
Modular Action Language ALM

Michael Gelfond (joint work with Daniela Inclezan)

Texas Tech University

March, 2015

Michael Gelfond (joint work with Daniela Inclezan) KRseminar



The Goal

When we started our work on ALM Daniela and I
wanted to: design a language to support stepwise
development of action theories, improve their
readability, and facilitate reuse of knowledge.

We believed that the absence of such language was one
of the most serious impediments to the creation of
knowledge libraries – an important scientific and
engineering goal of KRR.

Michael Gelfond (joint work with Daniela Inclezan) KRseminar



The Design Principles

In the matters of language design we were strongly
influenced by work of Dijkstra, Hoare, Wirth, and
McCarthy from which we extracted the following
principles:

The main function of the language is not
communication but rather helping people to acquire
ability for a richer understanding of the world.

When E. Dijkstra says that Lisp “assisted a number
of our most gifted fellow humans in thinking
previously impossible thoughts” he clearly expresses
this view.

Michael Gelfond (joint work with Daniela Inclezan) KRseminar



The Design Principles

Elegance, understood as the right combination of
simplicity and power is “not a dispensable luxury but
a quality that decides between success and failure”.

The syntax and semantics of the language should be
as simple as possible but not simpler.

Language should ensure that “different components
of the program correspond clearly to different
components of its specification, so you can reason
compositionally about it” (C. A. R. Hoare).

Language should support elaboration tolerant
representation of knowledge.

Michael Gelfond (joint work with Daniela Inclezan) KRseminar



Example of a KR problem: Monkey and Banana

A monkey is in a room. Suspended from the ceiling is a
bunch of bananas, beyond the monkey’s reach. In the
room there is also a box. The ceiling is just the right
height so that a monkey standing on the box under the
bananas can reach the bananas. The monkey can move
around, carry other things around, climb on the box,
and grasp the bananas. What is the best sequence of
actions for the monkey to get the bananas?

Michael Gelfond (joint work with Daniela Inclezan) KRseminar



Monkey and Banana– how to start?

I used to start representation of knowledge relevant to
the problem with asking: What are the objects of our
domain?.

After some experience I came to (now obvious)
realization that the question is wrong. It works for
simple problems but does not lead to general and
elaboration tolerant solutions.

The right question is “ What are the SORTS of objects
relevant to the domain and what is the relationship
between these sorts”?

Michael Gelfond (joint work with Daniela Inclezan) KRseminar



Monkey and Banana: Sorts and Sort Hierarchy

ALM assumes that most sorts of the domain are
organized into an inheritance hierarchy (a DAG) and
provides means for its description.

The story explicitly mention four types of action: move,
carry, climb, and grasp.

Clearly, carry understood as “moving while holding an
object” and climb understood as “moving on top of an
elevation” are special kinds of action move.

This is captured by the hierarchy on the next slide:

Michael Gelfond (joint work with Daniela Inclezan) KRseminar



Monkey and Banana: the action hierarchy

move

carry climb

grasp release

Figure : Action hierarchy for the Monkey and Banana Problem

It is often advisable to build hierarchies which contain
actions together with their opposites, which explains
the appearance of release.

Michael Gelfond (joint work with Daniela Inclezan) KRseminar



ALM module

Now we are ready to describe the first component of
our ALM theory – a module which describes actions of
sort move and their properties.

Intuitively, an ALM module is a formal description of a
specific piece of knowledge packaged as a unit.

Modules are used for structuring knowledge, reuse, and
stepwise refinement.

They are normally organized into a module inheritance
hierarchy, which is referred to as an ALM theory.

Michael Gelfond (joint work with Daniela Inclezan) KRseminar



ALM module: Sort Declarations

Module description starts with the title, followed by the
declaration of object sorts:

module moving
sort declarations

points, things :: universe

agents :: things

move :: actions

attributes
actor : agents

origin : points

dest : points

Michael Gelfond (joint work with Daniela Inclezan) KRseminar



ALM module: Sort Declarations

Pre-defined sorts universe and actions contain all the
elements of the sort hierarchy and all the domain
actions respectively.

The construct :: , called specialization, corresponds to
the hierarchy’s links.

Attributes are (possibly partial) functions which
describe intrinsic properties of objects of a given sort.

