
Making AC-3 an Optimal Algorithm

Yuanlin Zhang and Roland H.C. Yap
School of Computing, National University of Singapore

Lower Kent Ridge Road, 119260, Singapore
{zhangyl, ryap}@comp.nus.edu.sg

Abstract

The AC-3 algorithm is a basic and widely used arc
consistency enforcing algorithm in Constraint Sat-
isfaction Problems (CSP). Its strength lies in that
it is simple, empirically efficient and extensible.
However its worst case time complexity was not
considered optimal since the first complexity result
for AC-3 [Mackworth and Freuder, 1985] with the
boundO(ed3), where e is the number of constraints
and d the size of the largest domain. In this paper,
we show suprisingly that AC-3 achieves the opti-
mal worst case time complexity with O(ed2). The
result is applied to obtain a path consistency algo-
rithm which has the same time and space complex-
ity as the best known theoretical results. Our exper-
imental results show that the new approach to AC-3
is comparable to the traditional AC-3 implementa-
tion for simpler problems where AC-3 is more effi-
cient than other algorithms and significantly faster
on hard instances.

1 Introduction
Arc consistency is a basic technique for solving Constraint
Satisfaction Problems (CSP) and variations of arc consis-
tency are used in many AI and constraint applications. There
have been many algorithms developed for arc consistency
such as AC-3 [Mackworth, 1977], AC-4 [Mohr and Hender-
son, 1986], AC-6 [Bessiere, 1994] and AC-7 [Bessiere et al.,
1999]. The AC-3 algorithm was proposed in 1977 [Mack-
worth, 1977]. The first worst case analysis of AC-3 [Mack-
worth and Freuder, 1985] gives a complexity of O(ed3),
where e is the number of constraints and d the size of largest
domain. This result is deeply rooted in the CSP literature (eg.
[Wallace, 1993; Bessiere et al., 1999]) and thus AC-3 is typi-
cally considered to be non-optimal. Other algorithms such as
AC-4, AC-6, AC-7 are considered theoretically optimal, with
time complexity O(ed2). As far as we are aware, there has
not been any effort to improve the theoretical bound of AC-3
to be optimal. Here, we re-examine AC-3 for a number of
reasons. Firstly, AC-3 is one of the simplest AC algorithms
and is known to be practically efficient [Wallace, 1993]. The
simplicity of arc revision in AC-3 makes it convenient for
implementation and amenable to various extensions for many

constraint systems. Thus while AC-3 is considered as being
sub-optimal, it often is the algorithm of choice and can out-
perform other theoretically optimal algorithms.

In this paper, we show that AC-3 achieves worst case op-
timal time complexity of O(ed2). This result is surprising
since AC-3 being a coarse grained “arc revision” algorithm
[Mackworth, 1977], is considered to be non-optimal. The
known results for optimal algorithms are all on fine grained
“value revision” algorithms. Preliminary experiments show
that the new AC-3 is comparable to the traditional implemen-
tations on easy CSP instances where AC-3 is known to be
substantially better than the optimal fine grained algorithms.
In the hard problem instances such as those from the phase
transition, the new AC-3 is significantly better and is compa-
rable to the best known algorithms such as AC-6. We also
show that the results for AC-3 can be applied immediately to
obtain a path consistency algorithm which has the same time
and space complexity as the best known theoretical results. 1

2 Background
In this section we give some background material and no-
tation used herein. The definitions for general CSP follow
[Montanari, 1974; Mackworth, 1977].

Definition 1 A Constraint Satisfaction Problem (N, D, C)
consists of a finite set of variables N = {1, · · · , n}, a set
of domains D = {D1, · · · , Dn}, where i ∈ Di, and a set
of constraints C = {cij | i, j ∈ N}, where each constraint
cij is a binary relation between variables i and j. For the
problem of interest here, we require that ∀x, y x ∈ Di, y ∈
Dj , (x, y) ∈ cij if and only if (y, x) ∈ cji.

