
Systems integrating answer set programming
and constraint programming

Michael Gelfond and Veena S. Mellarkod and Yuanlin Zhang
{mgelfond,veena.s.mellarkod,yzhang}@cs.ttu.edu

Texas Tech University, USA

Abstract. We will demonstrate two systems implementing subclasses
of a new language AC(C). The language AC(C) not only has the prob-
lem modeling power of both Answer Set Prolog (ASP) and Constraint
Logic Programming (CLP) but also allows for more efficient inference
algorithms combining reasoning techniques from ASP and CLP systems.

1 Introduction

Logic programming with answer sets semantics [6], also called Answer Set Prolog
(ASP), has proved useful in finding solutions to a variety of programming tasks,
ranging from building decision support systems for the Space Shuttle [3] and
program configuration [10], to solving problems arising in bio-informatics [4],
zoology and linguistics [5]. Though positive, this experience allows to identify a
number of problems and inadequacies of the ASP approach to declarative pro-
gramming. One of them is that for a number of tasks, the existing ASP solvers
are not sufficiently efficient. This becomes immediately obvious if the program
contains variables ranging over large domains. Even though ASP solvers use in-
telligent grounding optimization techniques, ground instantiation of such a pro-
gram can still be huge, which can cause both memory and time problems and
make ASP solvers practically useless. When facing variables with large domains,
Constraint Logic Programming (CLP) [11, 8] can not only avoid the grounding
problems but also provide effective ways (e.g., through techniques developed in
Constraint Satisfaction Problems and Linear Programming) to handle the con-
straints effectively. A natural way is to combine ASP with CLP, which will allow
one to benefit from both paradigms. Clearly the combination greatly improves
the knowledge representation capacity of CLP thanks to the non-monotonicity
of ASP. We first introduce a language AC(C) with features from both ASP and
CLP and then present systems implementing subclasses of this language.

2 The language of AC(C)

The new language AC(C) is parameterized by a constraint domain C. Informally,
C specifies the primitive constraints that can be used in AC(C). To define the
language, we need some terminology. By sort we mean a non-empty countable



collection of strings over some fixed alphabet. Strings of sort Si will be referred to
as object constants of Si. A sorted signature, Σ, is a collection of sorts, properly
typed predicate and function symbols, and variables. Each variable, X, takes
on values from a unique sort denoted by sort(X). When needed we assume
that Σ contains standard numerical sorts of natural numbers, integers, rational
numbers, etc. as well as standard numerical functions and relations such as +,
−, >, <, etc. Terms, literals, and extended literals of Σ are defined as usual.

In AC(C), the sorts of Σ are divided into regular and constraint. Constraint
sorts will be declared by an expression #csort. Intuitively a sort is declared to
be a constraint sort if it is a large (often numerical) set with primitive constraint
relations from C (e.g., ≤) defined between its elements. Grounding constraint
variables, i.e., variables ranging over constraint sorts, would normally lead to
huge grounded program. This is exactly what should be avoided by the AC(C)
solvers. The AC(C) solvers will only ground variables ranging over regular sorts
(regular variables).

Predicates of the language are divided into four types: regular, constraint,
defined and mixed. Regular predicates denote relations among objects of regular
sorts; constraint predicates denote primitive numerical relations among objects
of constraint sorts; defined predicates are defined in terms of constraint, regular,
and defined predicates; mixed predicates denote relations between objects which
belong to regular sorts and those which belong to constraint ones. Mixed pred-
icates are not defined by the rules of the program and are similar to abducible
relations of abductive logic programming.

Definition 1. [Syntax of AC(C)]
A standard AC(C) rule over signature Σ is a statement of the form:

h1or . . . or hk ← l1, . . . , lm,not lm+1, . . . ,not ln (1)

such that

– if k > 1 then h1, . . . , hk are regular literals;
– if k = 1 then h1 is a regular or defined literal;
– l1, . . . , ln are arbitrary literals of Σ.

