
Towards a Theory of Elaboration

Tolerance: Logic Programming Approach

Michael Gelfond

University of Texas at El Paso

mgelfond@cs.utep.edu

Halina Przymusinska

California State Polytechnic University

halina@cs.ucr.edu

Abstract

This paper is an attempt at mathematical investigation of software

development process in the context of declarative logic programming.

We introduce notions of speci�cation and speci�cation constructor

which are developed from natural language description of a problem.

Generalizations of logic programs, called lp-functions are introduced to

represent these speci�cations. We argue that the process of construct-

ing lp-function representing a speci�cation S should be supported by

certain types of mathematical results which we call representation the-

orems. We present two such theorems to illustrate the idea.

1 Introduction

This paper is written in the framework of declarative logic programming

paradigm (see, for instance, [17, 14]) which strives to reduce a substantial

part of a programming process to the description of objects comprising the

domain of interest and relations between these objects. After such description

is produced by a programmer it can be queried to establish truth or falsity

of statements about the domain or asked to �nd objects satisfying various
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properties. The paradigm, which �rst appeared in arti�cial intelligence, had

substantial impact on other areas of computing science, such as databases,

programming languages and software engineering, and led to the development

of programming language Prolog and its dialects (see [6, 16]).

In declarative logic programming the software development process starts

with a natural language description of the domain. The description is an-

alyzed and represented in a formal logical language with precisely de�ned

entailment relation. Originally, proponents of the approach believed that

�rst-order logic with classical entailment can serve as the main tool for knowl-

edge representation. It was soon realized, however, that for representation

of commonsense knowledge, necessary in many non-mathematical domains,

this tool is inadequate. The di�culty is rather deep and related to so-called

\monotonicity \ of theories based on classical logic. A logic is called mono-

tonic if the addition of new axioms to the theory based on it never leads to

the loss of any theorems proved in this theory. Commonsense reasoning is

nonmonotonic: new information constantly forces us to withdraw previous

conclusions. This observation has led to the development and investigation

of new logical formalisms, nonmonotonic logics (see [18, 22, 19]).

This paper is an attempt at mathematical investigation of software develop-

ment process in the context of declarative logic programming. In particular

we are interested in investigating an important property of formal representa-

tions called elaboration tolerance. Informally, a formal representation T of a

speci�cation S is called elaboration tolerant if a small modi�cation of S does

not require major changes of T . Development of formal representations with

this property is one of the most important challenges facing researches con-

cerned with declarative representation of knowledge. So far not much work

has been directed towards systematic investigation of tolerance. Partially,

this is due to the fact that degree of tolerance depends on the multiplicity of

factors. The (incomplete) list includes the type of speci�cation S and its in-

tended use, the syntax and semantics of the language used for representation

T of S, and T 's syntactic form. Insu�cient development of knowledge repre-

sentation languages and their mathematical theories, as well as the absence

of a general mathematical notion of speci�cation tailored for declarative logic

programming paradigm, also contribute to the complexity of the problem.

In the last decade however, the �eld of knowledge representation matured

signi�cantly. In particular a substantial progress has been made towards
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developing mathematical foundations necessary to understand properties of

representations in various formalisms and the relations between them. Peo-

ple working in this area accumulated valuable experience in constructing

representations of several important domains which are reasonably tolerant

w.r.t. certain types of possible modi�cations. The main goal of this pa-

per is to contribute to the better understanding and to the generalization of

this experience. We hope that some of the presented ideas will prove useful

for the development of a comprehensive theory of formal representation for

declarative logic programming.

In the �rst section we start with giving a mathematical de�nition of the

notion of speci�cation, independent of particulars of the language used for

its description. Intuitively we view a speci�cation as a (possibly incomplete)

description of new relations between objects from the domain of discourse

given in terms of the old, known relations.

1

We will not concentrate here on

the most general notion of speci�cation. Instead, we will limit ourselves to a

special case of so called functional speci�cations. These speci�cations can be

de�ned by a speci�er directly in a simple set-theoretic language, or they can

be build from previously de�ned speci�cations with the help of speci�cation

constructors - simple functions from speci�cations to speci�cations. Several

speci�cation constructors commonly used in practice will be discussed in this

paper. Discovery of a comprehensive list of such constructors is an important

topic for future research.

In the next section we de�ne a notion of a representation of a speci�cation S.

This notion is language dependent and requires a choice of the representation

language. Our choice is based on the belief that any such language should

have the following properties:

� possibility of concise representation of statements of natural language

commonly used in informal descriptions of various domains. In partic-

ular we should be able to represent:

1

This view is substantially di�erent from general notions of speci�cations [9, 20, 25]

tailored to imperative paradigm of programming as well as from traditional logic pro-

gramming approach where a program, understood as a �rst-order theory, played a role of

speci�cation. The inadequacy of the former for our purpose is to be expected while the

latter is not suitable for problems whose solutions require representation of commonsense

knowledge due to its limited expressive power.
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{ default assumptions, i.e. statements of the form \Elements of the

class A normally (typically, as a rule) have property P"

{ epistemic statements, i.e. statements of the form \P is unknown",

\P is possible", etc.

� availability of query answering systems which allow rapid prototyping

� existence of a well developed and mathematically precise semantics of

the language

� existence of mathematical theory that provides basis for proving prop-

erties of the theories in the given language.

These requirements determined our choice of the language of declarative logic

programming as the representation language.

