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Abstract. According to some research, comorbidity is reported in 35 to 80%
of all ill people [1]. Multiple guidelines are needed for patients with comorbid
diseases. However, it is still a challenging problem to automate the application
of multiple guidelines to patients because of redundancy, contraindicated, po-
tentially discordant recommendations. In this paper, we propose a mathematical
model for the problem. It formalizes and generalizes a recent approach proposed
by Wilk and colleagues. We also demonstrate that our model can be encoded, in a
straightforward and simple manner, in Answer Set Programming (ASP) – a class
of Knowledge Representation languages. Our preliminary experiment also shows
our ASP based implementation is efficient enough to process the examples used
in the literature.
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1 Introduction

Clinical practice guidelines (CPGs)[2], created by experts and supported by medical
evidences, are documents guiding the decisions in specific areas/conditions of health-
care. It is generally agreed that the use of guidelines can greatly improve the outcome
of clinical medical care. To promote the use of CPGs and increase their accessibility,
an important effort is to build systems that can automatically execute the guidelines
given patients’ information. Most of the early systems are based on the representation
languages such as Asbru, GLIF, GUIDE, EON, PROforma [3,4,5]. CPGs are usually
developed to target a single disease [3], and thus these systems and languages were
focusing on single diseases too.

It has been noted that the majority of elderly patients have multiple co-morbidities
and medications that must be addressed by their patient care team [6]. When applying
multiple CPGs to comorbid patients, as pointed out by Sittig et al. [7], “the challenge
is to create mechanisms to identify and eliminate redundant, contraindicated, poten-
tially discordant, or mutually exclusive guideline based recommendations for patients
presenting with comorbid conditions or multiple medications.”

As an example, consider an ulcer patient with transient stroke. According to the ul-
cer CPG, stop aspirin is a necessary activity in the treatment of ulcer while start aspirin,
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according to the transient stroke CPG, is also a necessary activity under certain situa-
tions. In this case, it is desirable for a CPG based system to identify the inconsistency
of the stop aspirin and start aspirin activities resulted from two distinct CPGs, and then
remove the inconsistency by replacing the activity of start aspirin by start clopidogrel.

Recently several attempts [8,9,10] have been made to attack the problem (or a part
of it). We are particularly interested in the approach proposed by Wilk and colleagues
[11,12,10] which consists of two steps. The first step is to identify the adverse and con-
tradictory activities, i.e., inconsistencies, that are obtained by applying the CPG to each
of the several diseases a patient has. The second step is to mitigate the inconsistencies.
We call the problem introduced by Wilk at al. guideline reconciling problem.

Wilk and colleagues offered one of the first few automated solutions for the con-
current application of CPGs to two diseases. However, they only gave a solution for
the problem, based on Constraint Logic Programming program and pseudo code algo-
rithms, but did not give a mathematical definition of the problem. As a result of the lack
of problem definition, it is not easy to evaluate how closely this problem models the real
problems on the application of two or more CPGs, and the solution to the reconciling
problem may be unnecessarily restricted (e.g., to the approach used in their work) too.

In the research reported here, we make the following contributions to improve Wilk
and colleagues’ work.

We separate the reconciling problem from its solution(s). We find that graph theory
provides a handy tool for us to develop an explicit mathematical definition for the rec-
onciling problem. Compared with Wilk et al.’s work, our definition does not depend on
an programming languages or algorithms. We expect the definition to be more acces-
sible to researchers in the medical area (maybe with help of computer scientists) and
thus makes it easier for them to evaluate its capacity of modeling the real situation. On
the other hand, once the problem is (mathematically) defined, computer scientists can
focus on finding better ways to solve the problem, without worrying too much about
the required medical background.

In our definition, we also generalize the problem implied by Wilk et al’s algorithms
by allowing OR decision nodes.

