
An Elimination Algorithm for Functional

Constraints

Yuanlin Zhang1, Roland H.C. Yap2,
Chendong Li1, and Satyanarayana Marisetti1

1 Texas Tech University, USA
{y.zhang, chendong.li, satyanarayana.marisetti}@ttu.edu

2 National University of Singapore, Singapore
ryap@comp.nus.edu.sg

1 Introduction and preliminaries

Functional constraints are studied in Constraint Satisfaction Problems (CSP)
using consistency concepts (e.g., [4, 1]). In this paper, we propose a new method
— variable substitution — to process functional constraints. The idea is that if
a constraint is functional on a variable, this variable in another constraint can
be substituted using the functional constraint without losing any solution. We
design an efficient algorithm to reduce, in O(ed2), a general binary CSP contain-
ing functional constraints into a canonical form which simplifies the problem and
makes the functional portion trivially solvable. When the functional constraints
are also bi-functional, then the algorithm is linear in the size of the CSP.

We use the standard notations in CSP. Two CSPs are equivalent if and only
if they have the same solution space. Throughout this paper, n represents the
number of variables, d the size of the largest domain of the variables, and e
the number of constraints in a problem. The composition of two constraints is
defined as cjk ◦ cij = {(a, c) | ∃b ∈ Dj , such that (a, b) ∈ cij ∧ (b, c) ∈ cjk}.
Composing cij and cjk gives a new constraint on i and k.

A constraint cij is functional on j if for any a ∈ Di there exists at most
one b ∈ Dj such that (a, b) ∈ cij . cij is functional on i if cji is functional on i.
When a constraint cij is functional on j, for simplicity, we say cij is functional
by making use of the fact that the subscripts of cij are an ordered pair. In this
paper, the definition of functional constraints is different from the one in [5, 4]
where constraints are functional on each of its variables, leading to the following
notion.

A constraint cij is bi-functional if cij is functional on both i and j. A bi-
functional constraint is called bijective in [2] and simply functional in [4].

2 Elimination algorithm

Definition 1. Consider a CSP (N,D,C), a constraint cij ∈ C functional on j,
and a constraint cjk ∈ C. To substitute i for j in cjk, using cij, is to get a new
CSP where cjk is replaced by c′ik = cik ∩ (cjk ◦ cij). The variable i is called the
substitution variable.



Property 1. Given a CSP (N,D,C), a constraint cij ∈ C functional on j, and a
constraint cjk ∈ C, the new problem obtained by substituting i for j in cjk is
equivalent to (N,D,C).

Based on variable substitution, we can eliminate a variable from a problem
so that no constraint will be on this variable (except the functional constraint
used to substitute it).

Definition 2. Given a CSP (N,D,C) and a constraint cij ∈ C functional on
j, to eliminate j using cij is to substitute i for j, using cij, in every constraint
cjk ∈ C (k 6= i).

Given a functional constraint cij of a CSP (N,D,C), let Cj be the set of all
constraints involving j, except cij and cji. The elimination of j using cij results
in a new problem (N,D,C ′) where C ′ = (C − Cj) ∪ {c′ik | c′ik = (cjk ◦ cij) ∩
cik, cjk, cik ∈ C} ∪ {c′ik | c′ik = cjk ◦ cij , cjk ∈ C, cik /∈ C}.

In the new problem, there is only one constraint cij on j and thus j can be
regarded as being “eliminated”. By Property 1, the variable elimination preserves
the solution space of the original problem.

Property 2. Given a CSP (N,D,C) and a functional constraint cij ∈ C, the
new problem (N,D,C ′) obtained by the elimination of variable j using cij is
equivalent to (N,D,C).

We now extend variable elimination to general CSPs with functional and non-
functional constraints. The idea of variable elimination can be used to reduce a
CSP to the following canonical functional form.

Definition 3. A CSP (N,D,C) is in canonical functional form if for any con-
straint cij ∈ C functional on j, the following conditions are satisfied: 1) if cji

is also functional on i(i.e., cij is bi-functional), either i or j is not constrained
by any other constraint in C; 2) otherwise, j is not constrained by any other
constraint in C.

In a canonical functional form CSP, the functional constraints form disjoint
star graphs. A star graph is a tree where there exists a node, called the center,
such that there is an edge between this center node and every other node. We call
the variable at the center of a star graph, a free variable, and other variables in
the star graph eliminated variables. The constraint between a free variable i and
an eliminated variable j is functional on j, but it may or may not be functional
on i. In the special case that the star graph contains only two variables i and
j and cij is bi-functional, any one of the variables can be called a free variable
while the other called an eliminated variable.

If a CSP is in canonical functional form, all functional constraints and the
eliminated variables can be ignored when we try to find a solution for this
problem. Thus, to solve a CSP (N,D,C) in canonical functional form whose
non-eliminated variables are NE, we only need to solve a smaller problem

2



(NE,D′, C ′) where D′ is the set of domains of the variables NE and C ′ =
{cij | cij ∈ C and i, j ∈ NE}.

Any CSP with functional constraints can be transformed into canonical func-
tional form by variable elimination using the algorithm in Fig. 1. Given a con-
straint cij functional on j, Line 1 of the algorithm substitutes i for j in all
constraints involving j.

algorithm Variable-Elimination(inout (N, D, C), out consistent) {
L← N ;
while ( There is cij ∈ C functional on j where i, j ∈ L and i 6= j){

// Eliminate variable j,
1. C ← {c′ik | c

′

ik ← (cjk ◦ cij) ∩ cik, cjk ∈ C, k 6= i} ∪ (C − {cjk ∈ C | k 6= i});
2. L← L− {j};

Revise the domain of i wrt cik for every neighbour k of i;
if (Di is empty) then { consistent ← false; return }

}
consistent ← true;

}

Fig. 1. A variable elimination algorithm to transform a CSP into a canonical functional
form.

