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Abstract—Over 50 million people worldwide suffer from
epilepsy. Traditional diagnosis of epilepsy relies on tedious
visual screening by highly trained clinicians from lengthy EEG
recording that contains the presence of seizure (ictal) activities.
Nowadays, there are many automatic systems that can recognize
seizure-related EEG signals to help the diagnosis. However, it is
very costly and inconvenient to obtain long-term EEG data with
seizure activities, especially in areas short of medical resources.
We demonstrate in this paper that we can use the interictal
scalp EEG data, which is much easier to collect than the ictal
data, to automatically diagnose whether a person is epileptic.
In our automated EEG recognition system, we extract three
classes of features from the EEG data and build Probabilistic
Neural Networks (PNNs) fed with these features. We optimize
the feature extraction parameters and combine these PNNs
through a voting mechanism. As a result, our system achieves
an impressive 94.07% accuracy.

Index Terms—Epilepsy, Electroencephalogram (EEG), Prob-
abilistic Neural Network (PNN), seizure.

I. INTRODUCTION

EPILEPSY is the second most common neurological dis-
order, affecting 1% of world population [1]. Eighty-five

percent of patients with epilepsy live in the developing coun-
tries [2]. In some areas of the world, patients with seizures
routinely experience discrimination in their schools, work
places and communities [3]. Electroencephalogram (EEG) is
routinely used clinically to diagnose epilepsy [4]. Long-term
video-EEG monitoring can provide 90% positive diagnostic
information [5] and has become the golden standard in
epilepsy diagnosis. For the purpose of this research, we define
the term “the diagnosis of epilepsy” as the determination
of whether a person is epileptic or non-epileptic [6], i.e.,
whether the patient’s epilepsy is the result of an abnormal
electrical discharge that corresponds to the clinical behavior
that is observed on the synchronized video record.

Traditional diagnostic methods rely on experts to visually
inspect lengthy EEG recordings, which is time consuming
and problematic due to the lack of clear differences in EEG
activity between epileptic and non-epileptic seizures [7],
particularly in seizures of electrical onset in the frontal
region, where the electrical charges in the brain may be
minimal or invisible on the EEG recorded from the scalp
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surface, leading to misdiagnosis or to the seizures being con-
sidered non-epileptic. Many automated seizure recognition
techniques, therefore, have emerged [7]–[18]. The approach
of using automatic seizure recognition/detection algorithms
would still require the recording of clinical seizures. There-
fore, very long continuous EEG recordings, preferably with
synchronized video for several days or weeks, are needed
to capture the seizures. The long-term EEG recordings can
greatly disturb patients’ daily lives. Another clinical concern
is that unfortunately, 50-75% of epilepsy patients in the world
reside in areas where medical resources and trained clinicians
are seriously lacking to make such a process possible [2].
Consequently, an automated EEG epilepsy diagnostic system
would be very valuable if it does not require data containing
seizure activities (i.e., ictal). However, to the authors’ best
knowledge, we are not aware of any report on automated
epilepsy diagnostic system using only interictal scalp EEG
data.

Previous research has attempted to create automated
epilepsy diagnostic systems using interictal EEG data [14],
[19]. However, in those trials, only intracranial EEG data
from patients are used, and the EEG artifacts have been
carefully removed manually. It is very expensive to obtain
intracranial EEG recordings that are relatively artifact free
for every epilepsy patient, which is especially impractical in
poor and rural areas. Therefore, we have built an automated
epilepsy diagnostic system with very good accuracy that can
work with scalp EEG data containing noise and artifacts.

Artificial Neural Networks (ANNs) have been used for
seizure-related EEG recognition [11]–[16]. We use in this
work one kind of ANN as the classifier, namely the Prob-
abilistic Neural Network (PNN), for its high speed, high
accuracy and real-time property in updating network struc-
ture [20]. It is very difficult to directly use raw EEG data
as the input of an ANN [21]. Therefore, the key is to
parameterize the EEG data into features prior to the input
into the ANN. We use features that are used in previous
studies on seizure-related EEG, namely, the power spectral
feature, fractal dimensions and Hjorth parameters. A simple
classifier voting scheme [22] and parameter optimization are
used to improve the accuracy. The system diagram of our
approach is as shown in Fig. 1.

Our system on distinguishing interictal scalp EEG of
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Fig. 1. Flow diagram of our EEG classification scheme

epileptic patients vs. the scalp EEG of healthy people has
a best accuracty rate of 94.07%.