Once the problem is defined, there are many immediate ways to solve the prob-
lem under both declarative and imperative programming paradigms. As an example, we
present a solution based on Answer Set Programming (ASP), a declarative program-
ming paradigm. ASP is a well developed non-monotonic logic programming paradigm
in the knowledge representation community. The logic rules of ASP are natural be-
cause a good amount of knowledge in guidelines are in the form of rules. More impor-
tant, rules in CPGs usually involve exceptions, which can be addressed very well by the
non-monotonicity property of ASP. Thanks to its declarativeness and non-monotonicity,
ASP is elaboration tolerant [13,14] (which means that it is convenient to modify a set of
facts expressed in ASP to take into account new phenomena or changed circumstances
in the domain of concern), which is particularly amenable to the constant revision of
guidelines driven by the growth of our knowledge on all aspects of diseases. Equally im-
portant to the expressiveness of ASP, several efficient ASP inference engines or solvers
such as DLV [15] and CLASP [16] have been developed and maintained in the last
decade. They enable the development of efficient ASP based solutions to application
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problems. An important note in our decision of using ASP is there are many aspects of
the problem (as a mathematical model for reconciling CPGs) that need to be improved
to address the real life problems. Those improvements can very well make the problem
NP-hard. So, we are not interested in ad hoc algorithm(s) specifically designed for the
problem defined in its current form.

The encoding of the problem using ASP is natural and simple, almost a straightfor-
ward translation of the problem definition. Our preliminary experiment also shows that
the examples mentioned in [10] can be solved efficiently. As far as we are aware of, there
is no system available on applying multiple CPGs to several diseases. Our ASP pro-
gram is available publicly and downloadable at http://redwood.cs.ttu.edu/
˜yzhang/temp/KR-14/code-coMorbidity-dlv.lp.

The rest of this paper is organized as follows. We first review the activity graph
representation of clinical practice guidelines and answer set programming in Section 2.
The formal definition of the problem of concurrent application of CPGs to a patient’s
comorbid diseases is given in Section 3. In Section 4, an answer set programming based
solution is presented. We then present the implementation of the ASP approach and the
preliminary evaluation of the program in Section 5. Finally, conclusion is made in the
last section of the paper.

2 Preliminary

The work reported in [12,11] focuses on the activity graphs that are used to represent a
major portion of a CPG (e.g., in SAGE [17]). We will recall activity graphs in the first
subsection, and introduce some background knowledge about Answer Set Programming
in the second subsection.

2.1 Activity Graph for CPGs

An activity graph (AG) is a directed graph that consists of context, action and decision
nodes. A context node is the root node of the AG and it defines a clinical context where
the CPG is applied to. As an example, “patient diagnosed with TIA” is the root node of
the AG for transient ischemic attack (TIA) (Fig 1 right). An action is a clinical action to
be performed according to the guideline. An example is “take aspirin.” A decision step
represents a decision point in a guideline. For example, a decision step in the guideline
for TIA is whether hypoglycaemia is present. Decision nodes can be further divided
into OR or XOR nodes. The former indicates more than one alternative can be resulted
from a decision node while the later means that only one alternative can be resulted
from the decision node. Fig 1 left shows an example of the AGs for duodenal ulcer
(DU) and TIA. For every disease (clinical context) we assume there is one and only one
clinical practice guideline for it and one and only one activity graph for it.

2.2 Answer Set Programming

We now give a brief introduction of answer set programming and refer the interested
reader to the book [14] for more details.

http://redwood.cs.ttu.edu/~yzhang/temp/KR-14/code-coMorbidity-dlv.lp
http://redwood.cs.ttu.edu/~yzhang/temp/KR-14/code-coMorbidity-dlv.lp
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Fig. 1. Activity Graphes for DU (left) and TIA (right) (from [12])

Answer set programming originates from non-monotonic logic and logic program-
ming. It is a logic programming paradigm based on the answer set semantics [18,14],
which particularly offers an elegant declarative semantics to the negation as failure op-
erator in Prolog. An ASP program consists of rules in the form:

l0|...|lk : − lk+1, ..., lm, not lm+1, ..., not ln.

