Why Representation?

To establish correspondence between the WORLD & AGENT’s head

```
Initial facts                              Final facts
A  B  C  D  E                           A  B  C  E  D

Actions

Reasoning

Representation-1                      Representation-2
```
Theory of knowledge

Agent ——> Environment

Intelligent agents anticipate environment & results of their actions
Intelligent behaviors

Assume intelligent agents have “knowledge” about their environments

Theory of knowledge

- What are the types of knowledge? ——> heuristic knowledge
- How can we represent it? ——> heuristic function
- How do agents use it? ——> search
- How can it be acquired? ——> BUT THERE ARE MORE!!!

From Data to Knowledge

Hierarchy of Knowledge

Meta-knowledge
Knowledge
Information
Data
Noise

knowledge about picture
picture
enhanced image
image
pixel
Types of Knowledge

- Procedural
 - "How to" knowledge
 - Implicit
 - Task-oriented

- Declarative
 - "What is" knowledge
 - Explicit
 - Classification-oriented

- Tacit
 - "Unconscious" knowledge
 - Unexpressed by language

Knowledge representation (KR)

Process of representing knowledge formally

Declarative KR
- Expressed in terms of declarative statements
 - Can be changed, retrieved and extended easily
- Does not specify the order of how to use it
 - Can be reused for different purposes
 - Inefficient for "how to"

Procedural KR
- Expressed in ad-hoc programs crafted for special purpose
 - Implicit and hard to modify
 - Less flexible
- Specify the order of how to use the knowledge
 - Efficient
Declarative vs. Procedural KR

Which is better?

- Given a fridge full of groceries
 - Goal: To cook a dish for dinner
 Better to have a list of what’s in the fridge

- Goal: To cook tuna casserole
 Better to have a recipe for the dish

Objective of KR

To find ways to capture knowledge in a computer-tractable form to be used for problem-solving

- *Representation* goes hand in hand with *Reasoning*
Good Representations

Properties of good representation

- **Representational adequacy** → expressiveness
- **Inferential adequacy** → retrieval/access
- **Inferential efficiency** → computational performance
- **Acquisitional efficiency** → storage/organization/updates

Good representations

- **Make important objects and relations “explicit”**
 You can see what’s going on at a glance
- **Expose “natural constraints”**
 You express the way one object/relation influences another
- **Bring objects and relation together**
 You can see all you need at one time
- **Surpress irrelevant details:** can retrieve details later
- **Transparant**
 You can understand what is being represented
- **Complete and Concise**
 represent all that is needed efficiently
- **Computable and Fast**
 You can create them with existing procedure, and can store and retrieve information fast
Example of a simple KR scheme

A spreadsheet of class with student names, scores, grades, etc.

- **Representational adequacy**
 - Can I represent "student A didn’t turn in HW1"?
 - Can I represent class evaluation policy?

- **Inferential adequacy**
 - Can I find a student with the highest grade on Test1?

- **Inferential efficiency**
 - How fast can I find a student with the highest grade on Test1?

- **Acquisitional efficiency**
 - Is it easy to add new student records?

KR process

- **Conceptualization**: identify concepts, functions and relations (universe of discourse)

 \[
 \begin{array}{ccc}
 \text{A} & \text{B} & \text{C} \\
 \text{D} & \text{E}
 \end{array}
 \]

\[
\text{({A, B, C, D, E, \{support\}, \{on, above, clear, on\table\})} \\
\text{Concepts Function Relations}
\]

\[
\text{({A, B, C, D, E, \table\}, \{support\}, \{on, above, clear\})}
\]

- **Encoding**: encode the findings by an appropriate encoding scheme (KR form)
KR Forms

- Procedural Forms
 - Code (e.g. LISP code)
- Declarative Forms
 - Logic
 - Rules
 - Objects

Declarative KRs and languages

Declarative KR

Syntactic Systems
- Non-monotonic System
- Predicate Logic
 - PROLOG
 - A-PROLOG

Semantic Systems
- Production Rules
 - CLIPS
 - OPS5
- Slot-and-Filler
 - Strong
 - Weak
 - Frame
 - Semantic Nets
 - Conceptual Graph
 - Conceptual Dependency

- Strong
- Script
- Conceptual Dependency
- Frame
- Semantic Nets