II. DATA ACQUISITION

We compose a data set1 based on 22-channel routine
scalp EEG recordings from Dept. of Neurosurgery, Jiangsu
Provincial Hospital of Chinese Medicine, China. The data is
from 6 normal people and 6 epileptic patients (in interictal
period). Our interictal EEG data is not obtained from con-
tinuous 24hr scalp-EEG recordings, but from routine EEG
recordings from patients and normal people. Even though
the patient number is limited in this study, our EEG data size
includes 5 days of data, so the results achieved in this work
should be statistically significant. It is recorded at 200Hz
sampling rate, using the standard international 10-20 system
with referential montage. Similar to another research [14],
EEG recordings are cut into segments of 4096 (i.e., 212).
Our complete data set has 22,353 segments per channel, and
491,766 segments in total. The scalp EEG data contains noise
and artifacts, which was not removed before performing our
analysis. Please note that because the drug effects, ages and
prior medical histories of patients, etc. may heavily affect
the EEG of the epilepsy patients and normal people, and
that our sample size under study is quite small, it remains
to be seen if our impressive diagnosis results reported here
can be extrapolated to a large sample size of patients in the
future.

III. FEATURE EXTRACTION

Three classes of features are extracted to characterize the
EEG signal: Power Spectral Features, describing its energy
distribution in the frequency domain; Fractal Dimensions out-
lining its fractal property; and Hjorth Parameters, modeling
its chaotic behavior.

A. Power Spectral Features

As one can see from Fig. 2, power spectrum is a good way
to distinguish different kinds of EEG.

1Human subject data used in this research has been approved and are
already exempt by Protection of Human Subjects Committee IRB committee
of Texas Tech University under “501209 Diagnosis, Monitoring, Seizures
Prediction and Intervention for Epilepsy Patients Using an Intelligent Scalp-
EEG Signal Analysis System.”

To a time series x1,x2, · · · ,xN , its Fast Fourier Transform
(FFT) X1,X2, · · · ,XN is estimated as

Xk =
N

∑
1

xnW kn
N , k = 1,2, · · · ,N,

where W kn
N = e

− j2πkn
N , and N is the series length.
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Fig. 2. Typical FFT results of 3 EEG segments (Raw data in μV)

Based on the FFT result, Power Spectral Intensity (PSI) of
each fstep Hz bin in a given band flow- fup Hz is evaluated as

PSIk =
�N fmax

fs
�

∑
i=�N

fmin
fs

�
Xi, k = 1,2, · · · ,K, (1)

where fmin = 2k, fmax = 2k +2, K = ( fup − flow)/ fstep, fs is
the sampling rate, and N is the series length. fmin and fmax

are the lower and upper boundaries of each bin, respectively.
We use Relative Intensity Ratio (RIR) as the Power Spec-

tral Features. It is defined as

RIR j =
PSIj

∑K
k=1 PSIk

, j = 1,2, · · · ,( fup − flow)/ fstep.

B. Petrosian Fractal Dimension (PFD)

PFD is defined as:

PFD =
log10 N

log10 N + log10(
N

n+0.4Nδ
)
,

where N is the series length, and Nδ is the number of sign
changes in the signal derivative [23].

C. Higuchi Fractal Dimension (HFD)

Higuchi’s algorithm [24] constructs k new series from the
original series x1,x2, · · · ,xN by

xm,xm+k,xm+2k, · · · ,xm+� N−m
k �k, (2)

where m = 1,2, · · · ,k.
For each time series constructed from Eq. (2), the length

L(m,k) is computed by

L(m,k) =
∑
� N−m

k �
i=2 |xm+ik − xm+(i−1)k|(N −1)

�N−m
k �k

.

The average length L(k) is computed as

L(k) = ∑k
i=1 L(i,k)

k
.
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This procedure repeats kmax times for each k from 1 to
kmax, and then uses a least-square method to determine the
slope of the line that best fits the curve of ln(L(k)) versus
ln(1/k). The slope is the Higuchi Fractal Dimension. In this
paper, kmax = 5.

D. Hjorth Parameters

To a time series x1,x2, · · · ,xN , the Hjorth mobil-
ity and complexity [25] are respectively defined as√

M2
T P and

√
M4·T P
M2·M2 , where T P = ∑xi/N, M2 = ∑di/N,

M4 = ∑(di −di−1)2/N, and di = xi − xi−1.

IV. PROBABILISTIC NEURAL NETWORK

In machine learning, a classifier is essentially a mapping
from the feature space to the class space. An Artificial
Neural Network (ANN) implements such a mapping by using
a group of interconnected artificial neurons simulating the
human brain. An ANN can be trained to achieve expected
classification results against the input and output information
stream, so there may not be a need to provide a specified
classification algorithm.

