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Abstract

We introduce a knowledge representation language
AC(C) extending the syntax and semantics of ASP
and CR-Prolog, give some examples of its use, and
present an algorithm, ACsolver, for computing answer
sets of AC(C) programs. The algorithm does not re-
quire full grounding of a program and combines “clas-
sical” ASP solving methods with constraint logic pro-
gramming techniques and CR-Prolog based abduction.
The AC(C) based approach often allows to solve prob-
lems which are impossible to solve by more traditional
ASP solving techniques. We belief that further inves-
tigation of the language and development of more effi-
cient and reliable solvers for its programs can help to
substantially expand the domain of applicability of the
answer set programming paradigm.

1 Introduction

The work presented in this paper is aimed at further de-
velopment of declarative programming paradigm based
on Answer Set Prolog (ASP) (Gelfond & Lifschitz 1991;
Baral 2003) and its extensions. The language has roots
in research on non-monotonic logic and semantics of de-
fault negation of Prolog (for more details, see (Marek &
Truszczynski 1993)). An ASP program Π is a collection
of rules of the form

l1 or . . . or lk ← lk+1, . . . , ln,not ln+1, . . . ,not lm (1)

where l’s are literals (statements of the form p(t) and
¬p(t)) over some signature Σ. Expression on the left
hand side of ← is called the head of the rule; that on
the right hand side is called the rule’s body. Note that
both the body and the head of the rule can be empty.
If the body of a rule is empty then the ← is omitted
and the rule is referred to as a fact. Connectives or and
not are referred to as epistemic disjunction and default
negation respectively; ¬ is often referred to as classical
or strong negation. An ASP program Π can be viewed

Copyright c© 2007, V. Mellarkod, M. Gelfond and Y. Zhang.
All rights reserved.

as a specification for the sets of beliefs to be held by a ra-
tional reasoner associated with Π. Such sets, called an-
swer sets of Π, are represented by collections of ground
literals. A rule (1) is viewed as a constraint which says
that if literals lk+1, . . . , ln belong to an answer set A of
Π and none of the literals ln+1, . . . , lm belong to A then
A must contain at least one of the literals l1, . . . , lk. To
form answer sets of Π, the reasoner must satisfy Π’s
rules together with the rationality principle which says:
“Believe nothing you are not forced to believe”.

Given a computational problem P , an ASP programmer
• Expresses information relevant to the problem in the

language of ASP;
• Reduces P to a query Q requesting computation of

(parts of) answer sets of Π.
• Uses inference engine, i.e., a collection of reasoning

algorithms, to solve Q.
There is a number of inference engines available to
an ASP programmer. If the corresponding program
does not contain disjunction, classical negation or rules
with empty heads and is acyclic (Apt & Bezem 1991),
i.e., only allows naturally terminating recursion, then
the classical SLDNF-resolution of Prolog (Clark 1978)
and its variants (Chen, Swift, & Warren 1995) or
fix-point computations of deductive databases (possi-
bly augmented by constraint solving algorithms as in
(Van Hentenryck 1989; Jaffar et al. 1992; Marriott
& Stuckey 1998)) can be used to answer the query
Q. Presently, there are multiple applications of solv-
ing various computational problems using these meth-
ods. In the last decade we have witnessed the com-
ing of age of inference engines aimed at computing the
answer sets of Answer Set Prolog programs (Niemela
& Simons 1997; Niemela, Simons, & Soininen 2002;
Leone et al. 2006; Eiter et al. 1997; Gebser et al. 2007;
Giunchiglia, Lierler, & Maratea 2006). These engines
are often referred to as answer set solvers. Normally
they start their work with grounding the program, i.e.,
instantiating its variables by ground terms. The re-
sulting program has the same answer sets as the origi-
nal one but is essentially propositional. The grounding
techniques employed by answer set solvers are rather



sophisticated. Among other things they utilize algo-
rithms from deductive databases, and require a good
understanding of the relationship between various se-
mantics of logic programming. The answer sets of
the grounded program are often computed using sub-
stantially modified and expanded satisfiability checking
algorithms. Another approach reduces the computa-
tion of answer sets to (possibly multiple) calls to ex-
isting satisfiability solvers (Babovich & Maratea 2004;
Giunchiglia, Lierler, & Maratea 2006; Lin & Zhao
2004).

The programming methodology based on the use of
ASP solvers was originally advocated in (Marek &
Truszczynski 1999; Niemela 1999). It proved to be use-
ful for finding solutions to a variety of programming
tasks, ranging from building decision support systems
for the Space Shuttle (Balduccini, Gelfond, & Nogueira
2006) and program configuration (Soininen & Niemella
1998), to solving problems arising in bio-informatics
(Baral et al. 2004), zoology and linguistics (Brooks et
al. 2005). Though positive, this experience allowed to
identify a number of problems and inadequacies of the
ASP approach to declarative programming.