For simplicity, in the above definition we consider only bi-
nary constraints, omitting the unary constraint on any variable
[Mackworth, 1977]. Without loss of generality we assume
there is only one constraint between each pair of variables.

Definition 2 The constraint graph of a CSP (N, D, C) is the
graph G = (V, E) where V = N and E = {(i, j) | ∃cij ∈
C or ∃cji ∈ C}.
The arcs in CSP refer to the directed edges in G. Throughout
this paper, n denotes the number of variables, d the size of
the largest domain, and e the number of constraints in C.

1A related paper by Bessiere and Regin appears in this proceed-
ings.

Definition 3 Given a CSP (N, D, C), an arc (i, j) of its con-
straint graph is arc consistent if and only if ∀x ∈ Di, there
exists y ∈ Dj such that cij(x, y) holds. A CSP (N, D, C) is
arc consistent if and only if each arc in its constraint graph is
arc consistent.

The AC-3 algorithm for enforcing arc consistency on a
CSP is given in figure 2. The presentation follows [Mack-
worth, 1977; Mackworth and Freuder, 1985] with a slight
change in notation and node consistency removed.

procedure REVISE((i, j))
begin

DELETE← false
for each x ∈ Di do

1. if there is no y ∈ Dj such that cij(x, y) then
delete x from Di;
DELETE← true

endif
return DELETE

end

Figure 1: procedure REVISE for AC-3

algorithm AC-3
begin

1. Q← {(i, j) | cij ∈ C or cji ∈ C, i
= j}
while Q not empty do

select and delete any arc (k, m) from Q;
2. if REVISE((k, m)) then
3. Q← Q ∪ {(i, k) | (i, k) ∈ C, i
= k, i
= m}

endwhile
end

Figure 2: The AC-3 algorithm

The task of REVISE((i, j)) in Fig 1 is to remove those in-
valid values not related to any other value with respect to arc
(i, j). We will show in section 3 that different implementa-
tions of line 1 lead to different worst case complexities. As
such, we argue that it is more useful to think of AC-3 as a
framework rather than a specific algorithm. In AC-3, a CSP
is modeled by its constraint graph G, and what AC-3 does is
to revise all arcs (∗, i) = {(k, i)|(k, i) ∈ E(G)} (line 3 in
Fig 2) except some special arc if the domain of variable i is
modified by REVISE((i, j)). A queue Q is used to hold all
arcs that need to be revised.The traditional understanding of
AC-3 is given by the following theorem whose proof from
[Mackworth and Freuder, 1985] is modified in order to facil-
itate the presentation in Section 3.

Theorem 1 [Mackworth and Freuder, 1985] Given a CSP
(N, D, C), the time complexity of AC-3 is O(ed3).

Proof Consider the times of revision of each arc (i, j).
(i, j) is revised if and only if it enters Q. The observation
is that arc (i, j) enters Q if and only if some value of j is
deleted (line 2–3 in fig 2). So, arc (i, j) enters Q at most
d times and thus is revised d times. Given that the number

of arcs are 2e, REVISE(i, j) is executed O(ed) times. The
complexity of REVISE((i, j)) in Fig 1 is at most d2.

The reader is referred to [Mackworth, 1977; Mackworth
and Freuder, 1985] for more details and motivations concern-
ing arc consistency.

3 A New View of AC-3
The traditional view of AC-3 with the worst case time com-
plexity of O(ed3) (described by theorem 1) is based on a
naive implementation of line 1 in Fig 1 that y is always
searched from scratch. Hereafter, for ease of presentation, we
call the classical implementation AC-3.0. The new approach
to AC-3 in this paper, called AC-3.1, is based on the observa-
tion that y in line 1 of Fig 1 needn’t be searched from scratch
even though the same arc (i, j) may enter Q many times, The
search is simply resumed from the point where it stopped in
the previous revision of (i, j). This idea is implemented by
procedure EXISTy((i, x), j) in Fig 3.