This sort, which serves as a parameter of the attribute,
is not explicitly mentioned in the declaration, i.e. the
signature of actor is:

actor : move→ agents

Michael Gelfond (joint work with Daniela Inclezan) KRseminar



ALM module: Function Declarations

In addition to attributes properties of the domain are
described by functions which can be static or fluent and
basic or defined. Here is an ALM declaration:

function declarations
statics

basic
symmetric_connectivity : booleans

transitive_connectivity : booleans

fluents
basic
connected : points× points→ booleans

total loc_in : things→ points

total indicates that loc_in is defined for all things.

Michael Gelfond (joint work with Daniela Inclezan) KRseminar



ALM module: Axioms

axioms

occurs(M) causes loc_in(A) = D if instance(M,move),

actor(M) = A,

dest(M) = D.

The axiom says that an occurrence of action M of sort
move causes the move’s actor to arrive at its
destination.

Note that M here is a variable and hence the axiom is
more general then a dynamic causal law of A-like
languages.

Michael Gelfond (joint work with Daniela Inclezan) KRseminar



ALM module: Axioms

As expected, ALM also has state constraints, e.g.

connected(X,Z) if connected(X, Y),

connected(Y, Z),

transitive_connectivity.

and executability axioms, e.g.

impossible occurs(M) if instance(M,move),

origin(M) = L1,

dest(M) = L2,

¬connected(L1, L2).

with a self-explanatory reading.

Michael Gelfond (joint work with Daniela Inclezan) KRseminar



Semantics of an ALM Module: Interpretations

Similar to FOL, axioms of an ALM module are
uninterpreted. Their meaning is determined by an
interpretation of the sorted signature, Σ, of the module.

An interpretation of Σ consists of the universe U and a
mapping I such that

For every sort c of the sort hierarchy H of Σ, I(c) is
a non-empty subset of U and for every object
constant o, I(o) ∈ U .
For every function symbol f : c1 × · · · × cn → c, I(f) is
a function from I(c1)× · · · × I(cn) into I(c).
Special functions like is_a, link, etc. are
interpreted in accordance with their meaning in the
hierarchy. Similarly for boolean function domf

determining the domain of f.

Michael Gelfond (joint work with Daniela Inclezan) KRseminar



Semantics of an ALM Module: Interpretations

An interpretation I is divided into two parts:

fluent interpretation consisting of the universe of I
and the restriction of I on the sets of fluents, and

static interpretation consisting of the same universe
and the restriction of I on the remaining elements
of the signature.

Michael Gelfond (joint work with Daniela Inclezan) KRseminar



Example of an Interpretation

• Static Interpretation
I1(points) = {paris, london}

I1(agents) = {bob}

I1(actions) = I1(move) = {m}

I1(actor)(m) = bob

I1(dest)(m) = london

I1(origin)(m) = paris

I1(things) = I1(agents)

I1(universe) = I1(things) ∪ I1(points) ∪ I1(actions)
• Fluent Interpretation

I1(loc_in)(bob) = paris

I1(connected)(paris, london) = true

etc.
Michael Gelfond (joint work with Daniela Inclezan) KRseminar



Pre-Models of ALM theory

Let T be an action theory with signature Σ and U be a
collection of strings in some fixed alphabet.

By ΣU we denote the signature obtained from Σ by
expanding its set of object constants by elements of U.

A static interpretation M of ΣU is called a pre-model of
T (with the universe U) if

M(universe) = U and

for every object constant o of ΣU that is not an
object constant of Σ , M(o) = o.

Michael Gelfond (joint work with Daniela Inclezan) KRseminar



Models of ALM theory

A pre-model M defines a model of an ALM theory T – a
transition diagram τ(M) containing all the possible
trajectories of the dynamic system described by T .

A state of τ(M) is an interpretation I such that

static part of I is M;

I satisfy state constraints and definitions of T .

Transitions of τ(M) are defined by the translation of M
and the axioms of T into an ASP program.

Michael Gelfond (joint work with Daniela Inclezan) KRseminar



Example of a Model

loc(bob) = parisconnected(paris, london)
loc(bob) = londonconnected(paris, london)

loc(bob) = paris¬connected(paris, london)

loc(bob) = paris loc(bob) = london

m

m

Note that in the last transition, connected(paris, london) is
undefined.

