Efficient Algorithms for Functional Constraints*

Yuanlin Zhang', Roland H.C. Yap?,
Chendong Li', and Satyanarayana Marisetti!

! Texas Tech University, USA
2 National University of Singapore, Singapore

Abstract. Functional constraints are an important constraint class in
Constraint Programming (CP) systems, in particular for Constraint Logic
Programming (CLP) systems. CP systems with finite domain constraints
usually employ CSP-based solvers which use local consistency, e.g. arc
consistency. We introduce a new approach which is based instead on vari-
able substitution. We obtain efficient algorithms for reducing systems in-
volving functional and bi-functional constraints together with other non-
functional constraints. It also solves globally any CSP where there exists
a variable such that any other variable is reachable from it through a
sequence of functional constraints. Our experiments show that variable
elimination can significantly improve the efficiency of solving problems
with functional constraints.

1 Introduction

Functional constraints are a common class of constraints occurring in Constraint
Satisfaction Problem(s) (CSP) [10, 11, 7]. In Constraint Programming (CP) sys-
tems such as Constraint Logic Programming (CLP), functional constraints also
naturally arise as primitive constraints and from unification. Finite domain is a
widely used and successful constraint domain for CLP. In this context, functional
constraints (e.g., those in CHIP [11]), as primitive constraints, can facilitate the
development of more efficient constraint solvers underlying CLP systems. In
CLP, when reducing a goal, unification can also lead to functional constraints.
For example, when matching p(Z2 + 1) with a rule on p(X) where both X and
Z are finite domain variables, a functional constraint X = Z2 4 1 is produced.
Most work on functional constraints follows the approach in CSP which is
based on arc or path consistency [11, 3]. In this paper, we propose a new method
— wvariable substitution — to process functional constraints. The idea is that if
a constraint is functional on a variable, this variable in another constraint can
be substituted using the functional constraint without losing any solution.
Given a variable, the variable elimination method substitutes this variable
in all constraints involving it such that it is effectively “eliminated” from the
problem. This idea is applied to reduce any problem containing non-functional

* Part of this work was supported by National Univ. of Singapore, grant 252-000-
303-112.

constraints into a canonical form where some variables can be safely ignored
when solving the problem. We design an efficient algorithm to reduce, in O(ed?)
where e is the number of constraints and d the size of the largest domain of the
variables, a general binary CSP containing functional constraints into a canonical
form. This reduction simplifies the problem and makes the functional portion
trivially solvable. When the functional constraints are also bi-functional, then
the algorithm is linear in the size of the CSP.

Many CLP systems with finite domains make use of constraint propagation
algorithms such as arc consistency. Our experiments show that the substitution
based “global” treatment of functional constraints can significantly speed up
propagation based solvers.

In the rest of the paper, background on CSPs and functional constraints
is given in Section 2. Variable substitution for binary functional constraints is
introduced and studied in Section 3. Section 4 presents results on algorithms for
variable elimination in general CSPs containing functional constraints. Section 5
presents an experimental study. Functional elimination is extended to non-binary
constraints in Section 6. Related work is discussed in Section 7 and concluded
in Section 8.

2 Preliminaries

We begin with the basic concepts and notation used in this paper.

A binary Constraint Satisfaction Problem (CSP) (N, D, C) consists of a finite
set of variables N = {1,---,n}, a set of domains D = {Dy,---,D,}, where D;
is the domain of variable i , and a set of constraints each of which is a binary
relation between two variables in V.

A constraint between two variables ¢ and j is denoted by ¢;;. Symbols a and b
possibly with subscript denote the values in a domain. A constraint ¢;; is a set of
allowed tuples. We assume testing whether a tuple belongs to a constraint takes
constant time. For ¢ € D; and b € D;, we use either (a,b) € ¢;; or ¢;;(a,b) to
denote that a and b satisfy the constraint ¢;;. For the problems of interest here,
we require that for all @ € D; and b € D, (a,b) € ¢;; if and only if (b,a) € ¢;;. If
there is no constraint on ¢ and j, ¢;; denotes a universal relation, i.e., D; x Dj.

A constraint graph G = (V, E), where V = N and E = {{i,j} | 3¢;; € C},
is usually used to describe the topological structure of a CSP. A solution of
a constraint satisfaction problem is an assignment of a value to each variable
such that the assignment satisfies all the constraints in the problem. A CSP is
satisfiable if it has a solution. The solution space of a CSP is the set of all its
solutions. Two CSPs are equivalent if and only if they have the same solution
space. Throughout this paper, n represents the number of variables, d the size
of the largest domain of the variables, and e the number of constraints in C'.

We need two operations on constraints in this paper. One is the intersection
of two constraints (intersection of the sets of tuples) that constrain the same set
of variables. The other operation is the composition, denoted by the symbol “o,”

of two constraints sharing a variable. The composition of two relations is:
¢k o ¢ij = {(a,c) | b € Dj, such that (a,b) € ¢;; A (b,c) € ¢cji}.

