
Toward Developing a Methodology for
Building Secure Software Systems

Michael Gelfond
Texas Tech University

September 27, 2015

Michael Gelfond Texas Tech University ALPP



The Goal of Research:

Develop a methodology for design and implementation
of secure software systems.

The methodology should guide us in:

Defining a mathematical model of the system.

Defining what it means for the system to be secure.

Finding algorithms for checking security.

The design should be elaboration tolerant – small
changes in specifications should correspond to small
changes in the system.

Michael Gelfond Texas Tech University ALPP



The Approach:

Model the system and its past behavior by:

A state-action-state transition diagram describing
all possible trajectories of the system. Describe the
diagram in an action language.

A recorded history defining past trajectories
believed to be possible by the agent.

A policy specification characterizing system
trajectories which are preferred or discouraged.

Reduce reasoning about security to computing answer
sets of logic programs in ASP based language(s).

Michael Gelfond Texas Tech University ALPP



Military Command – A Simple Example

Consider a simple domain in which different
commanders authorize and/or assume command of
various military missions.

Even though both actions can be actually performed by
commanders the process is guided by a collection of
authorization policies:

1 A military officer is not allowed to command a
mission he authorized.

2 A colonel is allowed to command a mission he
authorized.

3 A military observer shall never authorize a mission.

Build a system to reason about effects of commanders’
actions and check their compliance with the policies.

Michael Gelfond Texas Tech University ALPP



The Basic Terms

sorts:
#missions #commanders

actions:
authorize(#commanders,#missions)
assume_command(#commanders,#missions)

inertial fluents:
authorized(#commanders,#missions)
commands(#commanders,#missions)

defined fluents:
authorized(#missions)

statics:
colonel(#commanders)
observer(#commanders)

Michael Gelfond Texas Tech University ALPP



The Transition Diagram

Dynamic Causal Law:

authorize(C,M) causes authorized(C,M)

Definition:

authorized(M) if authorized(C,M)

Executability Condition:

impossible authorize(C,M) if authorized(M)

Dynamic Causal Law:

assume_command(C,M) causes commands(C,M)

Michael Gelfond Texas Tech University ALPP



Histories

Sorts and Statics:
#commanders = {c1, c2, c3}

#missions = {m1,m2}

observer(c1)

colonel(c2)

History 1:
hpd(authorize(c3,m1), 0)

hpd(assume_command(c2,m1), 1)

complies with the military policy while

History 2:
hpd(authorize(c1,m1), 0)

hpd(assume_command(c2,m1), 1)

does not.

Michael Gelfond Texas Tech University ALPP



Authorization Policies

In “Authorization and Obligation Policies in Dynamic
Systems” (ICLP 2008) M. Gelfond and J. Lobo
introduced a policy description language APL.

Authorization policies of APL are of the form:

permitted(e) if cond (1)

¬permitted(e) if cond (2)

d : normally permitted(e) if cond (3)

d : normally ¬permitted(e) if cond (4)

prefer(d1, d2). (5)

Michael Gelfond Texas Tech University ALPP



Military Policies in ALP

1 d1(C,M): A military officer is not allowed to
command a mission he authorized.

normally ¬perm(assume_com(C,M)) if auth(C,M)

2 d2(C,M): A colonel is allowed to command a
mission he authorized.

normally perm(assume_com(C,M)) if col(C), auth(C,M)

3 A military observer shall never authorize a mission.

¬permitted(authorize(C,M)) if observer(C)

To prefer more specific policy we add:

prefer(d2(C,M), d1(C,M))

Michael Gelfond Texas Tech University ALPP



Semantics of APL

Semantics of APL defines a mapping P from states of
the transition diagram τ into the collection of
permissions and prohibitions defined by the policy.

This is done by translating the domain axioms and
policies into a logic program lp.

For a state σ, P(σ) returns the set of all statements of
the form permitted(a) and ¬permitted(a) which belong
to all the answer sets of lp ∪ σ.

Michael Gelfond Texas Tech University ALPP



The Translation

The translation of axioms into a logic program becomes
possible thanks to extensive theoretical work on
knowledge representation in ASP and the relationship
between ASP and reasoning about actions.

It contains solutions of the Frame and Ramification
problems, allows recursive relations between fluents,
non-determinism of actions, etc.