where each li for i ∈ [0..n] is a literal of some signature, i.e.,an expression of the form
p(t) or ¬p(t) where p is a predicate and t is a term, and not is called negation as failure
or default negation and | epistemic disjunction. A rule without body is called a fact,
and a rule without head is called a denial. The rule is read as: if one believes lk+1, ...,
and lm and there is no reason to believe lm+1, ..., and ln, one must believe l0, l1, ..., or
lk. The answer set semantics of a program P assigns to P a collection of answer sets,
i.e., interpretations of the signature of P corresponding to possible sets of beliefs (i.e.,
literals). These beliefs can be built by a rational reasoner by following the principles
that the rules of P must be satisfied and that one shall not believe anything unless one
is forced to believe.

There have been several research groups developing and maintaining high quality
efficient ASP solvers. Examples include DLV [15], and Clasp [16]. These solvers have
been employed to successfully solve problems ranging from monitoring elderly people
in nursing homes [19] to decision support systems for the space shuttle controllers [20].

3 Definition of the Reconciling Problem

In this section, based on graphs, we define the reconciling problem in the concurrent
application of CPGs to a patient with two diseases. We first define activity graph ob-
tainable from the CPG for a disease, candidate treatment for a disease using the activity
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graph, and valid treatment. We then define point of contention, i.e., conflicts, among
candidate treatments and the mitigation operation to remove the conflicts. Finally, we
define the reconciling problem.

3.1 Candidate Treatment

Definition 1 (Activity Graph). An activity graph of a CPG of a disease is a directed
graph with labels on some edges (CN ∪AN ∪DNo ∪DNxor, E, l : E → L) where

– CN,AN,DNo, DNxor, L are disjoint sets,
– CN = {x} and x is called the context node,
– Elements of AN,DNo, DNxor, L are called action nodes, or-decision nodes, xor-

decision nodes, and labels respectively,
– E ⊆ V × V , where V = CN ∪AN ∪DNo ∪DNxor and an element (x, y) of E

is called an edge, an incoming edge of y and an outgoing edge of x, such that there
is no incoming edge for the context node and for any non decision node there is at
most one outgoing edge,

– l, called a labeling function, is a partial function from edges to labels such that
l((x, y)) is always defined if x is a decision node.

The activity graph shown in the left of Fig 1 is as follows: CN = {du} where du is the
shorthand for “Patient diagnosed with DU” for convenience,AN = {sa, et, ppi, sc, rs}
(note that these names in the figure are in capital letters),DNo = ∅,DNxor = {htest, uhe}
where htest is for “H. pylori test?” and uhe for “Ulcer healed on endoscopy?”

E = {(du, sa), (sa, htest), (htest, et), (htest, ppi),
(et, uhe), (ppi, uhe), (uhe, sc), (uhe, rs)},

L = {hpp, hpn, uh, unh}, and the labeling function l labels outgoing edges of decision
nodes as follows: l((htest, et)) = hpp, l((htest, ppi)) = hpn, l((uhe, sc)) = uh,
l((uhe, rs)) = unh.
For treatment oriented CPGs, an important task is to follow them to find a treatment
with the given patient information. We now define the candidate treatment with respect
to a CPG of a disease.

Definition 2 (Candidate Treatment). A candidate treatment is the collection of ac-
tions of a subgraph H of G such that

– the context node of G belongs to H ,
– every node of H is reachable from the context node wrt H ,
– for every node x of H , there is a node y of H that is a leaf node of G such that y is

reachable from x in H , and
– for every xor-decision-node x of H , its outgoing degree wrt H is one.

H is called an underlying graph of the candidate treatment.
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It is worth noting that or-decision may cause two or more decision options to be
satisfied. Therefore, in our definition of candidate treatment we allow parallel outgoing
edges from an or-decision node. We also note an interpretation of or-decision is that
external preference information is usually used to help choose one of the several out-
going edges. With preference information given, the underlying graph of a candidate
treatment is reduced to a path in the activity graph.