Composition is a basic operation in our variable substitution method. Composing
cij and cj, gives a new constraint on ¢ and k.

Example Consider constraints ¢;; = {(a1,b1), (az,b2), (az,bs)} and ¢, =
{(b1, 1), (b2, c2), (b3, c2)}. The composition of ¢;; and c;j is a constraint on ¢
and k: ¢;x = {(a1,¢1), (az,c2)}. O

A constraint c;; is functional on j if for any a € D; there exists at most one
b € D; such that ¢;;(a,b). ¢;; is functional on i if ¢;j; is functional on i. Given
a constraint ¢;; functional on j and a value a € D;, we assume throughout the
paper that in constant time we can find the value b € D;, if there is one, such
that (a,b) € ¢;;.

A special case of functional constraints are equations. These are ubiquitous
in CLP. A typical functional constraint in arithmetic is a binary linear equation
like 22 = 5 — 3y which is functional on x and on y. Functional constraints do not
need to be linear. For example, a nonlinear equation z? = y? where z,y € 1..10
is also functional on both = and y. In scene labeling problems [7], there are many
functional constraints and other special constraints. O

When a constraint c;; is functional on j, for simplicity, we say c;; is functional
by making use of the fact that the subscripts of ¢;; are an ordered pair. When
ci; is functional on i, cj; is said to be functional. That ¢;; is functional does not
mean c;; is functional. In this paper, the definition of functional constraints is
different from the one in [12,11] where constraints are functional on each of its
variables, leading to the following notion.

A constraint c;; is bi-functional if c;; is functional on ¢ and on j. A bi-
functional constraint is called bijective in [3]. For functional constraints, we have
the following property on their composition and intersection: 1) If ¢;; and c;jx
are functional on j and k respectively, their composition remains functional; and
2) The intersection of two functional constraints remains functional.

3 Variable Substitution and Elimination Using Binary
Functional Constraints

We introduce the idea of variable substitution. Given a CSP (N, D, (), a con-
straint c;; € C that is functional on j, and a constraint ¢, in C', we can substitute
i for j in ¢;i by composing c¢;; and cji. If there is already a constraint c;, € C,
the new constraint on ¢ and k is simply the intersection of c;;, and cji o ¢y .

Definition 1. Consider a CSP (N, D,C), a constraint ¢;; € C functional on j,
and a constraint c;i, € C. To substitute ¢ for j in cji, using ci;, is to get a new
CSP where cji, is replaced by c;k = ci, N (¢ji 0 ¢ij). The variable ¢ is called the
substitution variable.

A fundamental property of variable substitution is that it preserves the so-
lution space of the problem.

Property 1. Given a CSP (N, D, (), a constraint ¢;; € C functional on j, and a
constraint cj, € C, the new problem obtained by substituting 7 for j in c¢;p is
equivalent to (N, D, C).

Proof Let the new problem after substituting ¢ for j in ¢;j; be (N, D,C")
where C" = (C — {c¢ji}) U{c,} and ¢}, = cir N (¢jk © ¢45)-

Assume (ay,az, -+, a,) is a solution of (N, D,C). We need to show that it
satisfies C’. The major difference between C’ and C is that C’ has new constraint
- It is known that (a;,a;) € cij, (aj,ar) € cji, and if there is ¢, in C,
(a;,ar) € ci. The fact that ¢, = (cjk o ¢;;) N i implies (a;, ax) € ¢,. Hence,
¢y is satisfied by (a1, a2, -, an).

Conversely, we need to show that any solution (a1,as,---,a,) of (N,D,C")
is a solution of (N, D, C). Given the difference between C’ and C, it is sufficient
to show the solution satisfies c;;. We have (a;,a;) € ¢;; and (a;,ar) € .
Since ¢}, = (¢ji © ¢ij) N ¢k, there must exist b € D; such that (a;,b) € ¢;; and
(b,ar) € cji. As ¢;j; is functional, b has to be a;. Hence, a; and ay, satisfy cj. O

Based on variable substitution, we can eliminate a variable from a problem
so that no constraint will be on this variable (except the functional constraint
used to substitute it).

Definition 2. Given a CSP (N,D,C) and a constraint ¢;; € C' functional on
Jj, to eliminate j using c;; is to substitute i for j, using c;j, in every constraint
¢k € C (except cj;).

We can also substitute i for j in ¢;j; to obtain ¢}; and then intersect ¢; with the
identity relation on D;, equivalent to a direct revision of the domain of ¢ with
respect to c¢;;. This would make the algorithms presented in this paper more
uniform, i.e., only operations on constraints are used. Since in most algorithms
we want to make domain revision explicit, we choose not to substitute ¢ for j in
Ciji-

Given a functional constraint ¢;; of a CSP (N, D, (), let C; be the set of
all constraints involving j, except c;;. The elimination of j using c;; results in a
new problem (N, D,C") where

C'=(C - Cj)u{dcy | cy = (cjk o cij) Neiw, cji € C}.