A consistency restoring rule (cr-rule) of AC(C) is a statement of the form:

r : l0
+← l1, . . . , lm, not lm+1, . . . ,not ln (2)

where r is a term which uniquely denotes the name of the rule and li’s are regular
literals.

An AC(C) program Π consists of definitions of sorts of a signature Σ, decla-
rations of variables - statements of the form sort(V1, . . . , Vk) = sort name, and
a collection of standard and consistency restoring AC(C) rules over Σ.

Classification of literals of the signature Σ of an AC(C) program Π allows
partitioning Π into three parts:

2



– Regular part, Πr, consisting of rules built from regular literals,
– Defined part, Πd, consisting of rules whose heads are defined literals,
– Middle part, Πm, consisting of all other rules of Π.

Intuitively, the regular part corresponds to CR-prolog programs, an extension
of ASP programs [2, 1], the defined part corresponds to CLP programs, while
the middle part bridges the regular and defined parts.

Elements of Πr,Πd and Πm are called regular rules, defined rules, and middle
rules respectively. Note that a standard (ground) ASP/CR-Prolog program Π
can also be viewed as an AC(C) program in which all the predicates are defined
as regular.

We next present the semantics of AC(C). Let R be a rule of an AC(C) program
Π with signature Σ. A ground instance of R is obtained from R by:

1. replacing variables of R by ground terms from the respective sorts;
2. replacing all numerical terms by their values.

An ASP program ground(Π) consisting of all ground instances of all rules in Π
is called the ground instantiation of Π.

A consistent set S of ground literals over the signature Σ is called a partial
interpretation of an AC(C) program Π if it satisfies the following conditions:

1. A constraint literal l ∈ S iff l is true under the intended interpretation of its
symbols;

2. For every mixed predicate m(X̄r, Ȳc) and every ground instantiation t̄r of
X̄r, there is a unique ground instantiation t̄c of X̄c such that m(t̄r, t̄c) ∈ S.

We first define semantics for AC(C) programs without cr-rules.

Definition 2. [Answer sets of AC(C) programs without cr-rules]
A partial interpretation S of the signature Σ of an AC(C) program Π is called
an answer set of Π if there is a set M of ground mixed literals of Σ such that
S is an answer set of the ASP program ground(Π) ∪M .

By stand(Π) we denote the collection of standard rules of Π. By α(r), we
denote a standard rule obtained from a cr-rule r by replacing +← by←; For a set
R of cr-rules, α(R) = {α(r) : r ∈ R}. A minimal (with respect to set theoretic
inclusion) collection R of cr-rules of Π such that stand(Π)∪ α(R) is consistent
(i.e., has an answer set) is called an abductive support of Π.

Definition 3. [Answer sets of arbitrary AC(C) programs]
A set S is called an answer set of AC(C) program Π if it is an answer set of
program stand(Π) ∪ α(R) for some abductive support R of Π.

We use the following example to illustrate the concepts in the new language.

Example 1. [AC(C) programs and their answer sets]
Consider a domain with an action a and a fluent f . The action can be executed
only at time between 0:10am and 0:20am or between 2:00am and 3:00am.

3



We use a regular sort step = {0, 1} to denote steps of a trajectory of the
acting agent, and a constraint sort time = {0..1000} to denote the actual time
(say in minutes). The relation at(S, T ), holds iff step S of the trajectory is
executed at time T . It is a typical example of mixed relation. The defined relation
acceptable(T ) holds iff action a can be executed at time T .

A program P with the corresponding sorts, variables, mixed relation and
defined relation is given below.

% sorts

time = {0 ..1000}.
step = {0 ..1}.
action = {a}.
fluent = {f }.

% variable declarations

sort(T ) = time.
sort(S ,S ′) = step.

% constraint relation ≤ defined on time, and declarations

#csort(time).
#defined acceptable time(time).
#mixed at(step, time).
#regular occurs(action, step).
#regular holds(fluent , step).
#regular next(step, step).