For simplicity, we assume that for any candidate treatment, there is a unique under-
lying graph without loss of generality. The majority of CPGs have xor-decision-node
only. In this case, a candidate treatment is a path from the context node to a leaf node. In
the left graph of Fig 1, there are totally four candidate treatments for patients diagnosed
with DU (chronic condition):

– T du
1 : {sa, et, sc} with the underlying path du→ sa→ hpt→ uhd→ et→ sc.

– T du
2 : {sa, ppi, sc} with the underlying path du→ sa→ hpt→ uhd→ ppi→ sc.

– T du
3 : {sa, et, rs} with the underlying path du→ sa→ hpt→ uhd→ et→ rs.

– T du
4 : {sa, ppi, rs}with the underlying path du→ sa→ hpt→ uhd→ ppi→ rs.

The right graph of Fig 1 presents five candidate treatments for patients with TIA where
tia is for “Patient diagnosed with TIA,” hc is for “Hypoglycaemia?” nsrtest for “Neu-
rological symptoms resolved?” and rstest for “Risk of stroke?”

– T tia
1 : {ec} with the underlying path tia→ ec.

– T tia
2 : {pcs} with the underlying path tia→ hc→ fast→ pcs.

– T tia
3 : {a, pcs} with the underlying path tia → hc → fast → nsrtest → a →
rstest→ pcs.

– T tia
4 : {a, d, nc} with the underlying path tia → hc → fast → nsrtest → a →
rstest→ d→ nc.

– T tia
5 : {ts, nc}with the underlying path tia→ hc→ fast→ nsrtest→ ts→ nc.

3.2 Valid Treatment

For a patient with comorbid diseases, inconsistencies are often introduced in the possi-
ble treatments because of the amalgamation of multiple guidelines. We give the defini-
tion of the related concepts as follows.

Given two candidate treatments T1, T2 wrt two activity graphs G1 and G2 respec-
tively, and a collection I of sets, called incompatible sets3, of actions, a set AS of
actions is a point of contention (POC for short) between T1 and T2 if every action of
AS is an action of T1 or T2 and AS ∈ I .

For example, start aspirin a and stop aspirin sa form an incompatible set4 {sa, a}.
Suppose there is an ulcer patient diagnosed with transient ischemic attack. A point of
contention between T du

1 and T tia
3 is {sa, a}.

When there are point of contentions between candidate treatments for two diseases,
one can find ways to mitigate the point of contention. Mitigation operator is defined by
Wilk et al. [12] as follows.

A mitigation operator (MO) for disease d1 and d2 is a tuple (d1, d2, contentions,
LHS, RHS, toBeRemoved) where

3 Many incompatible sets are known facts are directly from the medical field.
4 They are logically inconsistent.
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– d1 is called a base disease and d2 a target disease,
– contentions is a set of actions from the activity graphs for d1 and d2,
– LHS and RHS are a set of elements, called action literals of the form pos(A) or

neg(A) where A is a medical action that may or may not be an action of activity
graphes of d1 or d2,

– toBeRemoved is a set of actions of activity graph of d2.

For example, the following MO1 and MO2 are MOs for TIA and UD addressing
the point of contention {a, sa}.

– MO1: (tia, du, {sa, a}, {pos(a), neg(d)},{neg(a), pos(cl)}, {sa}).
– MO2: (tia, du, {sa, a}, {pos(a), pos(d)},{pos(a), pos(d), pos(ppi)}, {sa}).

Given candidate treatment T1 and T2 wrt activity graphG1 of disease d1 and activity
graph G2 of disease d2, an MO α=(d1, d2, contentions, LHS, RHS, toBeRemoved) for
d1 and d2 is relevant to T1 and T2 if contentions is a subset of T1 ∪ T2. An MO is
applicable to T1 and T2 if it is relevant and for every pos(A) ∈ LHS, action A ∈ T1,
and for every neg(A) ∈ LHS, action A /∈ T1. Suppose α is applicable to T1 and T2,
the modified treatment by applying α to T1 and T2 is T ′

1 and T ′
2 where

– T ′
1 = {A : pos(A) ∈ RHS or (A ∈ T1 but A occurs neither in LHS nor RHS) },

and
– T ′

2 = T2 − toBeRemoved.