First it became clear that for a number of tasks which
require the use of ASP solvers these solvers are not
sufficiently efficient. This becomes immediately ob-
vious if the program contains variables ranging over
large domains. Even though ASP solvers use intel-
ligent grounding optimization techniques, ground in-
stantiations of such a program can still be huge, which
can cause both memory and time problems and make
ASP solvers practically useless. The problem was par-
tially addressed in (Baselice, Bonatti, & Gelfond 2005;
Mellarkod & Gelfond 2007) where the language of ASP
and its reasoning mechanism were extended to partially
avoid grounding of variables ranging over the large do-
mains and to replace such grounding with the use of
constraint solving techniques. In (Mellarkod & Gelfond
2007) an algorithm was implemented for a language al-
lowing so called difference constraints which substan-
tially expanded the scope of applicability of the ASP
paradigm. In this paper we further expand this work
by designing a more powerful extension AC(C) of ASP
and define an algorithm, ACsolver, for computing an-
swer sets of programs in the new language. The algo-
rithm combines “classical” ASP solving methods with
constraint satisfaction techniques and SLDNF resolu-
tion. The prototype implementations of the solver were
tested on a number of examples including planning and
scheduling tasks related to the space shuttle. The re-
sults are mostly positive and, since the prototype imple-
mentation allows many natural improvements, we have
no doubt that a fully adequate solution will be produced
soon. (It is worth noting that standard ASP methods
are fully inadequate for this task).

The second difficulty of using ASP for a number of ap-

plications was related to insufficient expressive power
of the language. For instance, in a typical diagnos-
tic task one often needs to explain unusual behav-
ior of a system manifested by the inconsistency of an
ASP program encoding its normal behavior. This re-
quires the ability to naturally mix the computation of
answer sets of a program with some form of abduc-
tive reasoning. We were not able to find a way to
utilize the existing abductive logic programming sys-
tems for such tasks, and opted for an introduction of a
new language, CR-Prolog (Balduccini & Gelfond 2003;
Balduccini 2007), which is capable of expressing rare
events which are ignored during a normal computation
and only used if needed to restore consistency of the
program. Consider, for instance, a program Π0 consist-
ing of regular ASP rules

¬p← not p
q ← ¬p

which say that p is normally believed to be false, and
that if p is believed to be false then q must be believed to
be true. The program has a unique answer set {¬p, q}.
Now let us expand Π0 by a consistency restoring rule
(CR-rule)

p← +

which says that p is possible but so rare that it can be
ignored during the reasoning process unless it is needed
for restoring consistency. The resulting program Π1

still has one answer set {¬p, q}. The CR-rule above
remains unused. The situation changes if we expand
Π1 by a new fact

¬q

Since regular rules of the new program Π2 are inconsis-
tent, the reasoner associated with the program is forced
to use the CR-rule. The resulting answer set is {p,¬q}.

The expressive power and reasoning ability of CR-
Prolog proved to be useful in many situations beyond
diagnostic reasoning. CR-Prolog was also successfully
used in planning to produce higher quality plans than
regular ASP (Balduccini 2004), for reasoning about in-
tentions, reasoning with weak constraints a la DLV, etc.
So we expand AC(C) by CR-rules and show an example
of their use adding CR-Prolog abduction to the plethora
of reasoning techniques discussed above.

2 Syntax and Semantics of AC(C)
2.1 Answer Set Prolog
Recall that terms, literals, and rules of program Π with
signature Σ(Π) are called ground if they contain no
variables and no symbols for arithmetic functions. A
program is called ground if all its rules are ground. In



this section we briefly review the semantics of ground
programs of Answer Set Prolog.

Consistent sets of ground literals over Σ, containing all
arithmetic literals which are true under the standard
interpretation of their symbols, are called partial inter-
pretations of Σ. Expressions l and not l where l is a
literal are called extended literals. We say that l is true
in a partial interpretation S if l ∈ S; not l is true in
S if l 6∈ S; disjunction l1 or . . . or lk is true in S if at
least one of its members is true in S. S satisfies a logic
programming rule (1) if S satisfies its head or does not
satisfy its body.

The answer set semantics of a logic program Π assigns
to Π a collection of answer sets – partial interpretations
of the signature Σ(Π) corresponding to the possible sets
of beliefs which can be built by a rational reasoner on
the basis of the rules of Π and the rationality principle.
The precise definition of answer sets will be first given
for programs whose rules do not contain default nega-
tion. Let Π be such a program and let S be a partial
interpretation of Σ(Π).

Definition 1 (Answer set – part one)
A partial interpretation S of Σ(Π) is an answer set of Π
if S is minimal (in the sense of set-theoretic inclusion)
among the partial interpretations satisfying the rules of
Π.

(Note that the rationality principle is captured in this
definition by the minimality requirement).

To extend the definition of answer sets to arbitrary pro-
grams, take any program Π, and let S be a partial in-
terpretation of Σ(Π). The reduct, ΠS , of Π relative to
S is the set of rules

l1 or . . . or lk ← lk+1, . . . , lm

for all rules (1) in Π such that {lm+1, . . . , ln} ∩ S = ∅.
Thus ΠS is a program without default negation.

Definition 2 (Answer set – part two)
A partial interpretation S of Σ(Π) is an answer set of
Π if S is an answer set of ΠS.

(Here the rationality principle is captured by the fix-
point condition above). A program is called consistent
if it has an answer set.