(To make our program executable with our implementations, we should use the
lparse notation time(0 ..1000 ), step(0 ..1 ), action(a), and fluent(f ) for sorts, and
#domain time(T ) and #domain step(S ,S ′) for variable declarations.)

acceptable time(T )← 10 ≤ T ≤ 20 .
acceptable time(T )← 120 ≤ T ≤ 180 .
¬occurs(A,S) ← at(S, T ), not acceptable time(T ).
next(1, 0).
holds(f ,S ′)← occurs(a,S ), next(S ′,S ).
occurs(a, 0).

Let I = [10, 20]∪ [100, 120] and consider t0, t1, t2 ∈ time such that t0, t1 ∈ I and
t2 6∈ I. Let A1 be a collection of atoms consisting of the specification of sorts,
step(0), step(1), action(a), etc, and atoms at(0, t0), at(1, t1), next(1, 0), occurs(a, 0),
holds(f, 1), acceptable time(t) for every t ∈ I. Let A2 = (A1 \ {at(1, t1)}) ∪
{at(1, t2),¬occurs(a, 1)}. It is not difficult to check that A1 and A2 are answer
sets of P .

Now let us consider a program P ′ obtained from P by replacing the rule

4



holds(f ,S ′)← occurs(a,S ), next(S ′,S ).

of P by

holds(f ,S ′)← occurs(a,S ), next(S ′,S ), not ab(S ,S ′).

and by adding rules ¬holds(f, 1). and ab(S, S′) +←.

It is not difficult to check that answer sets A′
1 and A′

2 of P ′ are obtained from
answer sets A1 and A2 of P by replacing holds(f, 1) by ¬holds(f, 1) and ab(0, 1).

From this example, one can see that problems involving both planning and
scheduling components can be easily modeled by AC(C).

3 Systems implementing subclasses of AC(C)

We have implemented two systems – ADsolver and ACsolver – for some sub-
classes of AC(C). The first restricts AC(C) programs parameterized by difference
constraints as follows: 1) the regular part allows no disjunction; 2) the middle
part allows only denials whose bodies contain at most one primitive constraint;
and 3) the defined part is empty. A difference constraint is of the form X−Y > c
where X, Y are variables, and c is a constant number. The second restricts AC(C)
programs parameterized by linear inequalities over real numbers by 1) allowing
no disjunction in the regular part; 2) allowing no mixed predicate or regular
literals in the rules with defined predicates as heads; and 3) requiring that the
defined part has a unique answer set.

In designing algorithms for computing the answer sets of (restricted) AC(C)
programs, we are only interested in a reduced answer set containing the regu-
lar literals and mixed literals but not the defined literals. One reason to ignore
defined literals is that defined literals from an answer set are uniquely deter-
mined by the primitive constraints and regular and mixed literals in the set.
Every answer set contains the same set of defined literals because the defined
part has a unique answer set. Another reason is that in many applications, we
are only interested in when a defined predicate can be satisfied instead of com-
puting all the defined literals in an answer set. To find a reduced answer set, we
ground only the regular variables in a program. Using the partially grounded
program, we then enumerate the possibilities of the regular literals with the help
of search space pruning by the definition of answer set (e.g., unit propagation
in DPLL and atmost() operator in SMODELS). Intuitively, the mixed predicate
associates constraint variables with regular terms. In the process of enumeration,
the middle rules “produce” constraints on the constraint variables. For instance,
consider the middle rule ← at(0, X), at(1, Y ), X > Y where at(0, X) is read as
the step 0 (in a plan) occurs at real time X. Since we have to include one copy of
each mixed atom (in terms of the regular terms in the atom, see the definition of
partial interpretation) in an answer set, to satisfy the middle rule, the constraint
X ≤ Y (the negation of X > Y ) has to be satisfied. In other words, the mixed
literals “define” variables while the middle rules “post” constraints on these

5



variables. A constraint solver is employed to solve the constraints produced by
middle rules during the enumeration. The constraint solver is desirable to be in-
cremental in answering the satisfiability of the newly produced constraint(s) and
in removing constraints that are withdrawn due to backtracking in enumerating
regular literals.