In the new problem, there is only one constraint c;; on j and thus j can be
regarded as being “eliminated”.

Example Consider a problem with three constraints whose constraint graph
is shown in Figure 1 (a). Let ¢;; be functional. The CSP after j has been elimi-
nated using ¢;; is shown in Figure 1 (b). In the new CSP, constraints ¢,z and ¢
are discarded, and new constraints ¢;; = ¢ 0 ¢;; and ¢;; = ¢j; 0 ¢;5 are added. O

The variable elimination involves “several” substitutions and thus preserves
the solution space of the original problem by Property 1.

Property 2. Given a CSP (N,D,C) and a functional constraint ¢;; € C, the
new problem (N, D,C”) obtained by the elimination of variable j using ¢;; is
equivalent to (N, D, C).

Fig. 1. (a): A CSP with a functional constraint ¢;;. (b): The new CSP after eliminating
the variable j using c;;.

4 Elimination Algorithms for CSPs with Functional
Constraints and Non-Functional Constraints

We now extend variable elimination to general CSPs with functional and non-
functional constraints. The idea of variable elimination (Definition 2 in Section 3)
can be used to reduce a CSP to the following canonical functional form.

Definition 3. A CSP (N, D, () is in canonical functional form if for any con-
straint ¢;; € C functional on j, the following conditions are satisfied: 1) if cj;
is also functional on i(i.e., c;j is bi-functional), either i or j is not constrained
by any other constraint in C; 2) otherwise, j is not constrained by any other
constraint in C.

As a trivial example, a CSP without any functional constraint is in canonical
functional form. If a CSP contains some functional constraints, it is in canonical
functional form intuitively if for any functional constraint c;;, there is only one
constraint on j. As an exception, the first condition in the definition implies that
when ¢;; is bi-functional, one variable of {3, j} might have several bi-functional
constraints on it.

In a canonical functional form CSP, the functional constraints form disjoint
star graphs. A star graph is a tree where there exists a node, called the center,
such that there is an edge between this center node and every other node. We
call the variable at the center of a star graph, a free variable, and other variables
in the star graph eliminated variables. Fig. 1(b) is a star graph, assuming c;
and c;; are functional on k and [respectively, with free variable 7. The constraint
between a free variable ¢ and an eliminated variable j is functional on j, but it
may or may not be functional on i. In the special case that the star graph contains
only two variables 7 and j and ¢;; is bi-functional, any one of the variables can
be called a free variable while the other is called an eliminated variable.

If a CSP is in canonical functional form, all functional constraints and the
eliminated variables can be ignored when we try to find a solution for this
problem. Thus, to solve a CSP (N, D,C) in canonical functional form whose
non-eliminated variables are NFE, we only need to solve a smaller problem
(NE,D',C") where D’ is the set of domains of the variables NE and C' =
{cij | c;j € C and i,j € NE}.

Proposition 1. Consider a CSP P, = (N, D, C) in a canonical functional form
and a new CSP P, = (NE,D’,C") formed by ignoring the eliminated variables
in P1. For any free variable i € N and any constraint c;; € C' functional on
J, assume any value of D; has a support in D; and this support can be found
in constant time. Any solution of Py is extensible to a unique solution of Py in
O(|N — NE)|) time. Any solution of Py can be obtained from a solution of Ps.

Proof Let (a1,a2,---,a;yg)) be a solution of (NE,D’,C"). Consider any
eliminated variable j € N — NE. In C, there is only one constraint on j. Let it
be ¢;; where ¢ must be a free variable. By the assumption of the proposition, the
value of 7 in the solution has a unique support in j. This support will be assigned
to j. In this way, a unique solution for (N, D, C) is obtained. The complexity of
this extension is O(|N — NE)).

Let S be a solution of (N, D,C) and S’ the portion of S restricted to the
variables in NE. S’ is a solution of (NE, D’,C") because C' C C. The unique
extension of S’ to a solution of P; is exactly S. O

Any CSP with functional constraints can be transformed into canonical func-
tional form by variable elimination using the algorithm in Fig. 2. Given a con-
straint c;; functional on j, Line 1 of the algorithm substitutes ¢ for j in all
constraints involving j. Note the arc consistency on c¢;i, for all neighbor k of i,
is enforced by line 3.

algorithm Variable-Elimination(inout (N, D, C), out consistent) {
L — N;
while (There is ¢;; € C functional on j where ¢,j € L and i # j){
// Eliminate variable j,

L. C —{cik | cir = (csr o cij) Nein, cju € Cok # i} U (C —{cju € C | k #i});
L—L-{j}
3. Revise the domain of i wrt ¢;; for every neighbour k of i;

if (D; is empty) then { consistent «— false; return }

}

consistent «— true;

Fig. 2. A variable elimination algorithm to transform a CSP into a canonical functional
form.

