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Abstract—Epilepsy is one of the most common neurological seizures so that doctors can quickly view events of interest

disorders that greatly impair patient’ daily lives. Tradit ional
epileptic diagnosis relies on tedious visual screening byearol-
ogists from lengthy EEG recording that requires the presene
of seizure (ictal) activities. Nowadays, there are many syams
helping the neurologists to quickly find interesting segmets of
the lengthy signal by automatic seizure detection. Howevemwe
notice that it is very difficult, if not impossible, to obtain long-
term EEG data with seizure activities for epilepsy patientsin
poer areas lack of medical resources and trained neurologis.
Therefore, we propose to study automated epileptic diagnis
using interictal EEG data; whieh, is much easier to collect
than ictal data. The authors are not aware of any report on
automated EEG i ic system that can accurately distiguish
patients’ interictal EEG from that,pf normal people. The research
presented in this paper, therefore, aims to develop an autoated
diagnostic system that can use interictal EEG data to diagrse
whether the person is epileptic. Such a system should alsotéet
seizure activities for further investigation by doctors ard potential
patient monitoring. To develop such a system, we extract fau
classes of features from the EEG data and build a Probabilist
Neural Network (PNN) fed with these features. Leave-one-du
cross-validation (LOO-CV) on a widely used epileptic-nornal

without having to page through the entire recording [13]t Bu
this approach requires the presence of seizure activities i
the EEG data. This tough requirement often leads to very
long, even up to 1 week, continuous EEG recording to capture
seizure activities because of the difficulty-fer-one to telind
when a seizure will occur. The long-term EEG recording can
greatly disturb patients’ daily lives. Another clinical reern
is that very unfortunetaly, 50-75% epilepsy patients in the
world reside in areas lack of medical resources and trained
professionals [3], which makes the long-term EEG recording
virtually impractical to those people. Therefore, an audted
EEG epilepsy diagnostic system would be very valuable if
it does not require data from active seizure activities.,(i.e
ictal) to perform the diagnosis. However, to the authors’
best knowledge, we are not aware of any-exigting automated
epilepsy diagnostic system-capable-ef-dealing;with only the
interictal EEG data.

In this paper, we aim to develop an automated system that

data set reflects an impressive 99.5% accuracy of our system can diagnose epilepsy not only by using ictal EEG data but

on distinguishing normal people’s EEG from patient’s interictal

also interictal data. The diagnosis function of this systeith

EEG. We also find our system can be used in patient monitoring be valuable for patients in areas lack of medical resousres,

(seizure detection) and seizure focus localization, with®7% and
77.5% accuracy respectively on the data set.

particularly well-trained personnels. Its capability aizire
detection will be the base of effective monitoring in perlon

Index Terms—Epilepsy, Electroencephalogram (EEG), Proba- health care and help doctors to do further diagnosis if neces

bilistic Neural Network (PNN), seizure.

I. INTRODUCTION

sary. In addition to diagnosis and seizure detection, weldvou

also like the system to provide basic information on focus

localization which is also an important aspect in diagnosis
Our system is a Probabilistic Neural Network (PNN) [14]