Michael Gelfond (joint work with Daniela Inclezan) KRseminar



Specifying models of an ALM theory in ALM

Usually, a knowledge engineer is interested in one
particular model of his domain characterized by the
domain’s sorts hierarchy and values of statics.

This is done in the second part of ALM’s system
description called structure.

So syntactically we have

system description 〈name〉
theory〈name〉

module 〈name〉
〈module body〉

. . .

structure 〈name〉
〈structure body〉

Michael Gelfond (joint work with Daniela Inclezan) KRseminar



Structure of ALM

structure test
instances

bob in agents
paris, london in points
m in move

actor = bob

origin = paris

dest = london

The module moving can be tested by using it for
reasoning about different transition diagrams formed by
the module in conjunctions with various structures.

The testing is done by translating the corresponding
system descriptions into logic programs.

Michael Gelfond (joint work with Daniela Inclezan) KRseminar



Axiomatization of carry: Sorts

Now we move toward axiomatization of the second
component of our specification – an action carry,
understood as move while holding.

We introduce a new subsort of things:
sort declarations

carriables :: things

and action sort carry viewed as a subsort of move
carry :: move

attributes
carried_object : carriables

Note that, since carry is defined as a special case of
move, it automatically inherits the attributes of move;
hence those attributes do not have to be repeated in
the declaration of carry.

Michael Gelfond (joint work with Daniela Inclezan) KRseminar



Axiomatization of carry: Fluents and Axioms

function declarations
fluents
basic
total holding : agents× things→ booleans

axioms
loc_in(C) = P if holding(T, C),

loc_in(T) = P.
impossible occurs(X) if instance(X, carry),

actor(X) = A,

carried_object(X) = C,
¬holding(A,C).

etc.

Michael Gelfond (joint work with Daniela Inclezan) KRseminar



Combining the components

There are two ways to combine ALM’s representation
of move and carry:

make the representation of carry to be a part of
module moving;

put our formalization of carry in a separate module
and make it a submodule of moving.

The latter can be done by using a construct depends on
as follows:

module carrying_things
depends on moving
〈sort declarations and axioms〉
〈from two previous slides〉

Michael Gelfond (joint work with Daniela Inclezan) KRseminar



How many modules?

To serve their purpose modules should be easily
comprehensible, testable, and reusable.

This puts serious limitation on the module size.

On another hand, a module inherits knowledge
represented in its ancestors. So for the sake of
comprehension the hierarchy of modules shall not be
too deep.

This means that, when deciding how many actions to
describe in one module, one should consider balancing
the size of the module with the depth of the module
dependency hierarchy.

Michael Gelfond (joint work with Daniela Inclezan) KRseminar



Module carrying_things

We are still learning techniques for achieving such
balance. But here is an example based on our current
experience.

Actions carry, grasp and release understood as move
while holding, take and hold, and stop holding
respectively can be put in the same module,
carrying_things, since

The definitions of these actions share a fluent
holding and sorts things, agents and points and

A things-carrying agent usually also executes
actions grasp and release.

Michael Gelfond (joint work with Daniela Inclezan) KRseminar



Axiomatizing grasp and release: sort declarations

Module carrying_things will be expanded by
formalization of actions grasp and release.

grasp :: actions

attributes
grasper : agents

grasped_thing : things

release :: actions

attributes
releaser : agents

released_thing : things

Michael Gelfond (joint work with Daniela Inclezan) KRseminar



Axiomatizing grasping: function declarations

Function can_reach will be needed as a precondition for
the executability of grasp.

It will be defined in terms of locations of things.

defined
can_reach : agents× things→ booleans

Other sorts and functions will be inherited from module
moving.

Michael Gelfond (joint work with Daniela Inclezan) KRseminar



Axiomatizing grasping: Axioms

We’ll also expand axioms of moving by:

occurs(A) causes holding(X, Y) if instance(A, grasp),

grasper(A) = X,

grasped_thing(A) = Y.

¬holding(X, Y2) if holding(X, Y1), Y1 6= Y2.

can_reach(M,O) if loc_in(M) = loc_in(O).

impossible occurs(A) if instance(A, grasp),

grasper(A) = X,

grasped_thing(A) = Y,
holding(X, Y).

etc.