Theorem 1. Given a CSP (N, D,C), Variable-Elimination transforms the
problem into a canonical functional form in O(n%d?).

Proof Assume Variable-Elimination transforms a CSP P, = (N, D,(C)
into a new problem P, = (N, D’,C"). We show that P is of canonical functional
form. For any variable j € N, if there is a constraint ¢;; € C” functional on
Jj, there are two cases. Case 1: j ¢ L when the algorithm terminates. This

means that c;; is the functional constraint that is used to substitute j in other
constraints (Line 1). After substitution, ¢;; is the unique constraint on j. Case
2: j € L when the algorithm terminates. Variable ¢ must not be in L (otherwise,
j will be substituted by Line 1). This implies that ¢ was substituted using c;;.
Thus, c;; is the only functional constraint on ¢ in P». Hence, ¢;; is bi-functional
and 7 is not constrained by any other constraints.

Next, we show the complexity of Variable-Elimination. It eliminates any
variable in N at most once (Line 2). For each variable j and a constraint c;;
functional on j, there are at most n — 2 other constraints on j. The variable j
in those constraints needs to be substituted. The complexity of the substitution
for each constraint is O(d?). The elimination of j (Line 1) takes O(nd?). There
are at most n — 1 variables to eliminate and thus the worst case complexity of
the algorithm is O(n?d?). O

It is worth noting that the variable elimination algorithm is able to globally
solve some CSPs containing non-functional constraints.

Example Consider a simple example where there are three variables i, j, and
k whose domains are {1,2,3} and the constraints are i = j, i = k+1, and j # k.
Note that although the constraints are listed in an equational form, the actual
constraints are explicit and discrete, thus normal equational reasoning might
not be applicable. By eliminating j using ¢;;, ¢;rx becomes {(2,1),(3,2)}, and
the domain of ¢ becomes {2,3}. The non-functional constraint c¢;; is gone. The
problem is in canonical functional form. A solution can be obtained by letting i
be 2 and consequently j =2 and k=1. O

By carefully choosing an ordering of the variables to eliminate, a faster algo-
rithm can be obtained. The intuition is that once a variable ¢ is used to substitute
for other variables, 7 itself should not be substituted by any other variable later.

Example Consider a CSP with functional constraints c¢;; and c;j. Its con-
straint graph is shown in Fig. 3(a) where a functional constraint is represented
by an arrow. If we eliminate k£ and then j, we first get c;;, and c;i,, and then get
cii, and c;1,. Note that j is first used to substitute for k and later is substituted
by i. If we eliminate j and then &, we first get c;i, and then get ¢;;, and ¢;,. In
this way, we reduce the number of compositions of constraints. O

I 73 7
l2 J1 Jo i i3
(a) (b)

Fig. 3. (a) The constraint graph of a CSP with functional constraints ¢;; and c¢;j. (b)
A directed graph.

Given a CSP P = (N, D,C), P is used to denote its directed graph (V, E)
where V.= N and E = {(i,j) | ¢ij € C and ¢;; is functional on j}. Non-
functional constraints in C' do not appear in P¥. A subgraph of a directed graph

is strongly connected if for any two vertices of the subgraph, any one of them is
reachable from the other. A strongly connected component of a directed graph is
a maximum subgraph that is strongly connected. To describe our algorithm we
need the following notation.

Definition 4. Given a directed graph (V, E), a sequence of the nodes of V is
a functional elimination ordering if for any two nodes i and j, i before j in
the sequence implies that there is a path from i and j. A functional elimination
ordering of a CSP problem P is a functional elimination ordering of PF .

The functional elimination ordering is used to overcome the redundant com-
putation shown in the example on Fig. 3(a). Given a directed graph G, a func-
tional elimination ordering can be found by: 1) finding all the strongly connected
components of G; 2) modifying G by taking every component as one vertex with
edges changed and/or added accordingly; 3) finding a topological ordering of the
nodes in the new graph; and 4) replacing any vertex v in the ordering by any
sequence of the vertices of the strongly connected component represented by v.