2.2 The language AC(C)
Now we will describe the syntax and informal seman-
tics of the language AC(C). First let us recall some
necessary terminology.

By sort we mean a non-empty countable collection of
strings over some fixed alphabet. Strings of sort Si

will be referred to as object constants of Si. A sorted
signature, Σ, is a collection of sorts, properly typed
predicate and function symbols, and variables. Each

variable, X, takes on values from a unique sort de-
noted by sort(X). When needed we assume that Σ
contains standard numerical sorts of natural numbers,
integers, rational numbers, etc. as well as standard nu-
merical functions and relations such as +, −, >, < etc..
Terms, literals, and extended literals of Σ are defined
as usual. Rules of the language are expressions of the
form (1) where l’s are literals which may possibly con-
tain variables. In the standard ASP semantics a rule
with variables is viewed as a shorthand for a collection
of its ground instantiations. The AC(C) interpretation
of rules with variables is different and allows the con-
struction of solvers which will not require a complete
grounding of the program. To achieve this goal we first
expand the language of ASP by:
• Dividing sorts of Σ into regular and constraint. Con-

straint sorts will be declared by an expression #csort.
For instance a sort time of integers, say, between 0
and 1000 can be declared to be a constraint sort by
statement

#csort(time).

Undeclared sorts are assumed to be regular. Intu-
itively a sort is declared to be a constraint sort if it
is a large (often numerical) set with primitive con-
straint relations like ≤ defined between its elements.
Grounding constraint variables, i.e., variables rang-
ing over constraint sorts, would normally lead to huge
grounded program. This is exactly what should be
avoided by the AC(C) solvers. The AC(C) solvers will
only ground variables ranging over regular sorts (reg-
ular variables).

• Dividing predicates of the language into four types:
regular, constraint, defined and mixed. Intuitively,
regular predicates denote relations among objects
of regular sorts; constraint predicates denote prim-
itive numerical relations among objects of constraint
sorts; defined predicates are defined in terms of con-
straint predicates; mixed predicates denote relations
between objects which belong to regular sorts and
those which belong to constraint ones. They are not
defined by the rules of the program and are similar to
abducible relations of abductive logic programming.

Consider for instance a regular sort step = {0..30}
used to denote steps of a trajectory of some acting
agent, and constraint sort time = {0..1000} used to
denote actual time (say in minutes). The relation
at(S, T ) which holds iff step S of the trajectory was
executed at time T is a typical example of mixed re-
lation. The corresponding declaration of this relation
will be given by statement

#mixed at(step, time).

Without loss of generality, we will assume that in any
mixed predicate m of Π’s signature, constraint pa-
rameters follow regular parameters, i.e., every mixed



atom formed by m can be written as m(t̄r, t̄c) where
t̄r and t̄c are the lists of regular and constraint terms
respectively. According to our semantics a mixed
predicate can be viewed as a function whose domain
and range are collections of properly typed vectors
of regular and constraint terms respectively. Hence
m(t̄r, t̄c) can be written as m(t̄r) = t̄c. If the range of
m is boolean we write m(t̄r) instead of m(t̄r) = true
and ¬m(t̄r) instead of m(t̄r) = false.

Now let acceptable time(T ) be true iff time T belongs
to the interval [10, 20] or [100, 120]. It is natural to
view this predicate as defined. The corresponding
declaration is as follows:

#defined acceptable time(time).

AC(C) does not require special declaration for the
constraint predicates. They are to be specified in the
parameter C of the language. Non-constraint predi-
cate without a declaration is considered to be regular.
A literal formed by a regular predicate will be called
regular literal. Similarly for constraint, defined, and
mixed literals.

Definition 3 (Syntax of AC(C))
An AC(C) rule over signature Σ is a statement of the
form:

h1or . . . or hk ← l1, . . . , lm,not lm+1, . . . ,not ln (2)

such that
• if k > 1 then h1, . . . , hk are regular literals,
• if k = 1 then h1 is a regular or defined literal.
• l1, . . . , ln are arbitrary literals of Σ.
An AC(C) program Π consists of a signature Σ(Π) and
a collection of AC(C) rules over this signature.

Classification of literals of the signature Σ(Π) of an
AC(C) program Π allows partitioning Π into three parts:
• Regular parts, ΠR, consisting of rules built from reg-

ular literals.
• Defined part, ΠD, consisting of rules whose heads are

defined literals.
• Middle part, ΠM , consisting of all other rules of Π.
Elements of ΠR,ΠD and ΠM are called regular rules,
defined rules, and middle rules respectively. Note that
a standard (ground) ASP program Π is also an AC(C)
program in which all the predicates are defined as reg-
ular.

2.3 Semantics of AC(C)
First we will need some terminology. Let r be a rule
of an AC(C) program Π. A ground instance of r is
obtained from r by:
1. replacing variables of r by ground terms from the

respective sorts;

2. replacing all numerical terms by their values.

An ASP program ground(Π) consisting of all ground
instances of all rules in Π is called the ground instanti-
ation of Π.