Theorem 1. Given a CSP (N,D,C), Variable-Elimination transforms the
problem into a canonical functional form in O(n2d2).

A good ordering of the variables to eliminate will result in a faster algorithm.
The intuition is that once a variable i is used to substitute for other variables, i
itself should not be substituted by any other variable later.

i

m

l

j k

Fig. 2. The constraint graph of a CSP with functional constraints cij and cjk and
non-functional constraints ckl and ckm.

Example Consider a CSP with functional constraints cij and cjk. Its con-
straint graph is shown in Fig. 2 where a functional constraint is represented by
an arrow. If we eliminate k and then j, we first get cjl and cjm, and then get cil

and cim. Note that j is first used to substitute for k and later is substituted by

3



i. If we eliminate j and then k, we first get cik, and then get cil and cim. In this
way, we reduce the number of compositions of constraints. 2

Given a CSP P = (N,D,C), PF is used to denote its directed graph (V,E)
where V = N and E = {(i, j) | cij ∈ C and cij is functional on j}.

Definition 4. Given a directed graph (V,E), a sequence of the nodes of V is
a functional elimination ordering if for any two nodes i and j, i before j in
the sequence implies that there is a path from i and j. A functional elimination
ordering of a CSP problem P is a functional elimination ordering of PF .

Given a directed graph G, a functional elimination ordering can be found by
1) finding all the strongly connected components of G, 2) modifying G by taking
every component as one vertex with edges changed and/or added accordingly,
3) finding a topological ordering of the nodes in the new graph, and 4) replacing
any vertex v in the ordering by any sequence of the vertices of the strongly
connected component represented by v.

The algorithm Linear-Elimination in Fig. 3 first finds a functional elim-
ination ordering (Line 1). Line 4 and 6 are to process all the variables in O.
Every variable i of O is processed as follows: i will be used to substitute for
all the variables reachable from i through constraints that are functional in C0

and still exist in the current C. Those constraints are called qualified constraints.
Specifically, L initially holds the immediate reachable variables through qualified
constraints (Line 8). Line 9 is a loop to eliminate all variables reachable from i.
The loop at Line 11 is to eliminate j using i from the current C. In this loop,
if a constraint cjk is qualified (Line 14), k is reachable from i through qualified
constraints. Therefore, it is put into L (Line 15).

Theorem 2. Given a CSP problem, the worst case time complexity of
Linear-Elimination is O(ed2) where e is the number of constraints and d the
size of maximum domain in the problem.

For the algorithm Linear-Elimination, we have the following nice property.

Theorem 3. Consider a CSP with both functional and non-functional con-
straints. If there is a variable of the problem such that every variable of the
CSP is reachable from it in PF , the satisfiability of the problem can be decided
in O(ed2) using Linear-Elimination.

For a problem with the property given in the theorem above, its canon-
ical functional form becomes a star graph. So, any value in the domain of
the free variable is extensible to a solution if we add (arc) consistency enforc-
ing during Linear-Elimination. The problem is not satisfiable if a domain
becomes empty during the elimination process . In contrast to our algorithm
Linear-Elimination, using an arc consistency based (bi-)functional algorithm
[4] or view based [3] implementations of propagators for functional constraints
may not be able to achieve global consistency in general.

4



algorithm Linear-Elimination(inout (N, D, C)) {
1. Find a functional elimination ordering O of the problem;
2. Let C0 be C; any cij in C0 is denoted by c0

ij ;
3. For each i ∈ N , it is marked as not eliminated ;
4. while (O is not empty) {

Take and delete the first variable i from O;
6. if (i is eliminated) continue;
8. L← {j | (i, j) ∈ C and c0

ij is functional};
9. while (L not empty) {

Take and delete j from L;
11. for any cjk ∈ C − {cji} { // Substitute i for j in cjk;

c′ik ← cjk ◦ cij ∩ cik;
C ← C ∪ {c′ik} − {cjk};

14. if (c0

jk is functional) then

15. L← L ∪ {k};
}

16. Mark j as eliminated ;
} // loop on L

} // loop on O

} // end of algorithm

Fig. 3. A variable elimination algorithm of complexity O(ed2).

3 Conclusion

We have introduced a variable substitution method to reduce a problem with
both functional and non-functional constraints. Compared with the previous
work on bi-functional and functional constraints, the new method is not only
conceptually simple and intuitive but also reflects the fundamental property
of functional constraints. Our experiments (not included here) also show that
variable elimination can significantly improve the performance of a general solver
in dealing with functional constraints.

References

1. David, P.: When functional and bijective constraints make a CSP polynomial. In
Intl. Joint Conf. on Artificial Intelligence. (1993) 224–229

2. David, P.: Using pivot consistency to decompose and solve functional CSPs. Journal

of Artificial Intelligence Research 2 (1995) 447–474.
3. Schulte, C., Tack, G.: Views and iterators for generic constraint implementations.

In Constraint Solving and Constraint Logic Programming. (2005) 118–132
4. Van Hentenryck, P., Deville, Y., Teng, C.M.: A generic arc-consistency algorithm

and its specializations. Artificial Intelligence 58 (1992) 291–321
5. Zhang, Y., Yap, R.H.C., Jaffar, J.: Functional elimination and 0/1/all constraints.

In Natl. Conf. on Artificial Intelligence. (1999) 275–281

5