To illustrate the process, consider the example in Fig. 3(b) which can be
taken as P¥ for some CSP problem P. All strongly connected components are
{j1,Ja2, js}, denoted by ¢y, and {iy,1i2,i3}, denoted by co. We construct the new
graph by replacing the components by vertices: ({c1,¢2}, {(c1,¢2)}). We have
the edge (c1,c2) because the two components are connected by (j2,i2). The
topological ordering of the new graph is (c1,c3). Now we can replace c¢; by
any sequence of j’s and co by any sequence of i’s. For example, we can have a
functional elimination ordering (js, j2, j1, 92, i3, 41)-

The algorithm Linear-Elimination in Fig. 4 first finds a functional elim-
ination ordering (Line 1). Line 4 and 6 are to process all the variables in O.
Every variable i of O is processed as follows: i will be used to substitute for
all the variables reachable from i through constraints that are functional in C°
and still exist in the current C'. Those constraints are called qualified constraints.
Specifically, L initially holds the immediate reachable variables through qualified
constraints (Line 8). Line 9 is a loop to eliminate all variables reachable from 3.
The loop at Line 11 is to eliminate j using 4 from the current C. In this loop,
if a constraint c¢;; is qualified (Line 14), k is reachable from ¢ through qualified
constraints. Therefore, it is put into L (Line 15).

To illustrate the ideas underlying the algorithm, consider the example in
Fig. 3(b). Now, we assume the edges in the graph are the only constraints
in the problem. Assume the algorithm finds the ordering given earlier: O =
(Js, 792, 71,12, 43,11). Next, it starts from js. The qualified constraints leaving js
are cj, j, only. So, the immediate reachable variables through qualified constraints
are L = {jo}. Take and delete j, from L. Substitute jz for js in constraints c;,,
and cj,j,. As a result, constraints cj,;, and cj,; are removed from C while
Cjsjr = Cjsjr N (Cjpjy © Cjyjp) and new constraint ¢j,;, = Cjyi, © Cjyj, is introduced
to C. One can verify that both c;,;, and c;,;, are qualified. Hence, variables
j1 and i9 are reachable from js3 and thus are put into L. Assume j; is selected
from L. Since there are no other constraints on j;, nothing is done. Variable i,

algorithm Linear-Elimination(inout (N, D, C)) {

1. Find a functional elimination ordering O of the problem;
2. Let C° be C; any c;; in C° is denoted by c?j;
3. For each ¢ € N, it is marked as not eliminated;
4. while (O is not empty) {

Take and delete the first variable i from O;

6. if (¢ is not eliminated) {
8. L—{j|(i,j) € C and c; is functional};
9. while (L not empty) {

Take and delete j from L;
11. for any c;jr € C — {c;i} { // Substitute ¢ for j in c;x;
C;k — Cjk O Cij N Cik;

C — CU{ci} —{cin};

14. if (cy is functional) then
15. L — LU{k};

}
16. Mark j as eliminated;

} // loop on L

} // loop on O
} // end of algorithm

Fig. 4. A variable elimination algorithm of complexity O(ed?).

is then selected from L. By eliminating is using js, ci,i, and c;,s, are removed
from C and cj,;, and cj,4, are added to C. Constraint c;,;, is qualified, and thus
i1 is added to L. Note that c¢;,;, is not qualified because it is not functional
on i3 in terms of the graph. We take out the only variable 4y in L. After iy is
eliminated using js, ¢;,4, is removed from C, and constraint cj,;, is updated to
be ¢jyiz N (Ciyig © Cjgiy). Since ¢4, is qualified, i3 is added to L. One can see
that although 73 was not reachable when i, was eliminated, it finally becomes
reachable because of i;. In general, all variables in a strongly connected compo-
nent are reachable from the variable under processing if one of them is reachable.
Now, take i3 out of L, and nothing is done because there are no other constraints
incident on it. Every variable except js is marked as eliminated (Line 16), the
while loop on O (Line 4 and 6) terminates.

Theorem 2. Given a CSP problem, the worst case time complezity of
Linear-Elimination is O(ed?) where e is the number of constraints and d the
size of maximum domain in the problem.

Proof To find a functional elimination ordering involves the identification of
strongly connected components and topological sorting. Each of two operations
takes linear time. Therefore, Line 1 of the algorithm takes O(n + e).

The while loop of Line 4 takes O(ed?). Assume that there is a unique iden-
tification number associated with each constraint in C. After some variable of a

constraint is substituted, the constraint’s identification number refers to the new
constraint. For any identification number «, let its first associated constraint be
¢jk- Assuming j is substituted by some other variable i, we can show that i
will be never be substituted later in the algorithm. By the algorithm, 7 is se-
lected at Line 6. So, all variables before ¢ in O have been processed. Since ¢ is
not eliminated, it is not reachable from any variable before it (in terms of O)
through qualified constraints (due to loop of Line 9). Hence, there are two cases:
1) there is no constraint ¢,,; of C such that ¢, is functional on i, 2) there is
at least one constraint c¢,,; of C' such that ¥ . is functional on i. In the first
case, our algorithm will never substitute ¢ by any other variable. By definition
of functional elimination ordering, case 2 implies that ¢ belongs to a strongly
connected component whose variables have not been eliminated yet. Since all
variables in the component will be substituted by i, after the loop of Line 9,
there is no constraint ¢,,; of C' such that c?m is functional on 7. Hence, i will
never be substituted. In a similar fashion, if variable k is substituted by [, [will
never be substituted later by the algorithm. So, there are at most two substitu-
tions occurring to a.. By definition, substitution involves a functional constraint,
its complexity is O(d?) in the worst case. Since there is a unique identification
number for each constraint, the time taken by while loop at Line 4 is O(ed?).