A consistent set S of ground literals over the signature
Σ(Π) is called a partial interpretation of an AC(C) pro-
gram Π if it satisfies the following conditions:

1. A constraint literal l ∈ S iff l is true under the in-
tended interpretation of its symbols;

2. For every mixed predicate m(X̄r, Ȳc) and every
ground instantiation t̄r of X̄r, there is a unique
ground instantiation t̄c of X̄c such that m(t̄r, t̄c) ∈ S.

Definition 4 (Answer Sets of AC(C))
A partial interpretation S of an AC(C) program Π is
called an answer set of Π if there is a set M of ground
mixed literals such that S is an answer set of the ASP
program ground(Π) ∪M1.

Let us illustrate the definition by the following example.

Example 1 [AC(C) program and its answer sets]
Let P be an AC(C) program with sorts

time(0..1000).
step(0..1).
action(a).
f luent(f).

constraint relation ≤ defined on time, declarations

#csort(time).
#defined acceptable time(time).
#mixed at(step, time).
#regular occurs(action, step).
#regular holds(fluent, step).
#regular next(step, step).

and rules

acceptable time(T )← 10 ≤ T ≤ 20.
acceptable time(T )← 100 ≤ T ≤ 120.

¬occurs(A,S) ← at(S, T ),
not acceptable time(T ).

next(1, 0).

holds(f, S′) ← occurs(a, S),
next(S′, S).

occurs(a, 0).

1Note that since ground(Π) ∪M contains no type dec-
larations all its predicates are considered to be regular and
hence it can be viewed as an ASP program whose answer
sets are given by definitions 1 and 2.



The first two rules comprise the defined part, PD, of
the program. Its middle part, PM , consists of the third
rule. The remaining rules form P ’s regular part, PR.

Let I = [10, 20] ∪ [100, 120] and t0, t1, and t2 be arbi-
trary elements of time such that t0, t1 ∈ I and t2 6∈ I.
Let A1 be a collection of atoms consisting of specifica-
tion of sorts, step(0), step(1), action(a), etc, and atoms

at(0, t0), at(1, t1),
next(1, 0), occurs(a, 0),
holds(f, 1),
acceptable time(t) for every t ∈ I.

Let A2 = (A1 \ {at(1, t1)}) ∪ {at(1, t2),¬occurs(a, 1)}.
It is not difficult to check that A1 and A2 are answer
sets of P .
The syntax and semantics of AC(C) can be easily ex-
tended to allow the use of consistency restoring rules.
To do that we simply need to replace the words “ASP
program” in Definition 4 by “CR-Prolog program”.

3 Computing answer sets of AC(C)
programs

In this section we present a (somewhat simplified) ver-
sion of ACsolver – an algorithm for computing answer
sets of AC(C) programs. ACsolver takes as an input a
program Π which satisfies the following conditions:
1. Π contains no regular variables. (We refer to such

programs as r-ground.)
2. Π contains neither or nor ¬.
3. Every mixed atom of Π has a form m(t̄r, X̄) where

X̄ is a list of constraint variables.
4. If an atom occurs in the head of a middle rule it does

not occur in the head of any other rule.
5. A middle rule of Π contains at most one occurrence

of a defined atom and no occurrences of constraint
atoms.

The restrictions are not too severe. Regular vari-
ables may be removed by a grounding process. (In
our implementations this is done by a modification of
grounding algorithm lparse (Niemela, Simons, & Soini-
nen 2002)). Classical negation can be eliminated from
the program by viewing ¬p as a new predicate sym-
bol and adding constraints ← p(t̄),¬p(t̄). Mixed atom
m(t̄r, t1c , . . . , t

n
c ) can be replaced by m(t̄r, X1, . . . , Xn)

and X1 = t1c , . . . , Xn = tnc . Middle rules p(t̄)← B1 and
p(t̄)← B2 can be replaced by p1(t̄)← B1, p2(t̄)← B2,
p(t̄)← p1(t̄) and p(t̄)← p2(t̄), where p1 and p2 are new
regular predicate symbols. (Since only regular predi-
cates can occur in the heads of middle rules the last
two rules are regular.) A middle rule p(t̄) ← B1, B2,
where B2 is the collection of the defined and con-
straint extended literals of the rule, can be replaced by
d(X̄)← B2 and p(t̄)← B1, d(X̄). (Here X̄ is the list of
variables of B2.) Of course, the absence of disjunction

is a serious limitation, but this restriction is made only
to simplify the presentation.

Now we give a (necessarily sketchy) description of sev-
eral functions used by ACsolver . Throughout this sec-
tion we conform to the common terminology and refer
to extended literals of the language as literals. Literal
not not l will be identified with l. Literals p(t̄) and
not p(t̄) will be called contrary. We say that a set B of
literals falsifies rule r of Π if the body of r contains a
literal contrary to some literal of B. The functions and
the algorithm will be illustrated using program gr(P ) –
the result of grounding the regular variables of program
P from Example 1.

Program gr(P ):

1. acceptable time(T) ← 10 ≤ T ≤ 20
2. acceptable time(T) ← 100 ≤ T ≤ 120.
3. ¬occurs(a,0) ←

at(0,T0),
not acceptable time(T0).