Assume without loss of generality that each domain Di is
associated with a total ordering. ResumePoint((i, x), j) re-
members the first value y ∈ Dj such that cij(x, y) holds
in the previous revision of (i, j). The succ(y, D0

j) function,
where D0

j denotes the domain of j before arc consistency en-
forcing, returns the successor of y in the ordering of D0

j or
NIL, if no such element exists. NIL is a value not belong-
ing to any domain and precedes all values in any domain.

procedure EXISTy((i, x), j)
begin

y ← ResumePoint((i, x), j);
1: if y ∈ Dj then % y is still in the domain

return true;
else

2: while ((y ← succ(y, D0
j) and (y
= NIL))

if y ∈ Dj and cij(x, y) then
ResumePoint((i, x), j)← y;
return true

endif;
return false

endif
end

Figure 3: Procedure for searching y in REVISE(i, j)

Theorem 2 The worst case time complexity of AC-3 can be
achieved in O(ed2).

Proof Here it is helpful to regard the execution of AC-3.1
on a CSP instance as a sequence of calls to EXISTy((i, x), j).
Consider the time spent on x ∈ Di with respect to (i, j).
As in theorem 1, an arc (i, j) enters Q at most d times. So,
with respect to (i, j), any value x ∈ Di will be passed to
EXISTy((i, x), j) at most d times . Let the complexity of
each execution of EXISTy((i, x), j) be tl (1 ≤ l ≤ d). tl
can be considered as 1 if y ∈ Dj (see line 1 in fig 3) and
otherwise it is sl which is simply the number of elements in
Dj skipped before next y is found (the while loop in line 2).
Furthermore, the total time spent on x ∈ Di with respect to

(i, j) is
∑d

1 tl ≤
∑d

1 1 +
∑d

1 sl where sl = 0 if tl = 1.
Observe that in EXISTy((i, x), j) the while loop (line 2) will
skip an element in Dj at most once with respect to x ∈ Di.
Therefore,

∑d
1 sl ≤ d. This gives,

∑d
1 tl ≤ 2d. For each arc

(i, j), we have to check at most d values in Di and thus at
most O(d2) time will be spent on checking arc (i, j). Thus,
the complexity of the new implementation of AC-3 is O(ed2)
because the number of arcs in constraint graph of the CSP is
2e.

The space complexity of AC-3.1 is not as good as the tra-
ditional implementation of AC-3. AC-3.1 needs additional
space to remember the resumption point of any value with re-
spect to any related constraint. It can be shown that the extra
space required is O(ed), which is the same as AC-6.

The same idea behind AC-3.1 applies to path consistency
enforcing algorithms. If one pair (x, y) ∈ ckj is removed, we
need to recheck all pairs (x, ∗) ∈ cij with respect to ckj ◦ cik

(the composition of cik and ckj), and (∗, y) ∈ clk with re-
spect to cjk ◦ clj . The resumption point z ∈ Dk is remem-
bered for any pair (x, y) of any constraint cij with respect to
any intermediate variable k such that cik(x, z), ckj(z, y) both
hold. ResumePoint((i, x), (j, y), k) is employed to achieve
the above idea in the algorithm in fig 4 which is partially mo-
tivated by the algorithm in [Chmeiss and Jegou, 1996].

algorithm PC
begin

INITIALIZE(Q);
while Q not empty do

Select and delete any ((i, x), j) from Q;
REVISE PC((i, x), j, Q))

endwhile
end

procedure INITIALIZE(Q)
begin

for any i, j, k ∈ N do
for any x ∈ Di, y ∈ Dj such that cij(x, y) do

if there is no z ∈ Dk such that cik(x, z) ∧ ckj(z, y)
then

cij(x, y)← false;
cji(y, x)← false;
Q← Q ∪ {(i, x), j} ∪ {(j, y), i}

else ResumePoint((i, x), (j, y), k)← z
end

Figure 4: Algorithm of Path Consistency Enforcing

By using a similar analysis to the proof of theorem 2, we
have the following result.
Theorem 3 The time complexity of the algorithm PC is
O(n3d3) with space complexity O(n3d2).