In summary, the worst case time complexity of the algorithm is O(ed?). O

To characterize the property of Linear-Elimination, we need the following
notation.

Definition 5. Given a problem P, let C° be the constraints before
Linear-Elimination and C the constraints of the problem at any moment dur-
ing the algorithm. A constraint c;; of C is trivially functional if it is functional

and satisfies the condition: c?j is functional or there is a path iy (= 1),i2, -, im(=
j) in Cy such that c?k_ik+1 (k € 1.m — 1) is functional on igy1.

Theorem 3. Algorithm Linear-Elimination transforms a CSP (N, D,C) into
a canonical functional form if all newly produced functional constraints (due to
substitution) are trivially functional.

The proof of this result is straightforward and thus omitted here.

Corollary 1. For a CSP problem with non-functional constraints and bi-func-
tional constraints, the worst case time complexity of algorithm
Linear-Elimination is linear to the problem size.

This result follows the observation below. When the functional constraint in-
volved in a substitution is bi-functional, the complexity of the composition is
linear to the constraints involved. From the proof of Theorem 2, the complexity
of the algorithm is linear to the size of all constraints, i.e., the problem size.

Corollary 2. Consider a CSP with both functional and non-functional con-
straints. If there is a variable of the problem such that every wvariable of the
CSP is reachable from it in PY, the satisfiability of the problem can be decided
in O(ed?) using Linear-Elimination.

10

For a problem with the property given in the corollary, its canonical func-
tional form becomes a star graph. So, any value in the domain of the free vari-
able is extensible to a solution if we add (arc) consistency enforcing during
Linear-Elimination. The problem is not satisfiable if a domain becomes empty
during the elimination process.

5 Experimental Results

We investigate to see the effectiveness of variable elimination on problem solving.
In our experiments, a problem is either directly solved by a general solver or
variable elimination is invoked before the solver.

Since there are no publicly available benchmarks on functional constraints,
we generate random problems (n,d, e, nf,t) where n is the number of variables,
d domain size, e the number of constraints, nf the number of functional con-
straints, and t the tightness of non-functional constraints. Tightness r is defined
as the percentage of allowed tuples over d2. Except the nf functional constraints,
all other constraints are non-functional. Each functional constraint is made to
have d allowed tuples. Our implementation allows other tightness for functional
constraints. However, we observed from the experiments that if we make the
number of allowed tuples less than d, the problems are easy (i.e., with very few
backtracks) to solve.

We selected meaningful problems from the ones generated to do benchmark-
ing. In the context of random problems, the tightness 1/d of functional con-
straints is rather tight. Therefore, when we increase nf, the “hardness” of the
problems drops correspondingly. In our experiments, we systematically examine
the problems with the following setting: n,d are 50, e varies from 100 to 710
with step size 122 (10% of all possible constraints), nf varies from 2 to 12, and
t varies from 0.2 to 1.0 with step size 0.05. When nf is small (e.g, 2), there are
so many hard problems that we can only scan a small portion of the problems
(we stop running when the time limit 4 x 10*s is reached). When nfis large (e.g.,
12), even for the most difficult problem instances, the number of backtracks is
small and thus they are simple. For example, when nf = 12, the most difficult
problems are with e = 710. The table below shows the hardness of the problems,
with nf = 12 and e = 710, in terms of number of backtracks (#bt) needed.
When t is from 0.2 to 0.65, #bt is 0. For the most difficult case of ¢ being 0.8,
#bt is small (around 1000). On the other hand, when nf is small, one can expect
that the application of elimination may not make much difference.

t 10.2 -0.65(0.7|0.75] 0.8 |0.85/0.9 — 0.95
#bt 0 5.7|122.91023| 0.2 0

Due to the observations above, we evaluate the algorithm on non-trivial cases
(e.g., trivial cases include few backtracks or very small number of functional
constraints). We study the effectiveness of variable elimination for each nf on
the most difficult problems as we discovered in the exploration process above.
The results with nf varying from 6 to 12 are shown in Fig. 5. The results were

11

x 10

IS

351

* Without Elimination
O Elimination

w
T

25r

Time(s)
N

151

05F T~

L L T E—
6 7 8 9 10 11 12
Number of Functional Constraints

Fig. 5. Performance of the algorithms on random problems. When nf = 7, time limit
is reached by the solver without variable elimination.

obtained on a DELL PowerEdge 1850 (two 3.6GHz Intel Xeon CPUs) in Linux.
We implement both the elimination algorithm and a general solver in C++. The
solver uses the standard backtracking algorithm. During the search, a variable
with maximum degree is selected first with tie broken by lexicographical order
while the value of a variable is selected in a lexicographical order.