4. ¬occurs(a,1) ←
at(1,T1),
not acceptable time(T1).

5. occurs(a,0)
6. next(1, 0)
7. holds(f,0) ←occurs(a,0), next(0,0).
8. holds(f,1) ←occurs(a,0), next(1,0).
9. holds(f,0) ←occurs(a,1), next(0,1).
10. holds(f,1) ←occurs(a,1), next(1,1).
11. ← ¬occurs(a, 0), occurs(a, 0).
12. ← ¬occurs(a, 1), occurs(a, 1).
(Note that last two rules are the result of elimination
of classical negation).

Function Cn
Function Cn(ΠR ∪ ΠM , B) computes the consequences
of a set of ground regular literals B under ΠR ∪ΠM . It
is similar to the corresponding functions of the regular
ASP solvers (e.g., expand of Smodels). Cn is defined in
terms of two auxiliary functions: lower bound, lb(ΠR ∪
ΠM , B), and upper bound, ub(ΠR∪ΠM , B). The former
computes the minimal set X of literals containing B and
closed w.r.t. the following rules
1. If r ∈ ΠR and the body of r is satisfied by B, then

so is the head of r.
2. If r is the only rule of ΠR∪ΠM whose body is not fal-

sified by X and if head(r) ∈ X, then regular literals
of the body of r are in X.

3. If (not l0) ∈ X, (l0 ← B1, l, B2) ∈ ΠR, and B1, B2 ⊆
X, then not l ∈ X.

4. If there is no rule with head l0, or the body of every
rule of ΠR ∪ ΠM with head l0 is falsified by X, then
not l0 ∈ X.

Function ub(ΠR ∪ ΠM , B) returns the answer set X of
a definite ground program α(ΠR∪ΠM , B) obtained by:



1. Removing all rules of ΠR ∪ΠM whose bodies are fal-
sified by B.

2. Removing all rules of ΠR ∪ ΠM such that
not head(r) ∈ B.

3. Removing all literals of the form not p(t̄) from the
rules of ΠR ∪ΠM .

4. Removing all constraint, defined, and mixed literals
from the rules of ΠM .

Now let
X = lb(ΠR ∪ΠM , B) and
Y = {not p(t̄) : p(t̄) ∈ ub(ΠR ∪ΠM , X)}. Then

Cn(ΠR ∪ΠM , B) = X ∪ Y.

One can check that Cn(gr(PR ∪PM ), ∅) returns the set
S0 = {next(1,0), holds(f,1), occurs(a,0), not next(0,0),
not next(0,1), not next(1,1), not holds(f,0),
not occurs(a,1), not ¬ occurs(a,0) }.

Function query
For simplicity of exposition, we limit ourselves to pro-
grams whose mixed predicates have one regular and one
constraint parameter. We also assume that our pro-
grams contain no occurrences of negated mixed literals.

For every pair 〈m, t〉 where m is a mixed predicate and
t is a possible value of its regular parameter, we assign a
unique constraint variable X called the value variable of
〈m, t〉. An ACsolver looks for the assignment of a value,
v to the value variable V of 〈m, t〉 such that m(t, v)
could be included in the corresponding answer set of
Π. Intuitively, function query(Π, B) returns the set of
constraints on these variables that have to be satisfied
in order for B to satisfy the rules of Π. To be precise
we’ll need the following definitions.

An r ground middle rule r is called active w.r.t. a set
of ground regular literals B if B contains all the regular
literals of the body of r. Program pe(Π, B) is obtained
from ΠM by
1. Removing all rules which are not active w.r.t. B.
2. Removing every rule r such that head(r) 6∈ B and

not head(r) 6∈ B.
3. Removing regular literals from all the remaining

rules.
Function query(Π, B) starts with computing pe(Π, B).
Suppose that B = {p1,not p2, p3} and that pe(Π, B)
for some program Π returns the program

p1← m1(t1, X1),m(t2, X2), d1(X1, X2).
p2← m3(t3, X3),not d2(X3).
p3← m4(t4, X4),not d3(X4).
← m1(t1, X5), d4(X5).

where p’s are regular, m’s are mixed and d’s are defined
predicates. (We assume that variables of the program
are renamed apart, i.e., no variable occurs in two rules

of the program.) Function query will, whenever pos-
sible, unify mixed atoms of pe(Π, B), and apply the
resulting substitution to the program’s rules. This will
replace the last rule of the program by

← m1(t1, X1), d4(X1)

(Strictly speaking, variables X1−X5 would be replaced
by the corresponding value variables but we will not do
it here). Recall that according to our assumption about
possible input of ACsolver there are no other rules with
p1 in the head. Similarly for p2 and p3. Since we are
looking for an answer set of Π containing B and p1 ∈ B,
we need to justify p1. This can be done only by finding a
solution of constraint d1(X1, X2). To justify (not p2) ∈
B we need to find X3 such that d2(X3). Justification of
p3 ∈ B is given by a solution of constraint not d3(X4).
Finally, to satisfy the last rule, X1 must be a solution
of not d4(X1). Not surprisingly, function query returns
a constraint

d1(X1, X2) ∧ d2(X3) ∧ not d3(X4) ∧ not d4(X1)

where variables range over their respective sorts. (Note
that allowing multiple defined and constraint literals in
the body of the rules will only slightly complicate the
formation of the desired query.)