The time complexity and space complexity of the PC algo-
rithm here are the same as the best known theoretical results
[Singh, 1996].

4 Preliminary experimental results
In this paper, we present some preliminary experimental re-
sults on the efficiency of AC-3. While arc consistency can be

procedure REVISE PC((i, x), k, Q)
begin

for any j ∈ N, k
= i, k
= j do
for any y ∈ Dj such that cij(x, y) do

z ← ResumePoint((i, x), (j, y), k);
while not ((z
= NIL) ∧ cik(x, z) ∧ ckj(z, y)

do z ← succ(z, D0
k);

if not ((cik(x, z) ∧ ckj(z, y)) then
Q← Q ∪ {((i, x), j} ∪ {((j, y), i)}

else ResumePoint((i, x), (j, y), k))← z
endfor

end

Figure 5: Revision procedure for PC algorithm

applied in the context of search (such as [Bessiere and Re-
gin, 1996]), we focus on the performance statistics of the arc
consistency algorithms alone.

The experiments are designed to compare the empirical
performance of the new AC-3.1 algorithm with both the clas-
sical AC-3.0 algorithm and a state-of-the-art algorithm on a
range of CSP instances with different properties.

There have been many experimental studies on the perfor-
mance of general arc consistency algorithms [Wallace, 1993;
Bessiere, 1994; Bessiere et al., 1999]. Here, we adopt the
choice of problems used in [Bessiere et al., 1999], namely
some random CSPs, Radio Link Frequency Assignment prob-
lems (RLFAPs) and the Zebra problem. The zebra problem is
discarded as it is too small for benchmarking. Given the ex-
perimental results of [Bessiere et al., 1999], AC-6 is chosen
as a representative of a state-of-the-art algorithm because of
its good timing performance over the problems of concern. In
addition, an artificial problem DOMINO is designed to study
the worst case performance of AC-3.

Randomly generated problems: As in [Frost et al.,
1996], a random CSP instance is characterized by n, d, e
and the tightness of each constraint. The tightness of a
constraint cij is defined to be |Di × Dj | − |cij |, the num-
ber of pairs NOT permitted by cij . A randomly gener-
ated CSP in our experiments is represented by a tuple (n,
d, e, tightness). We use the first 50 instances of each
of the following random problems generated using the ini-
tial seed 1964 (as in [Bessiere et al., 1999]): (i) P1: un-
der constrained CSPs (150, 50, 500, 1250) where all gener-
ated instances are already arc consistent; (ii) P2: over con-
strained CSPs (150, 50, 500, 2350) where all generated in-
stances are inconsistent in the sense that some domain be-
comes empty in the process of arc consistency enforcing; and
(iii) problems in the phase transition [Gent et al., 1997] P3:
(150, 50, 500, 2296) and P4: (50, 50, 1225, 2188). The P3
and P4 problems are further separated into the arc consistent
instances, labeled as ac, which can be made arc consistent
at the end of arc consistency enforcing; and inconsistent in-
stances labeled as inc. More details on the choices for P1 to
P4 can be found in [Bessiere et al., 1999].

RLFAP: The RLFAP [Cabon et al., 1999] is
to assign frequencies to communication links to
avoid interference. We use the CELAR instances

of RLFAP which are real-life problems available at
ftp://ftp.cs.unh.edu/pub/csp/archive/code/benchmarks.

DOMINO: Informally the DOMINO problem is an undi-
rected constraint graph with a cycle and a trigger constraint.
The domains are Di = {1, 2, · · · , d}. The constraints are
C = {ci(i+1) | i < n} ∪ {c1n} where c1n = {(d, d)} ∪
{(x, x + 1) | x < d} is called the trigger constraint and
the other constraints in C are identity relations. A DOMINO
problem instance is characterized by two parameters n and
d. The trigger constraint will make one value invalid during
arc consistency and that value will trigger the domino effect
on the values of all domains until each domain has only one
value d left. So, each revision of an arc in AC-3 algorithms
can only remove one value while AC-6 only does the neces-
sary work. This problem is used to illustrate the differences
between AC-3 like algorithms and AC-6. The results explain
why arc revision oriented algorithms may not be so bad in the
worst case as one might imagine.