For the problem instances used in Figure 5, the time to transform the in-
stances into their canonical forms is negligible compared to the time solving the
problems. There are two reasons. First, the number of constraints involved in
the elimination is relatively small compared to the total number of constraints
in the problems. Second, the algorithm is as efficient as the optimal general arc
consistency algorithm used in the solver. Thirdly, the elimination is applied only
once before the backtracking search.

The results show that the variable elimination can significantly speed up
problem solving by more than 5 times on difficult problems where a lot of back-
tracks occur. As the number of functional constraints increases, one would as-
sume that the variable elimination should be more effective. However, we notice
that as the number of functional constraints increases, the random problems be-
come simpler, which may decrease the benefit of elimination. For example, when
nf = 12 (see the table above), to solve the problems, the solver only needs about
a thousand backtracks. In this case, the variable elimination will not be able to
save much. We notice that when nf = 9, the variable elimination approach is
slower. There are two possible explanations. The first is that variable elimina-
tion changes the topology of the problem, which may affect the effectiveness of
the heuristics of the general solver. The second is that we use only 10 problem
instances per configuration which may cause some unstable results. We have also
manually tried many configurations. The results show very similar trend to the
one in Fig. 5.

12

Remark. Views which are used in several existing CP systems (e.g., [9])
can be thought of as an efficient way to enforce arc consistency on bi-functional
constraints. We used our own solver rather than one with views due to the fol-
lowing reason. The percentage of functional constraints in our problem instances
is less than 2%. Improving the arc consistency efficiency on them won’t affect
the overall performance too much.

6 Variable Elimination and Non-binary Constraints

Non-binary constraints such as arithmetic or global constraints are common in
CP systems. We discuss how variable elimination of functional constraints can
be applied to these constraints.

Non-binary constraints are either extensional (defined explicitly) or inten-
sional (defined implicitly). To substitute a variable in an extensional non-binary
constraints, we can define the composition of a non-binary constraint with a bi-
nary constraint as a straightforward generalization of the composition operation
defined in Section 2.

For intentional constraints, there are usually particular propagators with
specific algorithm for the constraint. We sketch below an approach which allows
variable elimination to be employed with generic propagators. Assume we have
a linear constraint ci: ax + by + cz < d and a constraint c,, functional on y.
To substitute y in ¢1, we simply modify ¢; to be ax 4+ bw + cz < d and mark
w as a shadow wvariable (w needs special treatment by the propagator, which
will be clear later). We call y the shadowed variable. Assume we also have ¢y,
functional on w. To eliminate w, ¢; is further changed to ax + bu + cz < d.
Since w is a shadow variable, we generate a new constraint c,, using c,. and
Cwy in a standard way as discussed in this paper. Now u becomes the shadow
variable while the shadowed variable is still y (variable w is gone). Assume we
need to make c¢; arc consistency. First “synchronize the domains” of y and
using c,,, i.e., enforce arc consistency on c,,. (Note that due to elimination,
Cwy and ¢y, are no longer involved in constraint solving). Next, we enforce arc
consistency on c;. During the process, since u is a shadow variable, all domain
operations are on y instead of w. After making ¢y arc consistent, synchronize
the domain of y and u again. (If the domain of u is changed, initiate constraint
propagation on constraints involving u.) This approach is rather generic: for
any intensional constraints, synchronize the domains of the shadow variables
and shadowed variables, apply whatever propagation methods on the shadowed
variables (and other non-shadow variables), synchronize the domains of shadow
variables and shadowed variables again. In fact, the synchronization of the do-
mains of the shadow and shadowed variables (e.g., u and y above) can be easily
implemented using the concept of views [9].

13

7 Related Work

Bi-functional constraints have been studied in the context of arc consistency
(AC) algorithms since Van Hentenryck et al. [11] proposed a worst case optimal
AC algorithm with O(ed), which is better than the time complexity (O(ed?)) of
optimal AC algorithms such as AC2001/3.1 [2] for arbitrary binary constraints.
Liu [8] proposed a fast AC algorithm for a special class of increasing bi-functional
constraints. Affane and Bennaceur [1] introduced a new type of consistency,
label-arc consistency, and showed that the bi-functional constraints with limited
extensions to other constraints can be (globally) solved, but no detailed analysis
of their algorithms is given. In [12], we proposed a variable elimination method to
solve bi-functional constraints in O(ed). Functional constraints are not discussed
in those works.