Consider for instance program gr(P ) defined above and
the set S0 returned by Cn(gr(PM ∪ PM ), ∅), and com-
pute query(gr(P ), S0). The program has two middle
rules (3) and (4) which are both active w.r.t. S0. Since
neither ¬occurs(a, 1) nor not ¬occurs(a, 1) is in S0,
function pe(gr(Π)M , S0) will return

¬occurs(a, 0) ← at(0, T0),
not acceptable time(T0).

Since (not ¬occurs(a, 0)) ∈ S0, function query will re-
turn

acceptable time(T0)

Function c solve
By a constraint program we mean a collection of de-
fined rules formed by defined literals and primitive con-
straints. A query is a conjunction of defined literals.
Function c solve(Π, Q) takes as an input a constraint
program Π and a query Q. The function returns a pair
(C, true) where C is a consistent set of primitive con-
straints, such that for any solution γ of C, γ(Q) is a
consequence of Π. If no such C exists the function re-
turns false.

In what follows, we will assume the existence of such a
function. There are, of course, many practical systems
which implement such functions for various classes of
queries and constraint programs (Van Hentenryck 1989;
Jaffar et al. 1992; Jaffar & Maher 1994; SICStus Prolog
2007).



function ACsolver
Input Π: r-ground program;

B: set of ground regular literals;
Output 〈A, true〉 where A is a regular part

of an answer set of Π containing B;
false if there is no such answer set;

begin
S := Cn(ΠR ∪ΠM , B);
if S is inconsistent return false;
if β(ΠD, S) is a constraint program then

O := c solve(β(ΠD, S), query(Π, S));
if O = false then

return(false)
if O = 〈C, true〉 and p ∈ S or not p ∈ S

for any regular atom p then
return(〈S, true〉);

pick a regular literal l such that l, (not l) /∈ S;
O := ACsolver(Π, S ∪ {l}) ;
if O = false return ACsolver(Π, S ∪ {not l});
else return O;

end

Figure 1: The ACsolver algorithm

Finally, by β(Π, B) where B is a set of regular ground
literals, we will denote the program obtained from Π
by (a) removing the rules whose body is falsified by B,
and (b) removing literals of B from the remaining rules
of the program.

Function ACsolver
Now we are ready to present the main function (see
Figure 1), ACsolver , which takes an r-ground AC(C)
program Π and a set B of ground regular literals as in-
puts and returns an answer set of Π containing B. If
no such answer set exists the program returns false. Of
course the actual output will be smaller. Normally we
are only interested in the regular parts of Π’s answer
sets. The algorithm can be easily expended to return a
solution of the set C of constraints returned by c solve.
If required, this information can be used to output rel-
evant mixed and defined literals.
Let us trace this algorithm for ACsolver(gr(P ), ∅). We
already computed the value, S0 of Cn(gr(PR ∪PM ), ∅).
S0 is consistent, β(gr(P )D, S0) = gr(P )D and, as
has been shown above, query(gr(P ), S0) returns Q0 =
acceptable time(T0). Function c solve(gr(PD), Q0) re-
turns true together with a collection of constraints,
say, C0 = 10 ≤ T0 ∧ T0 ≤ 20. For every t0 satis-
fying C0, atom acceptable time(t0) belongs to an an-
swer set of gr(P ) compatible with S0. The only regular
atom undecided by S0 is ¬occurs(a, 1). Suppose that
ACsolver selects this atom and calls ACsolver(P, S1)
where S1 = S0 ∪ {¬occurs(a, 1)}. Using rule (12) of
gr(P ), function Cn(gr(PR∪PM ), S1) returns S2 = S1∪
{not occurs(a, 1)}. Function query(gr(P ), S2) returns

Q1 = acceptable time(T0) ∧ not acceptable time(T1).
The possible answer returned by c solve(gr(PD), Q1)
may be, say, C1 = 10 ≤ T0 ≤ 20 ∧ T1 < 10 ∧ 20 <
T1 < 100 ∧ 120 < T1. Finally, ACsolver(gr(P ), ∅)
returns S2. (Of course the slightly modified solver
can also return C1, or even some of its solutions).
If ACsolver were to select not ¬occurs(a, 1) instead
of ¬occurs(a, 1), then the returned value would be
S3 = S0 ∪ {not ¬occurs(a, 1),not occurs(a, 1)}.

The algorithm is only correct for programs satisfying
a number of safety conditions. In particular the usual
safety conditions required for correctness of ASP and
constraint solvers should be expanded by the following
requirement: every middle rule of a program contains
a mixed literal, and every constraint variable occurring
in a middle rule of the program should occur in a mixed
predicate from this rule. The following example shows
why the condition is necessary. Consider a program

#csort(s).
#defined d(s), e(s).
s(0..2).
p← e(Y ).
d(1). d(2).
e(Y )← d(Y ), Y < 2.