EP”_-EPSY is & chronic disorder characterized by recurréphseq classifier. Previous research suggests PNN is more
seizures, which may vary from muscle jerks to seveigitaple for medical applications, sinee-PNN uses Bayesian
convulsions [1]. Estimated 1% of world population SUﬁer§trategies, a process familiar to medical decision maKesk |
from epilepsy [2], while 85% of them live in the developingue adopt PNN for its fast speed, high accuracy and real-time
countries [3]. Electroencephalogram (EEG) is routinelgdis property in updating network structure, as we will explain
clinically to diagnose, monitor and localize epileptogeniy, gec. |v. As—well-studied—before; it is very difficult to
zone [4]. Long-term EEG monitoring can provide 90% positivgirectly use raw EEG data as input to an Artificial Neural
diagnostic information [5] and thus become a golden stahda{enwork [16]. Therefore, a key in designing the PNN classifie
in epilepsy diagnosis. is to find proper features from the given EEG data and feed
Traditional methods rely on experts to visually inspeghose feature values to the classifier (i.e., paramete @
the entire lengthy EEG recordings of up to 1 week, whichata as input) . Artificial Neural Network has been used for
is tedious and time-consuming. Therefore, many automatgGiomated diagnosis by several research groups [9]-[18]. B
system assisting the diagnosis of epilepsy have emerged [f]ose work focus on seizure detection only. Since the icteri
[12]. They could detect abnormal EEG segments related g¢&G does not have seizure activies, the features identified
for those neural networks might not work for our purpose:
diagnosing epilepy and localizing foci from interictal datVe
use four classes of features, namely, power spectral tes)sit
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fractal dimensions, Hjorth parameters, and amplitudéssie. A. Power Spectral Features

[EEG data acquisition To a time seriesy, z9, -+ , zy, its Fast Fourier Transform
(FFT) X1, Xo,--- , Xy are estimated as

| Feature extraction and normalizatipn

N
X, :anW{f,”, k=1,2,---,N
| Neural network classificatior] T

—j2mkn

| Diagnosis decision] where Wk = e and N is the series length.

We noted a clear difference that in general the ictal EEG

Fig. 1. Flow diagram of our EEG classification scheme has more power components in the higher frequency region
(>14Hz) while non-ictal EEG are mostly below 14Hz. This

Based on a widely used data set with epileptic and norn%\?mt has also been described in [19]. From Fig. 2, it can be

EEG data, our experiments indicate that interictal EEG early seen that the central frequencies of peaks of efieer

epileptic patients can be differentiated from those of thgal EG signals lie in different regions.
people with high accuracy and fast speed. Our interictal EE™
based diagnostic approach achieves a 99.6% overall agcut
in cross-validation. The exisiting ictal data based state
is also tested in our classifier, with 98.3% accuracty. Foc 2
localization is achieved with a 78.5% accuracy. Our classifi
is also capable of distinguishing interictal and ictal EE@a & _|f | |
thus detecting seizures. The 96.9% accuracy underlines ! Jlh.. UL T LY
possib|e patient monitoring_ The Speed of our C|assiﬁee'r$lv Physical Frequency (Hz) Physical Frequency (Hz) Physical Frequency (Hz)
fast —0.01 second per run in all four classification problems.

These results imply the possibility of our system for relet Fig. 2. Typical FFT results of 3 EEG segments (Raw dataVh For FFT

. . L . results, the scale in the Y-axis of ictal data is 10 timesdartpan the ones
diagnosis, monitoring and focus localization. of healthy and interictal data)
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II. DATA ACQUISITION Based on the FFT result, Power Spectral Intensity (PSI)
and Relative Intensity Ratio (RIR) is evaluated to each 2-Hz

In our experiments, we adopt the data set, which is widefsequency band from 2-32 Hz. The PSlI is defined as
used in previous epileptic diagnosis/analysis researgh [9

fmax
[12], [17], [18], from Klinik fur Epileptologie, Univergét V7]
Bonn, German [17]. It consists of five sets, each containing PST, = Z Xi, k=1,2,...,15
100 single-channel EEG segments. Each segment has 4096 i=| N {min |

sampling points over 23.6 seconds. Note that artifacts, e. ) ,
due to hand or eye movements, have been manually remoY8iE'e fmin = 2k, finae = 2k + 2, fs IS the sampling
by the creators of the data. Data in sets A and B is extradrar}[ffquency andvV the the series length. As you can see, the
EEG from healthy volunteers with eyes open and eyes closédm and fm‘“”_ are lower and_uppe_r boundaries of each 2-Hz
respectively. Sets C and D are intracranial data over iritri band, respectively. The RIR is defined as

period while Set E over ictal period. Segments in D are PSI;
from within the epileptogenic zone, and those in C from 1165_1PSIk’
the hippocampal formation of the opposite hemisphere of the - )
brain. All EEG signals were sampled at a sampling rate &0 we have 15 PSls and 15 RIPs. They are the first 30 features
173.61Hz. Refer to [17] for detailed information of the datave used.