Program lparse is employed to ground the regular variables for bothADsolver
and ACsolver.

3.1 ADsolver

The constraint solver of ADsolver to process the difference constraints employs
an incremental algorithm [9] that has a complexity of O(m+n log n) for a newly
produced constraint and of constant time for removing a constraint. m and n
are the number of constraints and variables (accumulated so far) respectively.

Difference constraints can be used to represent a significant class of problems
in temporal reasoning (and thus in planning and scheduling problems). To test
ADsolver in realistic applications, we extend the planning component of USA-
Advisor[3] – a decision support system for the reaction control system (RCS) of
the space shuttle – by adding a scheduling component.

The RCS has primary responsibility for maneuvering the aircraft while it is in
space. It consists of fuel and oxidizer tanks, valves and other plumbing needed
to provide propellant to the maneuvering jets of the shuttle. It also includes
electronic circuitry: both to control the valves in the fuel lines and to prepare
the jets to receive firing commands. Overall the system is rather complex, on that
it includes 12 tanks, 44 jets, 66 valves, 33 switches, and around 160 computer
commands (computer-generated signals). The RCS can be viewed, in a simplified
form, as a directed graph whose nodes are tanks, jets and pipe junctions, and
whose arcs are labeled by valves.

To maneuver the aircraft, the planning component needs to generate a se-
quence of actions to make the oxidizer and fuel propellants flow through the
nodes (tanks, junctions) and valves which are open and reach the jet. The
scheduling component is to find a schedule of the actions generated from the
planning component. Consider the following example. A node is pressurized when
fuel or oxidizer reaches the node. Assume that after a node N gets pressurized it
takes around 5 seconds for the oxidizer propellant to get stabilized at N and 10
seconds for fuel propellant to get stabilized. Further, we cannot open a valve V
which links N1 to N2 (link(N1,N2,V)), until N1 has been stabilized. Time steps
of the program should be assigned actual time (in seconds) satisfying these con-
straints. We should be able to answer questions like: can a particular maneuver
be performed in less than 30 seconds?

In the scheduling component, we expand the signature of USA-Advisor by
constraint sort time = [0..400] and mixed predicate at(S, T ) which is read as
step S is performed at time T . In addition we need relations otank(X) and
ftank(X) which hold if X is an oxidizer tank and fuel tank respectively. Fluent
got opened(V, S) is true when valve V is closed at step S− 1 and gets opened at
step S. Fluent got pressurized(N,X, S) is true when node N is not pressurized

6



Instances Plan length Plan existence CPU time (s)

I1 3 No 2.7

I2 4 No 650.9

I3 4 No 278.8

I4 4 Yes 407.0

I5 4 Yes 865.9

I6 3 No 269.4
Table 1. Experimental results of the extended USA-Advisor on random instances.
The instances correspond to the files in the original USA-Advisor package as fol-
lows: I1 – instances-auto/ins/instance 001, I2 – instances-auto/ins-4/instance 008, I3

– instances-auto/ins-8/instance 009, I4 – instances-monica/ins-3-0/instance 0012, I5 –
instances-monica/ins-3-0/instance 011, I6 – instances-monica/ins-3-0/instance 034.

at step S − 1 and is pressurized at step S by tank X. Among other rules, we
have, for instance, the following rules which involve typical temporal constraints.

← link(N1, N2, V ), got pressurized(N1, X, S1), S1 < S2, otank(X),
got opened(V, S2), at(S1, T1), at(S2, T2), T1 − T2 > −5.

It says that a valve V which links N1 to another node can not be opened until
N1 is stabilized, i.e., the time between N1 being pressurized (by an oxidizer tank)
and V being opened should be longer than 5 seconds. The rule below requires
that the jets of a system R should be ready to fire (goal(S, R)) in 30 seconds.

← system(R), goal(S, R), at(0, T1), at(S, T2), T2 − T1 > 30.