Every answer set of this program contains d(1), d(2),
and p. Our algorithm however may also return sets not
containing p. This happens when the algorithm picks
literal not p, and c solve returns, say, Y = 0.

4 Representing Knowledge in AC(C)
Several examples presented in this section are meant
to illustrate the use of AC(C) for knowledge represen-
tation. None of the examples can successfully run with
traditional ASP solvers while all of them are easily solv-
able by the AC(C) solvers.
We start with a simple planning and scheduling exam-
ple:

Example 2 [Planning and Scheduling]
John, who is currently at work, needs to be in his doc-
tor’s office in one hour carrying the insurance card and
money to pay for the visit. The card is at home and
money can be obtained from the nearby ATM. John
knows the minimum time (in minutes) needed to travel
between the relevant locations. Can he find a plan to
make it on time? (assuming of course that there will be
no delays and the actual time of travel will be the mini-
mum time). To solve the problem we will divide it into
two parts: planning and scheduling. The former can be
solved by standard ASP based methods. We use vari-
ables P for people, L for locations, O for objects (cash
and the insurance card), and S for steps of the planned
trajectory. We will need an action go to(P,L) and flu-
ents at loc(P,L), at loc(O,L), and has(P,O) with self-
explanatory intuitive meaning. (To simplify the solu-
tion we assume that person P automatically gets the



object O when both, P and O, share the same location).
The transition diagram whose states are collections of
fluents describing possible physical states of the domain
and arcs are labeled by actions is defined by causal laws
written as logic programming rules. For instance, direct
effects of the actions are described by the rule

holds(at loc(P,L),S1) ←
next(S1, S0), occurs(go to(P,L),S0).

Indirect effects will be captured by the corresponding
relationships between fluents:

holds(has(P,O),S) ←
holds(at loc(P,L),S), holds(at loc(P,O),S).

holds(at loc(O,L),S) ←
holds(at loc(P,L),S), holds(has(P,O),S).

¬holds(at loc(X,L2),S) ←
holds(at loc(X,L1),S), L1 6= L2.

The problem of representing the unchanged fluents is
solved by the inertia axioms (variable F is used for flu-
ents):

holds(F,S1) ←
next(S1,S0), holds(F,S0), not ¬holds(F,S1).

¬holds(F,S1) ←
next(S1,S0), ¬holds(F,S0),not holds(F,S1).

John’s goal and his options will be described by the
rules:

occurs(go to(john,L),S) or ¬occurs(go to(john,L),S).

goal(S) ←
holds(at loc(john,doctor),S),
holds(has(john,card),S),
holds(has(john,cash),S).

succeed ← goal(S).

← not succeed.

Let us denote the above program with initial conditions
and sort step defined as a collection of integers from 0 to
n by Dn

r . Normally ASP planning is performed by com-
puting answer sets of Dn

r for n = 1, 2, . . .. The desired
plans can be easily extracted from the answer sets of the
first consistent program Dk

r . A possible plan returned
by this planning method can be, say, [go to(john,home),
go to(john,atm),go to(john,doctor)].

Now we concentrate on the scheduling part of the prob-
lem. Actual time will range from 0 to 1440 (number of
minutes in 24 hours). The schedule should assign time
T to each step S of the plan. This will be achieved
by introducing a mixed relation at(S, T ) and specifying
the necessary constraints, e.g.,

← next(S1, S0),
at(S0, T0),
at(S1, T1),
T1 < T0.

← goal(S),
at(0, T1),
at(S, T2),
T2− T1 > 60.

← next(S1, S0),
occurs(go to(john, home), S0),
holds(at loc(john, office), S0),
at(S0, T0),
at(S1, T1),
T0− T1 > −20.

The first rule requires time to be a monotonic function
of steps; the second guarantees that the trip does not
take more than an hour; the third assumes that the
trip from office to home takes at least twenty minutes.
Other constraints are added in a similar fashion. Let
us denote the resulting program by Dn.

Given this program the ACsolver will return an answer
set of Dn, containing a plan, say
[occurs(go to(john,home),0), occurs(go to(john,atm),1),
occurs(go to(john,doctor),2)] and a schedule, say,
at(0, 0), at(1, 20), at(2, 35), at(3, 55) for executing its
actions. It is guaranteed that if John performs the
corresponding actions as scheduled he will get to see his
doctor on time. If there is no plan of length n satisfying
the desired conditions the program Dn has no answer
sets. The primitive constraints which occur in the
middle rules of Dn are so called difference constraint.
We have an implementation of ACsolver which
works for the language AC(C) parametrized by such
constraints. The current implementation, Suryad, has
other limitations - it does not allow defined predicates
and regular predicates in the heads of middle rules. Of
course Dn satisfies this condition and Suryad returns
the answers almost instantaneously.
In our next example we illustrate the use of AC(C) ex-
tended by consistency restoring rules of CR-Prolog.
Example 3 [Planning with Weak Constraints]
Let us now consider a variant of the story from Exam-
ple 2 in which the requirement “the trip does not take
more than an hour” is replaced “the trip does not take
more than an hour, but John prefers to make it in 50
minutes”.