The data was filtered by a low-pass filter of cutoff frequency The 2-32Hz band covers some EEG abnormalities unique
40Hz. to epilepsy [20], such as the 3Hz and 6Hz spike waves [21].

RIR; = j=1,2,---,15

B. Petrosian Fractal Dimension (PFD)

PFD is defined as:

Our classifier uses 38 features of 4 classes to characterize log,y N
. . . . PFD = 10
interictal EEG signal. The power spectral features describ logyo N + log o (—X )
energy distribution in the frequency domain. Fractal dimen 10 103 n+0.4N5
sions outline the fractal property. Hjorth parameters desc where NV is the series length and’s is the number of sign
the chaotic behavior. Mean and standard deviation represehanges in the signal derivative [22]. According to Fig. B (a
the amplitude statistics. Since normalization is very imtgat PFD distributions are highly concentrated within each glas
to distance-based classifier, features are normalizeddéfd and there is no overlap among the data for each class either.
into PNN. Therefore, all classes can be clearly distinguished uskig. P

Ill. FEATURE EXTRACTION
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Fig. 3.  Average Petrosian Fractal Dimension (a) and Higuehictal Fig. 4. Average Hjorth Mobility (a) and normalized Hjorth @plexity (b)
Dimension (b) for each set. Error bars denote one standaritid® (o) for each set. Error bars denote one standard deviatidrfof each class of
for each class of EEG. EEG.

C. Higuchi Fractal Dimension (HFD) of normalized Hjorth complexity and find it also has a tight
distribution within each class.

An interesting finding is that a set with low Hjorth mobility
would have high normalized Hjorth complexity. For example,
Loms Tontohs Tt 2bs Ty | N (1) Set_s C and D have the lowest mobility and highest complexity,

which separates them from other sets.

Higuchi’'s algorithm [23] constructé new series from the
original seriesry, xa, -+ ,xn by

wherem =1,2,--- , k.
For each time series constructed from (1),

the leng L
L(m, k) is computed by E' Means and standard deviations

EEG signals from different conditions have different am-

Zgj” o tik — Tong (- 1| (N = 1) plitudes. For example, the amplitude of normal activities
L(m, k) = =y ranges around 1Q0/ here while the ictal EEG ranges around
k 100QuwV. Means and standard deviations of both original data
The average lengtli (k) is computed as and the absolute values of EEG are evaluated. They are the
SF L6 k) last 4 features we used.
L(k) — 1=1 (27
k IV. PROBABILISTIC NEURAL NETWORK

This procedure repeats,, ., times for eachk from 1 to  an Al-based classifier is essentially a mappifig R™ —
kmaz, @nd then uses a least-square method to determine fhe from the feature space to the discrete class space. An
slope of the line that best fits the curve bf(L(k)) versus rtificial Neural Network (ANN) implements such a map-
In(1/k). The slope is the Higuchi Fractal Dimension. In thiging by using a group of interconnected artificial neurons
paper,kmaz 1S 5. simulating human brain. An ANN can be trained to achieve

Fig. 3 (b) indicates HFD data is also densely clusteredpected classification results against the input and outpu

within each class and there is a small overlap between dasgiormation stream, so there is not a need to provide a specifi
C and E. HFD, therefore, is a good feature to characterigiyssification algorithm.

classes A, B and E. PNN is one kind of distance-based ANNs, using a bell-
shape activation function. This technique makes decision
D. Hjorth Parameters boundaries nonlinear and hence it can approach the Bayesian

optimal [25]. Compared with traditional back-propagation
(BP) neural network, PNN is considered more suitable to
medical application since it uses Bayesian strategy, aggssoc