Continue the example above. For T du
1 and T tia

3 , there is a point of contention
{a, sa} between them. MO1 is applicable and can be used to modify T du

1 and T tia
3 . By

definition, the modified treatments of applying MO1 to T du
1 and T tia

3 are as follows:
T tia
3

′: {cl, pcs} and T du
1

′ = {et, sc}.
We next define treatments targeting a specific patient’s situation.

Definition 3 (Patient Information). We define Patient Information (PI) as a set of
pairs (decision, value) where decision is a decision node and value is a label of an
outgoing edge of the node decision in G. A candidate treatment T agrees with patient
information I , if for every decision node x and every edge (x, y) of the underlying
graph of T , (x, val) ∈ I where val is the label of (x, y).

For example, both T tia
3 and T tia

4 agree with PI {(hc, ha), (fast, fp), (nsrtest, nsr)}
(for ha, fp, see the right graph of Fig 1).

Definition 4 (Valid Treatment). Given PI I of a patient, with two diseases, and can-
didate treatments T1 and T2 for these diseases respectively, T1 ∪T2 is a valid treatment
with respect to I if T1 and T2 agree with I , and there is no point of contention between
T1 and T2.

Definition 5 (Reconciling Problem). Given PI I of a patient with diseasesD1 andD2

and a set of MOs for D1 and D2, the reconciling problem is to find a valid treatment
with respect to I if there exists one, and otherwise find if there are candidate treatment
T1 and T2 such that their modified treatment T ′

1 and T ′
2 by applying some of the MOs

are valid.
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For example, let the PI of an ulcer patient diagnosed with transient stroke be {(hc, ha),
(fast, fp), (nsrtest, nsr)}. Clearly, the candidate treatments for ulcer and transient
stroke that agree with PI are T tia

3 , T tia
4 and T du

1 , T du
2 , T du

3 , T du
4 respectively. There is

no valid treatment for the patient because of a point of contention {sa, a} between each
pair of the candidate treatments. By applying MO1 to T tia

3 and T du
1 , we get a valid mod-

ified treatment T tia
3

′ ∪ T du
1

′ where T tia
3

′
= {cl, pcs} and T du

1
′
= {et, sc} as illustrated

in the earlier example.

4 ASP Based Solution

In this section, we present an ASP based solution of finding a valid (modified) treat-
ment for patients with comorbid diseases according to the CPGs for these diseases and
mitigation operators.

Representation of an activity graph. We first introduce the predicates needed to rep-
resent the activity graph g for a disease d: cNode(g,ct) – ct is the context node of
g, aNode(g,Action) – Action is an action node of g, oNode(g,N) – N is an
or decision node, xNode(g,N) – N is an xor decision node, edge(g, X, Y) –
(X,Y ) is an edge of g, label(g, X, Y, L) – the label on the edge (X,Y ) is L.
A given activity graph will be represented as facts using the predicates above.

Define candidate treatments. To specify a valid (modified) treatment, we first need to
define a candidate treatment. In turn we need to construct a subgraph H of an activity
graph G by Definition 2. By candidateEdge(G, X, Y), we mean the edge (X,
Y) is in H . The following rule is to define H:

candidateEdge(G, X, Y) | ¬candidateEdge(G, X, Y)
:- node(G,X), not decisionNode(G, X).

which reads that any edge (X,Y ) of G can be an edge of H . We will next present ASP
rules to make sure H is the underlying graph of a candidate treatment by Definition 2.