AC-3.0 AC-3.1 AC-6
P1 #ccks 100,010 100,010 100,010

time(50) 0.65 0.65 1.13
P2 #ccks 494,079 475,443 473,694

time(50) 1.11 1.12 1.37
P3(ac) #ccks 2,272,234 787,151 635,671

time(25) 2.73 1.14 1.18
P3(inc) #ccks 3,428,680 999,708 744,929

time(25) 4.31 1.67 1.69
P4(ac) #ccks 3,427,438 1,327,849 1,022,399

time(21) 3.75 1.70 1.86
P4(inc) #ccks 5,970,391 1,842,210 1,236,585

time(29) 8.99 3.63 3.54

Table 1: Randomly generated problems

RFLAP AC-3.0 AC-3.1 AC-6
#3 #ccks 615,371 615,371 615,371

time(20) 1.47 1.70 2.46
#5 #ccks 1,762,565 1,519,017 1,248,801

time(20) 4.27 3.40 5.61
#8 #ccks 3,575,903 2,920,174 2,685,128

time(20) 8.11 6.42 8.67
#11 #ccks 971,893 971,893 971,893

time(20) 2.26 2.55 3.44

Table 2: CELAR RLFAPs

Some details of our implementation of AC-3.1 and AC-3.0
are as follows. We implement domain and related operations
by employing a double-linked list. The Q in AC-3 is imple-
mented as a queue of nodes on which arcs incident will be
revised [Chmeiss and Jegou, 1996] . A new node will be put
at the end of the queue. Constraints in the queue are revised in
a FIFO order. The code is written in C++ with g++. The ex-
periments are run on a Pentium III 600 processor with Linux.

d AC-3.0 AC-3.1 AC-6
100 #ccks 17,412,550 1,242,550 747,551

time(10) 5.94 0.54 0.37
200 #ccks 136,325,150 4,985,150 2,995,151

time(10) 43.65 2.21 1.17
300 #ccks 456,737,750 11,227,750 6,742,751

time(10) 142.38 5.52 2.69

Table 3: DOMINO problems

For AC-6, we note that in our experiments, using a sin-
gle currently supported list of a values is faster than using
multiple lists with respect to related constraints proposed in
[Bessiere et al., 1999]. This may be one reason why AC-7 is
slower than AC-6 in [Bessiere et al., 1999]. Our implementa-
tion of AC-6 adopts a single currently supported list.

The performance of arc consistency algorithms here is
measured along two dimensions: running time and number
of constraint checks (#ccks). A raw constraint check tests if
a pair (x, y) where x ∈ Di and y ∈ Dj satisfies constraint
cij . In this experiment we assume constraint check is cheap
and thus the raw constraint and additional checks (e.g. line 1
in Figs 3) in both AC-3.1 and AC-6 are counted. In the tabu-
lated experiment results, #ccks represents the average number
of checks on tested instances, and time(x) the time in seconds
on x instances.

The results for randomly generated problems are listed in
Table 1. For the under constrained problems P1, AC-3.1 and
AC-3.0 have similar running time. No particular slowdown
for AC-3.1 is observed. In the over constrained problems P2,
the performance of AC-3.1 is close to AC-3.0 but some con-
straint checks are saved. In the hard phase transition problems
P3 and P4, AC-3.1 shows significant improvement in terms
of both the number of constraint checks and the running time,
and is better than or close to AC-6 in timing.

The results for CELAR RLFAP are given in Table 2. In
simple problems, RLFAP#3 and RLFAP#11, which are al-
ready arc consistent before the execution of any AC algo-
rithm, no significant slowdown of AC-3.1 over AC-3.0 is ob-
served. For RLFAP#5 and RLFAP#8, AC-3.1 is faster than
both AC-3.0 and AC-6 in terms of timing.