To a time seriesey, o, -+, zyn, the Hjorth mobility and
complexity [24] are respectively defined as

M2 familiar to medical decision makers [15]. The real-timepro
TP erty of PNN is also crucial to our research. In PNN, decision
boundaries can be modified in real-time as new data become
and available [14]. There is no need to train the network over all
M4-TP . .
\ —— data sets again. So we can quickly update our network as more
M2 M2 and more patients’ data becomes available.
, whereTP = > x;/N, M2 = > d;/N, M4 = > (d; — Our PNN has three layers: the Input Layer, the Radial Basis
d;—1)?/N andd; = x; — x;_1. Layer which evaluates distances between input vector amsl ro

According to Fig. 4 (a), Hjorth mobility has a tight distri-in weight matrix, and the Competitive Layer which deternsine
butions within each class. Even though the Hjorth compjexithe class with maximum probability to be correct. The netwvor
appears very inconsistent among classes, since PNN uses swucture is illustrated in Fig. 5, using symbols and notai
malized features, we compute the mean and standard deviatio[26]. Dimensions of arrays are marked under their names.



Input Layer Radial Basis Layer = Competitive Layer TABLE |
OVERALL ACCURACY AND CLASSIFICATION TIME USING PNN

N N B i .
W No. Experiment Accuracy Time (S)
normal (200 samples) 99.50 0.0
QxR 1 vs. interictal (200 samples) 5% 01
normal (200 samples)
2 vs. ictal (100 samples) 98.3% 0.01
interictal (200 samples)
3 vs. ictal (100 samples) 96.7% 0.01
epileptogenic zone (100 samples)
4 vs. opposite hemisphere (100 samples) 77.5% 0.01
Q
\ ) Qx1 JRN ) V. EXPERIMENTAL RESULTS

Fig. 5. PNN network structure, R: number of features, Q: nem training As shown in Table. I, we designed four experiments to test
samples, K: number of classes. The input vegids presented here as a bIackthe ability of our classifier to separate:

vertical bar.
1) normal EEG (sets A and B) and interictal EEG (sets C
and D)
2) normal EEG (sets A and B) and ictal EEG (set E)
3) interictal EEG (sets C and D) and ictal EEG (set E)
In Radial Basis Layer, the vector distances between Input4) interictal EEG Samp'ed from ep“eptogenic zone (Set C)

vectorp and the weight vector made of each row of weight — anq interictal EEG sampled from opposite hemisphere
matrix W' are calculated. Here, the vector distance is defined (st D)

as the dot product between two vectors [25]. The dot productype first two experiments evaluate the-epileptic-diagnostic

betweenp and thei-th row of W produces the-th element ability, of our algorithm using interictal EEG and ictal EEG

of the digtance vector matrix, .denotedHalW—PH- The bias respectively.—The—first_one—is—our—new—approach—while the
vector b is then combined with[W — p|| by an element- gocond one is-to-test the-performance-of-our-system-en ictal

by-element multiplication, represented as™ in Fig. 5. The go.o

result is denoted as = [[W —pl[ - xb. _ The last two experiments evaluate the feasibility of our

The transfer function in PNN has built into a distancgigorithm on seizure monitoring and focus localization, re

criterion with respect to a center. In this paper, we defirasit spectively.
n? ) The classifier is validated using leave-one-out cross-
validation (LOO-CV) on 400, 300, 300 and 200 samples
Each element oh is substituted into (2) and produces correspectively in experimeats 1, 2 and 3. Our algorithm is
responding element o4, the output vector of Radial Basisimplemented using the MATLAB Neural Network Toolbox.
Layer. We can represent theh element ofa as Table | lists the overall accuracy and classification time of
experiments.