Michael Gelfond (joint work with Daniela Inclezan) KRseminar



Module for problem specific knowledge

Modules we have built so far for Monkey and Banana
problem (together with a module climbing which can be
built in a similar way) are rather general and one can
easily imagine them to be stored in the library for
further reuse.

The next module, main, contains specific information
needed for the problem solution.

Among other things it defines different sorts of points
and their connectivity, specifies which position located
under the banana and that the banana is reachable
from the top of the box located at this position, etc.

Michael Gelfond (joint work with Daniela Inclezan) KRseminar



Points and Connectivity

The problem contains points located on the floor, which
are all connected with each other and a point on the
ceiling on which banana is located.

In addition, it seems to contain one extra point,
top(box), which travels together with the box.

Constants of this type, denoted by top(E) where E is an
elevation, are defined in module climbing.

We assume that top(box) is connected with the location
of the box.

Michael Gelfond (joint work with Daniela Inclezan) KRseminar



Module main

In module main this is expressed as

module main
depends on carrying_things, climbing

sort declarations
floor_points, ceiling_points,movable_points :: points

object constants
monkey : agents

box : carriables, elevations

banana : carriables

Michael Gelfond (joint work with Daniela Inclezan) KRseminar



Module main: function declarations and axioms

function declarations
statics
basic under : floor_points× things→ booleans

axioms
can_reach(monkey, banana) if loc_in(box) = P,

under(P, banana),

loc_in(monkey) = top(box).

Michael Gelfond (joint work with Daniela Inclezan) KRseminar



Module main: function declarations and axioms

connected(top(box), P) if loc_in(box) = P,
instance(P, floor_points).

¬connected(top(box), P) if loc_in(box) 6= P,
instance(P, floor_points).

connected(P1, P2) if instance(P1, floor_points),
instance(P2, floor_points).

¬connected(P1, P2) if instance(P1, ceiling_points),
instance(P2, points),

P1 6= P2.

Michael Gelfond (joint work with Daniela Inclezan) KRseminar



The Structure

Now we define the remaining instances of sorts and
assign values to statics.

structure monkey_and_banana
instances
under_banana, init_monkey, init_box in floor_points

init_banana in ceiling_points

top(box) in movable_points

move(P) in move where instance(P, points)
actor = monkey

dest = P

Michael Gelfond (joint work with Daniela Inclezan) KRseminar



The Structure

carry(box, P) in carry where instance(P, floor_points)
actor = monkey

carried_object = box
dest = P

grasp(O) in grasp where instance(O, carriables)
grasper = monkey

grasped_thing = O

climb(box) in climb
actor = monkey

elevation = box

values of statics
under(under_banana, banana).
symmetric_connectivity.
¬transitive_connectivity.

Michael Gelfond (joint work with Daniela Inclezan) KRseminar



Finding a Plan

It is not difficult to check that our system description
for Monkey and Banana problem defines a transition
diagram τ that contains the path which starts with the
initial state of our problem and is generated by actions
move(initial_box), grasp(box),
carry(box, under_banana), release(box), climb(box),
grasp(banana).

The final state of this path will contain a fluent
holding(monkey, banana).

This sequence of actions can be found in the usual way
by translating the system description, the initial
situation and the goal into a logic program and using
ASP planning techniques.

Michael Gelfond (joint work with Daniela Inclezan) KRseminar



Conclusion

This concludes our introduction to ALM. Did we
achieve our goal?

The jury is still out. In our view ALM is the best
modular action language to date.

It allowed us to structure and reuse knowledge, to
create library modules, to define actions and other
sorts in terms of their supersorts, to do stepwise
refinement, etc.
It also has fairly natural and transparent syntax
and semantics (even though its complexity is
slightly increased by the necessity to cover partial
functions and sorted signatures.)
Most importantly it allowed us to “think new
thoughts” – our KR styles changed significantly as
the result of this work.

Michael Gelfond (joint work with Daniela Inclezan) KRseminar



Conclusion

However, we need to

Implement the language and gain much more
experience in its use for KRR. This will allow to see
if the language can be simplified, to test our design
decisions and to check that the language does not
contain hidden traps for a user.

We need to develop solid mathematical theory of
ALM. It will be especially nice to find sound and
complete inference system for the ALM
consequence relation and to investigate properties
of ALM theories which remain unchanged after
theories are expanded by adding new modules.

Michael Gelfond (joint work with Daniela Inclezan) KRseminar