The reason why AC-6 takes more time while making less
checks can be explained as follows. The main contribution
to the slowdown of AC-6 is the maintenance of the currently
supported list of each value of all domains. In order to achieve
space complexity of O(ed), when a value in the currently
supported list is checked, the space occupied in the list by
that value has to be released. Our experiment shows that the
overhead of maintaining the list doesn’t compensate for the
savings from less checks under the assumption that constraint
checking is cheap.

The DOMINO problem is designed to show the gap be-
tween AC-3 implementations and AC-6. Results in Table 3
show that AC-3.1 is about half the speed of AC-6. This can
be explained by a variation of the proof in section 3, in AC-
3.1 the time spent on justifying the validity of a value with
respect to a constraint is at most 2d while in AC-6 it is at most

d. The DOMINO problem also shows that AC-3.0 is at least
an order of magnitude slower in time with more constraint
checks over AC-3.1 and AC-6.

In summary, our experiments on randomly generated prob-
lems and RLFAPs show the new approach to AC-3 has a satis-
factory performance on both simple problems and hard prob-
lems compared with the traditional view of AC-3 and state-
of-the-art algorithms.

5 Related work and discussion
Some related work is the development of general purpose arc
consistency algorithms AC-3, AC-4, AC-6 , AC-7 and the
work of [Wallace, 1993]. We summarize previous algorithms
before discussing how this paper gives an insight into AC-3
as compared with the other algorithms.

An arc consistency algorithm can be classified by its
method of propagation. So far, two approaches are employed
in known efficient algorithms: arc oriented and value ori-
ented. Arc oriented propagation originates from AC-1 and its
underlying computation model is the constraint graph. Value
oriented propagation originates from AC-4 and its underlying
computation model is the value based constraint graph.

Definition 4 The value based constraint graph of a CSP(N,
D, C) is G=(V, E) where V = {i.x | i ∈ N, x ∈ Di} and
E = {{i.x, j.y} | x ∈ Di, y ∈ Dj , cij ∈ C}.
Thus a more rigorous name for the traditional constraint
graph may be variable based constraint graph. The key idea
of value oriented propagation is that once a value is removed
only those values related to it will be checked. Thus it is more
fine grained than arc oriented propagation. Algorithms work-
ing with variable and value based constraint graph are also
called coarse grained algorithms and fine grained algorithms
respectively. An immediate observation is that compared with
variable based constraint graph, time complexity analysis in
value based constraint graph is straightforward.

Given a computation model of propagation, the algorithms
differ in the implementation details. For variable based con-
straint graph, AC-3 [Mackworth, 1977] is an “open imple-
mentation”. The approach in [Mackworth and Freuder, 1985]
can be regarded as a realized implementation. The new view
of AC-3 presented in this paper can be thought of as another
implementation with optimal worst case complexity. Our new
approach simply remembers the result obtained in previous
revision of an arc while in the old one, the choice is to be
lazy, forgetting previous computation. Other approaches to
improving the space complexity of this model is [Chmeiss
and Jegou, 1996]. For value based constraint graph, AC-4 is
the first implementation and AC-6 is a lazy version of AC-4.
AC-7 is based on AC-6 and it exploits the bidirectional prop-
erty that given cij , cji and x ∈ Di, y ∈ Dj , cij(x, y) if and
only if cji(y, x).

Another aspect is the general properties or knowledge of a
CSP which can be isolated from a specific arc consistency en-
forcing algorithm. Examples are AC-7 and AC-inference. We
note that the idea of metaknowledge [Bessiere et al., 1999]
can be applied to algorithms of both computing models. For
example, in terms of the number of raw constraint checks,

the bidirectionality can be employed in coarse grained algo-
rithm, eg. in [Gaschnig, 1978], however it may not be fully
exploited under the variable based constraint graph model.
Other propagation heuristics [Wallace, 1992] such as propa-
gating deletion first [Bessiere et al., 1999] are also applicable
to algorithms of both models. This is another reason why we
did not include AC-7 in our experimental comparison.