a; = radbas(||W; — p|| - xb) ®) HEHt‘l‘?r”(:e spread constant of PNN, is seleted according to overall
whereW; is thei-th row of W andb, is thei-th element of accuracy. As illustrated in Fig. 6, all experiments achieve
bias vectorb. Mighest accuracy, when spread constari.is In this-papg,

1) Radial Basis Layer WeightsEach row of W is the therefore, spread constant is setto. S
feature vector of one trainging sample. The number of rows©Our approach reaches 99.5% accuracy in using interictal
equals to the number of training samples. EEG for epileptic diagnosis (Experiment 1). This results

2) Radial Basis Layer BiasesAll biases in radial basis validates the feasibility to use only interictal data-inleptig

layer are set to,/In0.5/s resulting in radial basis functions diagnosis. - o
that cross 0.5 at weighted inputs eafs, where s is the The accuracy of our classifier using ictal data-also reaches

spread constant of PNN. In this paperis set to 0.1, since 98.3%, which is very similar to what has been reported from

our experiments show the highest accuracy is achieved wHdgVious work [12].
s = 0.1, as illustrated in Fig. 6. In Experiment 3, 96.7% accuracy shows our system can

distinguish ictal EEG from interictal EEG very well. This
. suggests the feasibility to continuously monitor pafieatis

B. Competitive Layer or detect seizures by classifying a windowed EEG segment.

There is no bias in Competitive Layer. In this layer, the vedf the segment covering current time instant is classified as
tor a is first multiplied by layer weight matriM, producing ictal, then the patient has been in an ictal gtate as therseizu
an output vectod. The competitive functiorC produces a 1 is occurring. The focus localization experiment achieves a
corresponding to the largest elementdfand O’s elsewhere. promising accuracy of 77.5%, which still needs further im-
The index of the 1 is the class of the EEG segmaitis set provement.
to K x @ matrix of @) target class vectors. If theth sample  In all the 4 experiments, the classification time per run is
in training set is of clasg, then we have a 1 on thgeth row 0.01 second (on MATLAB R2008a for Linux, 1.6GHz 64-
of i-th column of M. bit CPU, 2G RAM), which is very short compared with the

A. Radial Basis Layer

radbas(n) = e~
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Fig. 6. Overall accuracy with respect to PNN spread constant

[12]
EEG segment length, 23.6 seconds. This shows the feagibilit
of real-time monitoring. For long-term monitoring, we can
periodically sample the EEG by a sliding window and analyzes]
the windowed segment. For example, immediately after ictal
activity detection, devices equipped with our algorithrm Ca14]
send out an alarm to healthcare providers.

[15]

VI. CONCLUSIONS

In this paper, an automated EEG recognition system fBf!
epilepsy diagnosis is developed and validated by cross-
validation. Compared wit existing conventional seizuee d
tection algorithms, our approach does not require seizutél
activity to be captured in EEG recording and thus is seizure-
independent. This feature relieves the difficulties in EEG

ftoring since interictal data is much easier to be ctéiéc
than ictal data—38-features-are-extracted-from-EEGanda PIQFRi|
is—employed-to—classify-thesefeatures. 38 EEG features are
extracted and PNN is employed to classify those features. [19]

Experiments indicate that interictal EEG of epileptic pa-
tients can be differentiated from those of healthy peopjen]
with high accuracy and fast speed. Our interictal EEG based
diagnostic approach achieves a 99.5% overall accuracypsscr
validation. Diagnosis based on ictal data is also testecuin g21]
classifier, reaching a high 98.3% accurggy. We also extend
the funtion of the classifier, to patient monitoring and fecu,y,
localization. 96.7% accuracy-on is achieved on differdimip
ictal vs, interictal EEG, which suggests the feasibility of
online patient monitoring. The focus localization resalalso
promising with a 77.5% accuracy. The speed of our classifien]
is very good, costing only 0.01 second to classify an EEG
segment of 23.6 seconds. 25]
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