PNN is a kind of distance-based ANN that uses a bell-
shape activation function. Compared with traditional back-
propagation (BP) neural network, PNN is considered more
suitable to medical application since it uses Bayesian strategy,
a process familiar to medical decision makers [26]. Decision
boundaries of PNN can be modified in real-time as new data
becomes available [20]. There is no need to train the network
over the entire data set again, so we use PNN to enable
quick updates of our network as more patients’ data becomes
available.
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Fig. 3. PNN structure, R: number of features, Q: number of training
samples, K: number of classes. The three layers are input layer, radial basis
layer and competitive layer respectively from left to right.

Our PNN has three layers: the Input Layer, the Radial
Basis Layer which evaluates distances between the input
vector and rows in the weight matrix, and the Competitive
Layer which determines the classification with maximum
probability of correctness. The network structure is illustrated
in Fig. 3 and described in greater details below. Dimensions
of matrices are marked under their names.

A. Input Layer

The input vector, denoted as p, is presented as a black
vertical bar in Fig. 3.

B. Radial Basis Layer

In the Radial Basis Layer, the vector distances between
input vector p and the weight vector, made up of each row of
the weight matrix W are calculated. Here, the vector distance
is defined as the dot product between two vectors [20]. The
dot product between p and the i-th row of W produces the
i-th element of the distance vector matrix, denoted as ||W−
p||. The bias vector b is then combined with ||W−p|| by
an element-by-element multiplication, represented as “·×” in
Fig. 3. The result is denoted as n = ||W−p|| ·×b.

The transfer function in PNN has built into a distance
criterion with respect to a center. In this paper, we define
it as radbas(n) = e−n2

. Each element of n is substituted into
the transfer function and produces corresponding element of
a, the output vector of Radial Basis Layer. We can represent
the i-th element of a as ai = radbas(||Wi −p|| ·×bi) , where
Wi is the i-th row of W, and bi is the i-th element of bias
vector b.

1) Radial Basis Layer Weights: Each row of W is the
feature vector of one trainging sample. The number of rows
is equal to the number of training samples.

2) Radial Basis Layer Biases: All biases in the radial basis
layer are set to

√
ln0.5/s, resulting in radial basis functions

that cross 0.5 at weighted inputs of ±s, where s is the spread
constant of PNN. According to our experience, s = 0.1 can
typically result in the highest accuracy.

C. Competitive Layer

There is no bias in the Competitive Layer. In this layer,
the vector a is first multiplied by the layer weight matrix
M, producing an output vector d. The competitive function
C produces a 1 corresponding to the largest element of d,
and 0’s elsewhere. The index of the 1 is the class of the EEG
segment. M is set to a K×Q matrix of Q target class vectors.
If the i-th sample in the training set is of class j, then we
have a 1 on the j-th row of the i-th column of M.

V. COMBINING CLASSIFIERS USING VOTING

A simple voting scheme [22] is used to improve the clas-
sification accuracy in this paper. We implement this scheme
by first building one component classifier for each channel
and then combining them as follows. Given 22 segments
collected at the same time (from different channels), each
of them will be classified by the component classifier for the
same channel. The component classifier of each channel will
judge whether the given EEG segment is epileptic. The final
classification decision will be based on the collective vote of
each component classifier combined. The voting rule we use
here is the majority rule; i.e., if 11 or more classifiers vote
epileptic, then our final system voting result will be epileptic.
Fig. 4 shows how our combined classifier works.

VI. EXPERIMENTAL RESULTS

In the experiments, we use the MATLABTM Neural Net-
work Toolbox to implement our PNN. The data used in
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Fig. 4. Classification Voting Scheme

the experiments is labeled as interictal (positive) or healthy
(negative). The interictal data set has the same size as the
healthy one. The testing method for our PNN is the Leave-
One-Out Cross-Validation (LOOCV) [22], where exactly one
sample is used as the test sample, while remaining samples
are used as training samples. This process repeats until every
sample has been used as a test sample exactly once.

As expected, different parameters used in feature extraction
can lead to different classifier performances. The experimen-
tal results below use default feature extraction parameters in
Sec. VI-A and optimized parameters in Sec. VI-B.

A. Classification using default feature extraction parameters

The features are extracted using the default parameters
described in Sec. II. We have carried out experiments to
find the best features to use for classification. We use all
possible combinations of these features to build the PNN
classifier: RIRs, Fractal Dimension (FDs) and Hjorth parame-
ters (Hjorth’s). The performance of each PNN with a specific
combination of features is tested using LOOCV against each
channel. The results are listed in Table I, where each entry
is the accuracy of LOOCV of the PNN with the features for
that column against the data set of the channel corresponding
to that row.