The new information can be encoded by the defeasible
rule which says that under normal circumstances the
trip will be made in 50 minutes (or less).

← goal(S),
at(0, T1),
at(S, T2),
T2− T1 > 50,
not ab(S).



The CR-rule

ab(S)← + step(S).

allows, when necessary, consider exceptions to this rule.
If John can get to the doctor’s office in 50 minutes the
program will find the corresponding plan and a proper
schedule for its actions. If time constraints of the prob-
lem require time from interval (50, 60] the CR-rule will
be used to defeat the weak constraint above and find
a possible plan, say, requiring 55 minutes. The desired
solutions can be easily found by Suryad.

Example 4 [Using Defined Predicates]
Let us now consider an extension of the John’s problem
from Example 2 by assuming that John always trav-
els in a cab and that the cab rate is $2.45 per minute.
John knows the amount of money in his bank account
as well as the amount he needs to pay to the doctor.
Now he needs not only get to the doctor on time and
ready but also make sure that he has enough money for
the visit. To solve the problem one may try to encode
this knowledge by the following rules:

bank account(john, 200).
doctor payment(130).
taxi rate(2.45).

enough money(P) ←
goal(S),

at(0,T1),
at(S,T2),
money needed(P,T1,T2,Y1),
bank account(P,Y2),
Y2 - Y1 ≥ 0.

money needed(P,T1,T2,Y) ←
doctor payment(Y1),
cab payment(T1,T2,Y2),
Y = Y1 + Y2.

cab payment(T1,T2,Y) ←
taxi rate(Rate),
Y = Rate * (T2 - T1).

Since at the final state of the trajectory John should
have enough money to pay the doctor and the taxi
driver, we expand this program by a rule

← enough money(john).

It is natural to declare enough money as a regular pred-
icate, and the rest, except the mixed predicate at and
the primitive constraints, are defined predicates. It is
not difficult to check that the resulting program, E, has
an answer set and that any answer set of this program
will contain enough money(john). Notice however that
ACsolver will not be able to compute answer sets of
E because the definition of enough money(P ) violates

the safety condition of ACsolver. The problem can be
remedied by:

(a) Introducing a new defined relation d specified by
the rule

d(P,T1,T2,Y1,Y2) ←
money needed(P,T1,T2,Y1),
bank account(P,Y2),
Y2 - Y1 ≥ 0.

(b) Introducing a new mixed relation md(P, Y 1, Y 2)
whose parameters are obtained from parameters of d
by dropping those constraint parameters which oc-
cur in the mixed predicates of the middle rule of
enough money.

(c) Replacing the definition of enough money by the
new rule

enough money(P) ←
goal(S),
at(0,T1),
at(S,T2),
m d(P,Y1,Y2).
d(P,T1,T2,Y1,Y2).

It is not difficult to show that the transformed pro-
gram is equivalent to the original one modulo the new
predicates. The safety condition now is satisfied and
ACsolver can be used to find the answer.

The new program has defined predicates, regular
predicates in the heads of middle rules and linear con-
straints and thus can not be run on Suryad. However,
we have a second prototype implementation, ACengine,
whose (c solve) algorithm is implemented via con-
straint logic programming system CLP(R) (Jaffar et al.
1992) with constructive negation (Stuckey 1991) which
is suitable for solving this problem. The only change
necessary to satisfy syntactic restrictions of ACengine
consists in replacing disjunction p or ¬p by two rules
p← not ¬p and ¬p← not p.

5 Conclusion
In this paper we introduced a knowledge representa-
tion language AC(C) extending the syntax and seman-
tics of ASP and CR-Prolog, gave some examples of its
use for knowledge representation, and presented an al-
gorithm, ACsolver, for computing answer sets of AC(C)
programs. The algorithm does not require full ground-
ing of a program and combines “classical” ASP solv-
ing methods with constraint logic programming tech-
niques and CR-Prolog based abduction. The AC(C)
based approach often allows to solve problems which
are impossible to solve by more traditional ASP solv-
ing techniques. We believe that further investigation of
the language and development of more efficient and re-
liable solvers for its programs can help to substantially



expand the domain of applicability of the answer set
programming paradigm. The work is based on previ-
ous results by S. Baselice, P. Bonatti, and the authors.
In (Elkabani, Pontelli, & Son 2005), an algorithm is de-
veloped to combine ASP computation with constraint
solving for the purpose of reasoning with ASP aggre-
gates. Their language however does not allow classifi-
cation of predicates and hence does not avoid ground-
ing of variables (except the variables which are local
w.r.t. the aggregates). Interesting line of work inves-
tigates ways of replacing ASP programs by the corre-
sponding constraint programs (see for instance (Dovier,
Formisano, & Pontelli 2007)). We hope that our ap-
proach will prove more attractive from the standpoint
of knowledge representation and also more efficient but
this is of course a matter for further research. There is
also a substantial amount of work on the development
of a generalization of ASP by rules which allows arbi-
trary “constraints atoms” (Marek & Truszczynski 2004;
Liu et al. 2007). It remains to be seen if work on the
development of AC(C) solvers can profit from insights
from this work.
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