We have now a clear picture on the relationship between
the new approach to AC-3 and other algorithms. AC-3.1 and
AC-6 are methodologically different. From a technical per-
spective, the time complexity analysis of the new AC-3 is
different from that of AC-6 where the worst case time com-
plexity analysis is straightforward. The point of commonality
between the new AC-3 and AC-6 is that they face the same
problem: the domain may shrink in the process of arc con-
sistency enforcing and thus the recorded information may not
be always correct. This makes some portions of the new im-
plementation of the AC-3.1 similar to AC-6. We remark that
the proof technique in the traditional view of AC-3 does not
directly lead to the new AC-3 and its complexity results.

The number of raw constraint checks is also used to eval-
uate practical efficiency of CSP algorithms. In theory, apply-
ing bidirectionality to all algorithms will result in a decrease
of raw constraint checks. However, if the cost of raw con-
straint check is cheap, the overhead of using bidirectionality
may not be compensated by its savings as demonstrated by
[Bessiere et al., 1999].

It can also be shown that if the same ordering of variables
and values are processed, AC-3.1 and the classical AC-6 have
the same number of raw constraint checks. AC-3.0 and AC-
4 will make no less raw constraint checks than AC-3.1 and
AC-6 respectively.

AC-4 does not perform well in practice [Wallace, 1993;
Bessiere et al., 1999] because it reaches the worst case com-
plexity both theoretically and in actual problem instances
when constructing the value based constraint graph for the
instance. Other algorithms like AC-3 and AC-6 can take ad-
vantage of some instances being simpler where the worst case
doesn’t occur. In practice, both artificial and real life prob-
lems rarely make algorithms behave in the worst case except
for AC-4. However, the value based constraint graph induced
from AC-4 provides a convenient and accurate tool for study-
ing arc consistency.

Given that both variable and value based constraint graph
can lead to worst case optimal algorithms, we consider their
strength on some special constraints: functional, monotonic
and anti-functional. For more details, see [Van Hentenryck
et al., 1992] and [Zhang and Yap, 2000].

For coarse grained algorithms, it can be shown that for
monotonic and anti-monotonic constraints arc consistency
can be done with complexity of O(ed) (eg. using our new
view of AC-3). With fine grained algorithms, both AC-4 and
AC-6 can deal with functional constraints. We remark that
the particular distance constraints in RLFAP can be enforced
to be arc consistent in O(ed) by using a coarse grained algo-
rithm. It is difficult for coarse grained algorithm to deal with
functional constraints and tricky for fine grained algorithm to
monotonic constraints.

In summary, there are coarse grained and fine grained al-

gorithms which are competitive given their optimal worst
case complexity and good empirical performance under vary-
ing conditions. In order to further improve the efficiency of
arc consistency enforcing, more properties (both general like
bidirectionality and special like monotonicity) of constraints
and heuristics are desirable.

[Wallace, 1993] gives detailed experiments comparing the
efficiency of AC-3 and AC-4. Our work complements this in
the sense that with the new implementation, AC-3 now has
optimal worst case time complexity.

6 Conclusion
This paper presents a natural implementation of AC-3 whose
complexity is better than the traditional understanding. AC-
3 was not previously known to have worst case optimal time
complexity even though it is known to be efficient. Our new
implementation brings AC-3 to O(ed2) on par with the other
optimal worst case time complexity algorithms. Techniques
in the new implementation can also be used with path consis-
tency algorithms.

While worst case time complexity gives us the upper bound
on the time complexity, in practice, the running time and
number of constraint checks for various CSP instances are
the prime consideration. Our preliminary experiments show
that the new implementation significantly reduces the number
of constraint checks and the running time of the traditional
one on hard arc consistency problems. Furthermore, the run-
ning time of AC-3.1 is competitive with the known best algo-
rithms based on the benchmarks from the experiment results
in [Bessiere et al., 1999]. Further experiments are planed to
have a better comparison with typical algorithms. We believe
that based on the CELAR instances, the new approach to AC-
3 leads to a more robust AC algorithm for real world problems
than other algorithms.