Michael Gelfond Texas Tech University ALPP



The Translation

The translation of policies utilizes the ASP ability to
represent defaults.

For instance, the translation of a policy d1:

permitted(e) if cond1

has a form:

permitted(e) ← cond1,

not ab(d1),

not ¬permitted(e).

Preference of policy d1 over d2 is given by

ab(d2)← cond1.

Michael Gelfond Texas Tech University ALPP



Useful Properties of Policies

Policy P is called

consistent if for every state σ program lp ∪ σ has an
answer set.

unambiguous if for every state σ program lp ∪ σ has
exactly one answer set.

complete if for every state σ and every action a,
permitted(a) ∈ P(σ) or ¬permitted(a) ∈ P(σ).

These are important properties which often can be
proven or even checked automatically.

Michael Gelfond Texas Tech University ALPP



Different Forms of Compliance

Let P be an authorization policy. An event 〈σ, a〉 where
a is a set of elementary actions is called

strongly compliant with P if for every e ∈ a we have
that permitted(e) ∈ P(σ).
weakly compliant with P if for every e ∈ a we have
that ¬permitted(e) 6∈ P(σ).
not compliant with P if for some e ∈ a we have that
¬permitted(e) ∈ P(σ).

A path 〈σ0, a0, σ1, ..., σn−1, an−1, σn〉 is said to be strongly
(weakly) compliant with P if for every 0 ≤ i < n the
event 〈σi, ai〉 is strongly (weakly) compliant with P.

Michael Gelfond Texas Tech University ALPP



Checking Compliance: known current state

Event 〈σ, e〉 is strongly compliant with consistent
policy P iff a logic program

lp ∪ σ ∪ {← permitted(e)}

is inconsistent.

Event 〈σ, e〉 is weakly compliant with P iff a logic
program

lp ∪ σ ∪ {← ¬permitted(e)}

is consistent.

Event 〈σ, e〉 is not compliant with policy P iff a logic
program

lp ∪ σ ∪ {← ¬permitted(e)}

is inconsistent.

Michael Gelfond Texas Tech University ALPP



Checking Compliance: Partially Known Current State

Let s be a set of fluent literals, δ(s) be a set of states
compatible with s, and D = {f or ¬f : f is a fluent}.

Event 〈σ, e〉 is strongly compliant with P for every
σ ∈ δ(s) iff program lp ∪ s ∪D ∪ {← permitted(e)} is
inconsistent.

If P is categorical then an event 〈σ, e〉 is weakly
compliant with P for every σ ∈ δ(s) iff program
lp ∪ s ∪D ∪ {← not ¬permitted(e)} is inconsistent.

Event 〈σ, e〉 is not compliant with P for every
σ ∈ δ(s) iff program
lp(P, s) ∪D ∪ lp(SL) ∪ {← ¬permitted(e)} is
inconsistent.

Michael Gelfond Texas Tech University ALPP



Checking Compliance

These and other similar results can be used to check
compliance of actions and sequences of actions using
ASP solvers.

The checking can be done by an agent associated with
the system or by an outside monitor.

Policies can be easily modified and updated with proper
consistency checks.

The corresponding ASP programs can be constructed
automatically from descriptions of the system, its
history, policies, and the type of compliance one is
interested in.

Michael Gelfond Texas Tech University ALPP



Discussion

We were reasonably satisfied with the proposed
methodology.

It guided us in constructing a model of the system, in
precisely describing policies and the meaning of
security, and provided algorithms for checking quality
of the policy and the system’s compliance.

The approach allowed to put security concerns at the
center of the system design instead of viewing it as a
necessary but unpleasant addition to the already
designed system.

More traditional role based approaches to policy
specifications (e.g. RBAC) were shown to be easily
expressible in our language.

Michael Gelfond Texas Tech University ALPP



Discussion

Unfortunately, the work did not continue.

Partly it is related to non-scientific reasons, like Jorge
leaving the IBM and my failure to find a useful medium
size system to build using our methodology.

But it was also related to a scientific problem –a failure
of 2008 solvers to efficiently reason with numerical
constraints which were frequently needed in practice.

With advent of various types of Constraint ASP the
problem may have already disappeared.

It maybe a perfect time to systematize existing work on
policies, action languages, and ASP and see if it can
give us more insights and be useful in practice.

Michael Gelfond Texas Tech University ALPP