First, the context node of an activity graph G must be a node of H . Note that we know
only edges of H but not the nodes of H . Now we need a predicate nodeInH(G, N)
to denote N is a node of H . It can be defined as:

nodeInH(G, X) :- candidateEdge(G, X, Y).
nodeInH(G, Y) :- candidateEdge(G, X, Y).
which can be read as any end of an edge (X,Y ) of H is a node of H .
Now the rule :- cNode(G, CN), not nodeInH(G, CN). says that ifCN

is a context node, it must be in H .

Second, every node of H is reachable from the context node in H. We first define the
reachability (reachable(G, X, Y) denotes that node Y is reachable from X in
H) in a standard way:
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reachable(G, X, X):- cNode(G,X).
reachable(G, X, Y):- candidateEdge(G,X,Y).
reachable(G, X, Y):- reachable(G,X,Z), candidateEdge(G,Z,Y).

The rule below restricts that for every node X of H, X must be reachable from the
context node Cn:

:- nodeInH(G, X), cNode(G, Cn), not reachable(H, Cn, X).

Thirdly, every node of H reaches a leaf node. It is not hard to define a leaf node and use
reachable to express this constraints. Rules are omitted here due to lack of space.

Finally, for every xor node of H, its outgoing degree must be one. We first define the
existence of an outgoing edge for a node X:

existsOutgoingEdge(G, X) :- candidateEdge(G, X, Y).
Since there is at most one outgoing edge from an action node in any activity graph,

the rule
:- nodeInH(G, X), xNode(G, X),

not existsOutgoingEdge(H, X).
is sufficient to restrict that for any node X of H , it has one outgoing edge.

Now we are in a position to define a candidate treatment using H . It is not hard to write
a rule to define actionInH(G, X) which holds if X is an action node ofH . We omit
the rule here.

Define Valid Treatments Given a patient informatin I , we present the ASP rules that
encode patient information, the agreement of a candidate treatment to patient informa-
tion, and the points of contention and finally a valid treatment, in terms of the corre-
sponding definitions given in the previous section.

Patient Information. We use bDisease(d 1) to denote that d 1 is the base disease,
tDdisease(d 2) to denote d 2 is the target disease, and patientInfo(x,l) to
denote the value of the decision node x is l. The patient information is represented as
facts using the predicates above.

Agreement of a Candidate Treatment to the Patient Information. For every decision
node, it should agree with the patient information on this node, i.e., for any or-decision
node X and any patientInfo(X, L) with (X, Y) labeled by L, (X, Y) must
be a candidate edge:

:- decisionNode(G, X), nodeInH(G, X), patientInfo(X,L),
label(AG, X, Y, L), not candidateEdge(G, X, Y).

Note here for any or-decision node, its outgoing edges in H correspond to a superset
of the values on this node given by the patient information.

Incompatible Sets. For every incompatible set, we assign an id (index) for it and include
in the program the fact incompSet(index). For every action a in the incompatible
set with id index, we have the fact ncompSetAction(index, a).
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POC of Two Treatments. We need a notion of active action here. An action is active if
it is in a candidate treatment wrt a disease:

active(X):- actionInH (H, X).

An incompatble set is active if all its actions are active. Clearly, an active incompati-
ble set is a POC. We first define a non active incompatible set nonActiveIncompSet
which is then used to define POC using default negation.

nonActiveIncompSet(Index) :-
not active(X),
incompSetAction(Index, X).

isPOC(Index) :-
incompSet(Index),
not nonActiveIncompSet(Index).

We use existsPOC to denote the occurrence of a POC between two candidate treat-
ments:

existsPOC :- isPOC(Index).

Valid Treatment. The last condition for candidate treatments to be valid is that they are
POC free:

:∼ existsPOC.
Here we use a new ASP construct called weak constraints first introduced in DLV.

This weak constraint means that there should not be existsPOC in any answer set if
it is possible at all. However, existsPOC is allowed to be in an answer set if there is
no other choice.

Valid Modified Treatments In this part, we present the ASP rules that apply mitigation
operators to eliminate the points of contention between two candidate treatments.