We have tested ADsolver using the extended USA-Advisor on the random in-
stances of the initial situations and target maneuvers1. We list some of the sample
results in Table 1. The experiments were carried out on a DELL PowerEdge 1850
(two 3.6GHz Intel Xeon CPUs) with Linux.

It is worth noting that for the standard translation of our program into
a regular ASP program, the grounder lparse1.1.1 can’t ground the simplest
program instance I1 in a day. The latest version of grounder gringo2 takes an
hour to ground I1, producing a file of size 16 Gbytes, but the answer set solver
clasp can not produce any results in 30 hours.

3.2 ACsolver

ACsolver allows defined part in an AC(C) program. To compute an answer set,
during the enumeration process, the middle rules may produce queries, i.e.,
defined atoms, that have to be satisfied. In implementing the system, we use
CLP(R) system [7] to answer the satisfiability of a newly produced query. We

1 http://www.krlab.cs.ttu.edu/Software/Download/rcs/
2 Unreleased version obtained from the author in Aug 2008.

7



have tested some examples involving both default reasoning and constraints on
ACsolver, it can compute an answer set in a reasonable amount of time. Cur-
rently, a significant effort is made to develop a new version of ACsolver where
the focus is on an algorithm (stilled based on the CLP(R) implementation) to
answer and remove queries incrementally.

4 Conclusion

In the demonstration, we will run both ADsolver and ACsolver on a number of
interesting examples including some planning and scheduling programs, disjunc-
tive temporal constraints and explanations. The test cases will be made available
online.

References

1. Marcello Balduccini. CR-MODELS: An inference engine for CR-Prolog. In
C. Baral, G. Brewka, and J. Schlipf, editors, Proceedings of the 9th International
Conference on Logic Programming and Non-Monotonic Reasoning (LPNMR’07),
volume 3662 of Lecture Notes in Artificial Intelligence, pages 18–30. Springer, 2007.

2. Marcello Balduccini and Michael Gelfond. Logic Programs with Consistency-
Restoring Rules. In Patrick Doherty, John McCarthy, and Mary-Anne Williams,
editors, International Symposium on Logical Formalization of Commonsense Rea-
soning, AAAI 2003 Spring Symposium Series, pages 9–18, Mar 2003.

3. Marcello Balduccini, Michael Gelfond, and Monica Nogueira. Answer set based
design of knowledge systems. Annals of Mathematics and Artificial Intelligence,
47:183–219, 2006.

4. Chitta Baral, Karen Chancellor, Nam Tran, Nhan Tran, Anna Joy, and Michael
Berens. A knowledge based approach for representing and reasoning about cell
signalling networks. In Proceedings of European Conference on Computational
Biology, Supplement on Bioinformatics, pages 15–22, 2004.

5. Daniel R. Brooks, Esra Erdem, James W. Minett, and Donald Ringe. Character-
based cladistics and answer set programming. In Proceedings of International
Symposium on Practical Aspects of Declarative Languages, pages 37–51, 2005.

6. Michael Gelfond and Vladimir Lifschitz. The stable model semantics for logic
programming. In Proceedings of ICLP-88, pages 1070–1080, 1988.

7. J. Jaffar, S. Michaylov, P. J. Stuckey, and Roland H. C. Yap. The CLP(R) lan-
guage and system. ACM Transactions on Programming Languages and Systems,
14(3):339–395, 1992.

8. Joxan Jaffar and M. J. Maher. Constraint Logic Programming. Journal of Logic
Programming, 19/20:503–581, 1994.

9. G. Ramalingam, Junehwa Song, Leo Joskowicz, and Raymond E. Miller. Solving
systems of difference constraints incrementally. Algorithmica, 23(3):261–275, 1999.

10. Timo Soininen and Ilkka Niemella. Developing a declarative rule language for
applications in product configuration. In Proceedings of International Symposium
on Practical Aspects of Declarative Languages, pages 305–319, 1998.

11. P. Van Hentenryck. Constraint Satisfaction in Logic Programming. MIT Press,
Cambridge, MA, 1989.

8