We also show how the new AC-3 leads to a new algo-
rithm for path consistency. We conjecture from the results
of [Chmeiss and Jegou, 1996] that this algorithm can give a
practical implementation for path consistency.

For future work, we want to examine the new AC-3 in
maintaining arc consistency during search.

7 Acknowledgment
We are grateful to Christian Bessiere for providing bench-
marks and discussion. We acknowledge the generosity of the
French Centre d’Electronique de l’Armement for providing
the CELAR benchmarks.

References
[Bessiere, 1994] C. Bessiere 1994. Arc-consistency and arc-

consistency again, Art. Int.65 (1994) 179–190.

[Bessiere et al., 1999] C. Bessiere, E. C. Freuder and J. Re-
gin 1999. Using constraint metaknowledge to reduce arc
consistency computation, Art. Int.107 (1999) 125–148.

[Bessiere and Regin, 1996] C. Bessiere and J. Regin 1996.
MAC and combined heuristics: two reasons to forsake
FC(and CBJ?) on hard problems, Proc. of Principles

and Practice of Constraint Programming, Cambridge,
MA. pp. 61–75.

[Cabon et al., 1999] B. Cabon, S. de Givry, L. Lobjois, T.
Schiex and J.P. Warners 1999. Radio link frequency as-
signment, Constraints 4(1) (1999) 79–89.

[Chmeiss and Jegou, 1996] A. Chmeiss and P. Jegou 1996.
Path-Consistency: When Space Misses Time, Proc. of
AAAI-96, USA: AAAI press.

[Frost et al., 1996] D. Frost, C. Bessiere, R. Dechter and
J. C. Regin 1996. Random uniform CSP generators,
http://www.lirmm.fr/∼bessiere/generator.html.

[Gaschnig, 1978] J. Gaschnig 1978. Experimental case stud-
ies of backtrack vs. Waltz-type vs. new algorithms for
satisfying assignment problems, Proc. of CCSCSI-78,
1978.

[Gent et al., 1997] J. P. Gent, E. Maclntyre, P. Prosser, P.
Shar and T. Walsh 1997. The constrainedness of arc
consistency, Proc. of Principles and Practice of Con-
straint Programming 1997 Cambridge, MA, 1996, pp.
327–340.

[Van Hentenryck et al., 1992] P. van Hentenryck, Y. Deville,
and C. M. Teng 1992. A Generic Arc-Consistency Al-
gorithm and its Specializations, Art. Int.58 (1992) 291–
321.

[Mackworth, 1977] A. K. Mackworth 1977. Consistency in
Networks of Relations,, Art. Int.8(1) (1977) 118–126.

[Mackworth and Freuder, 1985] A. K. Mackworth and E. C.
Freuder 1985. The complexity of some polynomial net-
work consistency algorithms for constraint satisfaction
problems,, Art. Int.25 (1985) 65–74.

[Mohr and Henderson, 1986] R. Mohr and T. C. Henderson
1986. Arc and Path Consistency Revisited, Art. Int.28
(1986) 225–233.

[Montanari, 1974] U. Montanari 1974. Networks of Con-
straints: Fundamental Properties and Applications, In-
formation Science 7(2) (1974) 95–132.

[Singh, 1996] M. Singh 1996. Path consistency revisited,
Int. Journal on Art. Intelligence Tools 5(1&2) (1996)
127–141.

[Wallace, 1993] Richard J. Wallace 1993. Why AC-3 is al-
most always better than AC-4 for establishing arc con-
sistency in CSPs , Proc. of IJCAI-93 Chambery, France,
1993.

[Wallace, 1992] R. J. Wallace and E. Freud 1992. Order-
ing heuristics for arc consistency algorithms , Proc, of
Canadian Conference on AI Vancouver, BC, 1992, pp.
163-169.

[Zhang and Yap, 2000] Y. Zhang, R. H. C. Yap 2000. Arc
consistency on n-ary monotonic and linear constraints,
Proc. of Principles and Practice of Constraint Program-
ming Singapore, 2000, pp. 470–483 .