From Table I, it is clear that the first feature combination
(i.e., using all features) yields the highest accuracy, and thus
we decide to use all extracted features in later experiments
to build our classifiers.

The accuracy of our combined classifier increases to
84.27% while the true and false positive rates increase to
85.36% and 83.18% respectively. Thus, the sensitivity and
specificity are 83.33% and 84.69%, respectively.

B. Optimizing feature extraction parameters

In Sec. II and Sec. III, there are some parameters that can
be changed: the segment length of the EEG signal, the cut-
off frequency of filters, and the bin( fstep) and band ( flow and

TABLE I
SINGLE CHANNEL CLASSIFICATION ACCURACY USING PNN

ch.
RIRs, FDs FDs &

FDs RIRs Hjorth’s
RIRs RIRs &

& Hjorth’s Hjorth’s & FDs Hjorth’s
Fp1 76 63 58 72 63 75 73
Fp2 78 62 58 73 54 77 74
F3 75 61 56 71 59 73 73
F4 80 64 59 76 62 79 77
C3 81 67 62 77 58 80 78
C4 77 63 58 73 59 76 74
P3 76 62 55 73 57 75 74
P4 81 64 60 77 59 80 78
O1 79 62 55 76 58 78 76
O2 81 61 56 75 56 78 79
F7 80 66 57 76 63 79 78
F8 85 70 57 81 61 82 84
T3 81 67 66 76 59 78 79
T4 81 62 60 78 53 80 79
T5 79 67 59 72 59 75 77
T6 78 67 57 70 62 74 75
A1 80 66 58 72 61 77 77
A2 80 61 56 72 60 76 75
Fz 81 65 59 78 54 80 79
Pz 79 65 57 73 56 77 75
Cz 81 66 62 77 56 80 78
Oz 82 61 59 77 54 80 79

TABLE II
FEATURE EXTRACTION PARAMETERS USED IN THIS PAPER

Parameters Values
segment length 4096 or 8192 samples

cut-off frequency of filters 40, 46, 56 or 66 Hz
band: 2-32 Hz, bin:1 Hz

spectral band and bin band: 2-34 Hz, bin: 2 Hz
band: 2-34.5 Hz, bin: 2.5 Hz

fup) in Eq. (1). A combination of those parameters is called
a configuration. In this subsection, we will show that such
configuration is important to the classification. Optimized
configuration can lead to better accuracy. Different feature
extraction parameters used in this paper are listed in Table
II.

Table III shows the accuracies of combined PNN-based
classifier in different configurations. The cut-off frequencies
of 56 and 66 Hz are not tested for segment length 4096,
because we find longer segmentation can give higher ac-
curacy. An interesting finding is that after the filter cut-
off frequency reaches above 46 Hz, the accuracy of our
combined PNN classifier does not significantly increase.
One possible explanation is that many spikes may exist in
interictal EEG and most spikes reside in a frequency range
of 15 to 50 Hz. Increasing the filter cut-off frequency above
50Hz may also introduce line noise from power supply or
other sources, which will not benefit EEG signal quality [27].
Table V shows the highest accuracy is 94.07%.

VII. CONCLUSIONS

In this paper, an automated and robust interictal scalp
EEG recognition system for epilepsy diagnosis using only
interictal data is developed and validated. Three classes of
features are extracted, and a PNN is employed to make a
classification using those features. To improve the accuracy,

6606



TABLE III
ACCURACY OF VOTED CLASSIFIER (PNN) IN DIFFERENT

CONFIGURATIONS

Length cut-off freq.
band and bin ( flow- fup, fstep)

2-32, 1 2-34, 2 2-34.5, 2.5

4096
40 86.41 84.27 83.41
46 91.77 89.81 89.23

8192

40 90.19 87.80 86.86
46 93.73 91.93 91.92
56 94.07 92.14 91.37
66 93.78 91.96 91.13

we optimize the feature extraction parameters and design a
final classifier that combines several PNN-based classifiers.
Our system can reach an accuracy of 94.07%. Compared with
the existing approaches on epilepsy diagnosis, our approach
does not require the occurrence of seizure activity during
EEG recording. This merit reduces the difficulties in EEG
collection since interictal data is much easier to collect than
ictal data. Therefore, our epilepsy diagnosis system can be
very helpful for areas where medical resources are limited.
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