Represent an MO. For every mitigation operator of the form (bD, tD, POC={a1,...,ak},
LHS={aL1,...,aLn}, RHS={aR1,...,aRm}, toBeRemoved={a11, ..., a1i}), we associate
a unique identifier id for it, which is represented by the fact: moId(id). The base
disease and target disease in the MO with id are represented by: moBD(id, bD) and
moTD(id, tD) respectively. For every action in the POC of the MO with id, we
have moPOC(id, a). For every action literal aL of LHS and aR of RHS of the MO
with id, we have moLHS(id, aL) and moRHS(id, aR). For every action a in
toBeRemoved of the MO with id, we have moToBeRemoved(id, a).

A Relevant MO. We use a method similar to that for active POC to define relevant MO’s.
The rules are omitted here. We use relevant(I, ID) to denote that the active POC
with id I is relevant to the MO with id ID.

Applicability of an MO. Atom applicable(I, ID) denotes that an MO with id ID
is applicable to a POC with id of I. The method for defining active POC can be used to
define the applicability too. Rules again are not included here due to lack of space.



11

Generate MO’s to Address POC. Let atom applyMO(I, ID) denote that the MO
with id ID will be applied to mitigate the POC with id I. It is defined by

1{applyMO(I, ID): applicable(I, ID)}1 :- isPOC(I).
The new ASP construct 1{applyMO(I, ID): applicable(I, ID)}1means

that for a POC I , we may choose to apply any applicable MO to the POC with id I .

Apply an MO to the Candidate Treatments. Since we do not know the POC before-
hand, our generator will “guess” an MO to apply to the POC if there is any. Atom
applyMO(I, ID) denotes that the MO with id ID will be applied to mitigate the
POC with id I. We use modifiedTreatment(D, A) to denote that A is an action
for the disease D after applying the MOs. By the definition of modified treatment, we
have the rule for the modified treatment for the target disease (rules for base disease are
omitted):

modifiedTreatment(TD, Action) :-
actionInH (TD, Action),
applyMO(Index, MOID),
moTD(MOID, TD),
not moToBeRemoved(MOID, Action).

Valid Modified Treatments. Similarly to the definition of the POCs of candidate treat-
ments, we can write similar rules to define POCs between the modified treatments.
Rules are omitted here. Let existsPOC M denote the existence of POC between mod-
ified treatments. To have free POCs between modified treatments, we need rule:

:- existsPOC M.

Proposition 3. Given patient information I of a patient with diseases d1 and d2, let Π
be the program obtained from the discussion above. Assume there is no valid treatment
for d1 and d2. T ′

1 and T ′
2, without any POC between them, are the modified treatment

resulted from the application of some MOs to some candidate treatments T1 and T2
which agree with I , if and only if there is an answer set S of Π such that T ′

1 = {a :
modifiedTreatment(d1, a)} ∈ S, and T ′

2 = {a : modifiedTreatment(d2, a) ∈
S}.

5 Evaluation

We have implemented the proposed ASP approach using DLV. A major reason to use
DLV, instead of other ASP solvers, is its capacity to represent weak constraints which
are convenient for this application. However, since DLV does not support choice rules
yet, in our implementation, we have translated the choice rules using epistemic disjunc-
tions. The translation technique is well known in the ASP community [21].

The program consists of two parts. The first part is the general knowledge, shared
by all CPGs, to generate candidate treatments, identify POC’s, and find relevant and
applicable MO’s, if there is a POC, and apply them to obtain a valid modified treatment.
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The second part consists of the representation of activity graphs of the CPGs, MO’s, and
patient information.

The DLV implementation of the ASP solution is straightforward. In contrast, we are
not aware of experimental results in the existing work.

To evaluate the program, we consider the CPGs for duodenal ulcer (DU) and tran-
sient ischemic attack (TIA) that are used by Wilk et al in [12]. These CPGs (Fig 1)
include only the crucial actions and decision nodes of the guidelines published by the
National Institute for Health and Clinical Excellence, UK (NICE) [10].