David introduced pivot consistency for binary functional constraints in [3].
Both pivot consistency and variable substitution help to reduce a CSP into a
special form. There are some important differences between pivot consistency
and variable substitution. First, the concept of pivot consistency, a special type
of directional path consistency, is quite complex. It is defined in terms of a
variable ordering, path (of length 2) consistency, and concepts in directed graphs.
Variable substitution is a much simpler concept as shown in the paper. For both
binary and non-binary CSPs, the concept of variable substitution is intuitive
and simple. Next, by the definition of pivot consistency, to make a CSP pivot
consistent, there must be a certain functional constraint on each of the mon-
root variables. Variable substitution is more flexible. It can be applied whenever
there is a functional constraint in a problem. Finally, to reduce a problem, the
variable elimination algorithm takes O(ed?) while pivot consistency algorithm
takes O((n? — r?)d?), where 7 is the number of root variables.

Another related approach is bucket elimination [4]. The idea in common
behind bucket elimination and variable substitution is to exclude the impact
of a variable on the whole problem. The difference between them lies in the
way variable elimination is performed. In each elimination step, substitution
does not increase the arity of the constraints while bucket elimination could
generate constraints with higher arity (possibly exponential space complexity).
The former may generate more constraints than the latter, but it will not increase
the total number of constraints in the problem.

CLP [6] systems often make use of variable substitution and elimination.
The classic unification algorithm is a good example. A more complex example
is CLP(R) [5] which has constraints on finite trees and arithmetic. Variables in
arithmetic constraints are substituted out using a parametric normal form which
is applied during unification and also when solving arithmetic constraints. Our
approach is compatible with such CLP solvers which reduce the constraint store
to a normal form using variable substitution. We remark that any CLP language
or system which has finite domain constraints or CSP constraints will deal with
bi-functional constraints because of unification. Thus, a variable substitution ap-
proach will actually be more powerful than just simple finite domain propagation
on equations.

14

8 Conclusion

We have introduced a variable substitution method to reduce a problem with
both functional and non-functional constraints. Compared with the previous
work on bi-functional and functional constraints, the new method is not only
conceptually simple and intuitive but also reflects the fundamental property
of functional constraints. Our experiments also show that variable elimination
can significantly improve the performance of a general solver in dealing with
functional constraints.

For a binary CSP with both functional and non-functional constraints, an
algorithm is presented to transform it into a canonical functional form in O(ed?).
This leads to a substantial simplification of the CSP with respect to the func-
tional constraints. In some cases, as one of our results (Corollary 2) shows, the
CSP is already solved. Otherwise, the canonical form can be solved by ignoring
the eliminated variables. For example, this means that search only needs to solve
a smaller problem than the one before variable substitution (or elimination).

References

1. Affane, M.S., Bennaceur, H.: A Labelling Arc Consistency Method for Functional
Constraints. In: Freuder, E.C. (ed) CP 96. LNCS, vol. 1118, pp. 16-30. Springer,
Heilderberg (1996)

2. Bessiere, C., Regin, J.C., Yap, R.H.C., Zhang, Y.: An Optimal Coarse-grained Arc
Consistency Algorithm. Artificial Intelligence 165(2), 165-185 (2005)

3. David, P.: Using Pivot Consistency to Decompose and Solve Functional CSPs. J.
of Artificial Intelligence Research 2, 447474 (1995)

4. Dechter, R.: Bucket elimination: A Unifying Framework for Reasoning. Artificial
Intelligence 113, 41-85 (1999)

5. Jaffar, J., Michaylov, S., Stuckey, P.J., Yap, R.H.C.: The CLP(R) Language and
System. ACM Trans. on Programming Languages and Systems 14(3), 339-395
(1992)

6. Jaffar, J., Maher, M.J.: Constraint Logic Programming. J. of Logic Programming
19/20, 503-581 (1994)

7. Kirousis, L.M.: Fast Parallel Constraint Satisfaction. Artificial Intelligence 64, 147—
160 (1993)

8. Liu, B.: Increasing Functional Constraints Need to be Checked Only Once. In:
IJCAI-95, pp. 119-125. Morgan Kaufmann, San Francisco (1995)

9. Schulte, C., Tack, G.: Views and Iterators for Generic Constraint Implementa-
tions. In: Recent Advances in Constraints. LNCS, vol. 4651, pp. 37—48. Springer,
Heilderberg (2005)

10. Stallman, R.M., Sussman, G.J.: Forward Reasoning and Dependency-directed
Backtracking in a System for Computer-aided Circuit Analysis. Artificial Intel-
ligence 9(2), 135-196 (1977)

11. Van Hentenryck, P., Deville, Y., Teng, C.M.: A Generic Arc-consistency Algorithm
and its Specializations. Artificial Intelligence 58, 291-321, 1992.

12. Zhang, Y., Yap, R.H.C., Jaffar, J.: Functional Elimination and 0/1/All Constraints.
In: AAAI-99, pp. 275-281. AAAI Press, Menlo Park (1999)

15

