at most n nodes to deal with and thus
the complexity is O(ed). O

6. Related Work and Discussion

The directly related works on 0/1/All constraints are
(Cooper et al. 1994) and (Kirousis 1993), both of which
give a sequential algorithm with time complexity of
O(ed(n + d)) to find one solution. Note that the n-ary
0/1/All constraints system defined in (Kirousis 1993) is
actually a binary constraint system.

In this paper, we obtain beter results with a time
complexity of O(en) for a CSP with only “All” con-
straints and O(e(d + n)) for CSPs with mixed 0/1/All
constraints. In both cases, this time complexity ob-
tains a solution to the CSP as well as enforcing strong
n-consistency and minimality. Thus, a higher degree
of consistency is obtained compared to (Cooper et
al. 1994; Kirousis 1993) with more efficient algorithms.

The other related works (Van Hentenryck et al. 1992;
Liu 1995; Affane and Bennaceur 1996; Zhang 1998) are

done mainly in the context of arc consistency. Those
works consider only functional constraints. Here we
give simpler algorithms and an explicit analysis which
fully reflects the global property of functional con-
straints. More specifically, (Van Hentenryck et al. 1992)
do not consider finding the global solution, (Liu 1995)
only deals with giving a more efficient algorithm for
dealing with increasing functional constraints. (Affane
and Bennaceur 1996) introduces a new kind of consis-
tency, label-arc consistency, and show that the pure
functional constraints with limited extensions to other
constraints can be solved, but no detailed analysis of
their algorithms is given. (Zhang 1998) embeds the
techniques dealing with functional constraint in arc-
consistency algorithms in a similar way to (Liu 1995)
and proposes the problem of conflict of orienting from
which all the above mentioned algorithms (except (Van
Hentenryck et al. 1992)) suffer.

One result, which we obtain for the class of functional
or “1” constraints, is a new algorithm for functional
constraints with time complexity O(ed). In terms of
time complexity, it is the same as existing results. How-
ever, an advantage of the algorithm here is its concep-
tual simplicity and ability to achieve minimality. The
development of the O-algorithm clarifies how functional
elimination can be applied in general, resulting in its use
in the OA-algorithm and the special form of propaga-
tion in the A-algorithm. In addition, both the O and
O A algorithms avoid the problem of conflict of orienting
for CSPs which are known in advance.

An important consequence of the techniques devel-
oped here for functional elimination i1s that functional
elimination 1s of broad applicability in the more gen-
eral context of arbitrary CSP problems. It is possi-
ble to show that the elimination method for functional
constraints here, for general CSP problems, will be at
most O(ed?) time. This means that, it can be incor-
porated into general arc-consistency algorithms with-
out any increase in time complexity, while at the same
time obtaining more consistency. Other results with
elimination methods on linear equations, (Harvey and
Stuckey 1998; Zhang 1998), also suggest the efficacy of
such elimination approaches.

7. Conclusion

The 0/1/All constraints play an important role both
theoretically (Cooper et al. 1994) and in practice (Van
Hentenryk 1989; Kirousis 1993). This paper gives fast
algorithms and analyses for functional, two-fan, and
mixed CSPs. The elimination method used in solving
the mixed CSPs is of broader applicability in a more
general CSP setting. In addition, its incremental na-
ture makes it suitable in a solver engine of a constraint
logic programming language (Jaffar and Maher 1994).

References

M. S. Affane and H. Bennaceur, A Labelling Arc Con-
sistency Method for Functional Constraints, Proceed-

wngs of CP96, Cambridge, MA, USA | 1996

P. van Beek and R. Dechter, Minimality and Global
Consistency of Constraint Networks, Journal of ACM,
Vol 42(3), 543-561, 1995

M. C. Cooper, D. A. Cohen and P. G. Jeavons,
Characterizing Tractable Constraints, Artificial Intel-
ligence 65, 347-361, 1994

R. Dechter, From Local to Global Consistency, Arti-
ficial Intelligence 34, 1-38, 1992

E. C. Freuder, Synthesizing Constraint Expres-
sions, Communications of the ACM, Vol 21(11), 958-
966,1982

E. C. Freuder, A sufficient condition for backtrack-
free search | Journal of ACM, Vol 29(1),24-32,1982

M.R. Garey and D.S. Johnson, Computers and In-
tractability: A Guide to NP-Completeness Freeman,
San Francisco, CA, 1979

W. Harvey and P.J. Stuckey, Constraint Represen-
tation for Propagation, Proceedings CP98, Pisa,ltaly,
1998

J. Jaffar and M. J. Maher, Constraint Logic Pro-
gramming, Journal of Logic Programming 19/20, 503-
581,1994

L. M. Kirousis, Fast Parallel Constraint Satisfaction,

Artificial Intelligence 64, 147-160, 1993

B. Liu, Increasing Functional Constraints Need to be
checked only once, International Joint Conference on

Artificial Intelligence 95, 1995

A. K. Mackworth, Consistency in Networks of Rela-
tions,, Artificial Intelligence 8(1),118-126,1977

R. Mohr and T. C. Henderson, Arc and Path Con-
sistency Revisited, Artificial Intelligence 28, 225-233,
1986

U. Montanari, Networks of Constraints: Fundamen-
tal Properties and Applications, Information Science
7(2), 95-132, 1974

P. van Hentenryk, Constraint Satisfaction and Logic
Programming, MIT Press, 1989

P. van Hentenryck, Y. Deville, and C. M. Teng, A
Generic Arc-Consistency Algorithm and its Special-
izations, Artif. Int. 58, 291-321, 1992

Y. Zhang, Consistency Techniques for Linear Arith-
metic and functional Constraints, Master’s Thests,
National University of Singapore, 1998

Y. Zhang and H. Wu, Bound Consistency on Lin-
ear Constraints in Finite Domain Constraint Program-

ming, Proceedings of ECAI98, Brighton, UK, 1998