As for mitigated operators for patients with both DU and TIA, we use MO1 and
MO2, in the section of the definition of the reconciling problem, in our implementation.

We assume a patient has both conditions of DU and TIA. We consider two scenarios
based on the report in [10]. The first is that the patient has a positive result for the H.
Pylori test, negative result for hypoglycemia test, and negtive result for the FAST test.
In this scenario, there is no POC. Our program output one valid treatment (by guessing
a result for decision nodes whose result is unknown) for DU: {sa (stop aspirin
if used), et (start eradication therapy), sc (self care)},
and one valid treatment for TIA:
{pcs (refer to primary care specialist)}.
In the second scenario, some adverse interaction is present. The patient has a neg-

ative result for the H. pylori test, negative result for the hypoglycemia test, positive
result for the FAST test, and has had neurological symptoms resolved. In this scenario,
there is an adverse interaction between the actions of stopping aspirin and starting
aspirin. Some relevant mitigation operator has to be employed to find a new valid treat-
ment. A valid treatment found by our program for DU is {ppi (start PPI), sc
(self care)}, and that for TIA is {cl (clopidogrel), pcs (refer to
primary care specialist)} where aspirin is replaced by clopidogrel.

We run the program on a Sony Vaio laptop with Intel i5 CPU at 2.53GHz, 4GB
memory and Windows 7. The DLV solver we used is the version of build BEN/Dec 21
2011. The real time to run the above two scenarios is 0 second (i.e., not detectable by
DLV solver).

The program together with the two scenarios is downloadable at http://redwood.
cs.ttu.edu/˜yzhang/temp/KR-14/code-coMorbidity-dlv.lp.

6 Related Work and Conclusion

We note some recent work on the study of treatment of comorbid patients. The first one
by Riano and Collado [22] focuses on using rules to represent the MO’s and acquiring
these rules for Hypertension, Diabetes Mellitus and Heart Failure. In both Wilk et al’s
and our work, we assume the MO’s are given. The second one is by Lopez-Vallverdu et
al. [23]. They propose a model combining treatments based on the seriousness, evolu-
tion and acuteness of the patients’ condition and examine a specific case for Hypeten-
sion and Heart Failure. However, they did not cover POC’s and their mitigation.

The main ideas underlying the reported work here are from Wilk et al.’s work in
identifying the point of contention between two treatments and employing MO’s to
mitigate the contention [10,12].

http://redwood.cs.ttu.edu/~yzhang/temp/KR-14/code-coMorbidity-dlv.lp
http://redwood.cs.ttu.edu/~yzhang/temp/KR-14/code-coMorbidity-dlv.lp
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The major difference between our work and Wilk et al.’s lies in the separation of the
definition of the problem from programming languages and algorithms. Specifically, we
present a mathematical definition of the problem of mitigating the point of contention
that may occur in treatments for two diseases when two CPGs for these diseases are
used. We then offer a purely declarative ASP based solution which naturally models
the original problem. The major advantages of our proposal is as follows. First, it is
more accessible for the medical researchers to evaluate how closely the defined problem
models the real problems involved in comorbidities. Second, the formal definition of the
problem allows the discussion of the correctness of the proposed solutions. Our ASP
based solution facilitates the proof of its correctness. Thirdly, our ASP based solution
will benefit from the the well developed and maintained efficient ASP solvers. Fourthly,
some key issues, such as dealing with more parallel paths, raised by Wilk et al. [10] can
be addressed in a natural way by our approach. For example, the parallel paths problem
has been addressed in our current problem definition and solution.

The proposed ASP based solution is easy to implement and efficient to address
some scenarios reported in the literature. Clearly the current definition of the reconcil-
ing problem does not include the temporal information and how to balance the treatment
to maxmaximize the patients’ outcome. In the next step, we will work with medical pro-
fessionals to refine the problem definition to better reflect the real practice in solving the
problems related to comorbidity issues. We also plan to write ASP program for a com-
plete CPG, which will help us further understand the limitations of the ASP approach
and investigate how to address those challenges.
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