2

A logic programming repre-

sentation (or simply lp-representation) of a functional speci�cation S consists

of a theory (program) in this language together with a collection of input and

output predicates. Entities of this sort are called lp-functions.

Space limits prevent us from presenting serious justi�cation of this choice.

Such a justi�cation together with a discussion of the alternatives probably

deserves a separate paper. The next few lines however give a hint on the

reasons for our decision:

A discussion of methodology of expressing normative and epistemic state-

ments in the language of declarative logic programming together with related

mathematical results can be found, for instance, in [4]. The Prolog program-

ming language and its recent dialects can be used for rapid prototyping. It

is worth mentioning that some of these dialects (see, for instance [24, 1]) are

more declarative and have better terminating properties than Prolog. As

a semantic basis for the language we use the answer sets semantics of [12].

This selection is based on the simplicity of the semantics and the existence

of a substantial body of knowledge related to it. There are several other

interesting semantics of declarative logic programming, which give slightly

di�erent interpretations to logic programming connectives. Further research

is necessary to determine the rami�cations of our choice of the semantics

2

In this paper by a declarative logic program we mean a program with negation as

failure, strong (classical) negation and epistemic disjunction. A precise de�nition is given

in section 3.
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but we believe that the general approach advocated in this paper does not

signi�cantly depend on it.

We hope that investigation of the notions of speci�cation, speci�cation con-

structor, and an lp-function representation of a speci�cation will signi�cantly

facilitate the process of a gradual development of knowledge based software

systems.

The process will start with the natural language description of the knowledge

about a particular domain to be represented in a computer. This description

provides an informal speci�cation of the problem at hand. We will divide

the software development process based on the given informal speci�cation

into three stages with three main characters, speci�er, representer and im-

plementer.

In the �rst stage the speci�er will divide available knowledge about the do-

main into small independent chunks (modules) for which functional speci�-

cations s

1

; : : : ; s

n

will be de�ned in a mixture of natural and mathematical

language. He will proceed by applying standard speci�cation constructors

to build speci�cations for larger modules until the �nal speci�cation will be

obtained. For the sake of discussion, let us assume that this speci�cation

has the form, say, S =k(s

1

;m(s

2

; : : : ; s

n

)) where k and m are names of the

standard constructors used in the process.

In the next step of the development process the speci�er will be replaced

by the representer whose task will be to use S to gradually build its lp-

representation. He will start with building lp-representations �

s

1

;�

s

2

; : : : ;�

s

n

of speci�cations s

1

; s

2

; : : : ; s

n

. After this is done, he will address a task of

�nding an lp-representation �

0

of the speci�cation s

0

=m(s

2

; : : : ; s

n

). One

way to accomplish this is to �nd a mapping �

m

from lp-representations to lp-

representations such that �

m

(�

s

2

; : : : ;�

s

n

) represents s

0

=m(s

2

; : : : ; s

n

). We

will call such �

m

a realization of m. Complexity of such mapping can serve

as a good measure of the degree of tolerance of representations (�

s

2

; : : : ;�

s

n

)

w.r.t. m. To complete the process and obtain representation of S the repre-

senter will apply realization �

k

of k to (�

s

1

;�

s

0

).

We hope that the representer will be assisted in his task by mathematical

results describing constructions of realizations of common speci�cation con-

structors and giving su�cient conditions guaranteeing their correctness. We

call such results realization theorems. Theorem 1 from section 5 and Theorem
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2 from section 6 provide examples of such results. Another example, dealing

with a constructor which takes as an input a speci�cation S containing the

closed world assumption for its predicates and returns a new speci�cation

obtained from S by removing this assumption, can be found in [5].

In the process of his work the representer will, of course, require frequent

communication with the speci�er. The existence of extensions of Prolog

capable of answering queries about knowledge represented by lp-functions

allows rapid prototyping and facilitates this communication. Ideally, after

certain number of iterations both will agree on the adequacy of the represen-

tation of the original knowledge. Though correctness of the �nal functional

speci�cation does not lend itself to mathematical treatment, correctness of

the corresponding representation can be stated and proven mathematically.

Finally, an implementor, the main character in the last stage of the system

development, will be confronted with the task of transferring declarative logic

programs into their e�cient executable counterparts. An ongoing work on

optimization and generalization of logic programming systems together with

the investigation of terminating properties of logic programs should be a

substantial help during this stage.

The paper is organized as follows: Sections 2 and 3 contain de�nitions of func-

tional speci�cations and lp-functions as well as examples which illustrate the

elaboration process involved in building more complicated speci�cations from

the simpler ones. Sections 4 and 5 investigate two important modi�cations of

speci�cations, called incremental extension and simple input extension. Suf-

�cient conditions guaranteeing tolerance w.r.t. such modi�cations are given

by Theorems 1 and 2. In section 6 we introduce some results on conservative

extension property of logic programs and use them in section 7 to prove The-

orems 1 and 2. To make the paper self - contained in Appendix we introduce

basic information about general and extended logic programs.

2 Functional Speci�cations

We will start with some basic terminology. Let L be a �rst-order language

over the alphabet 
. Formulas of the form p(t) and :p(t), where p is a

predicate symbol and t is a vector of terms, are called (positive and negative)

literals. Positive literals are often called atoms. Ground literals are literals
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not containing variables. For any set P of predicate symbols from 
, lit(P )

(atoms(P )) denotes the set of all ground literals (atoms) of L formed with

symbols from P . S

P

denotes the collection of all consistent subsets of lit(P ).

For any literal l from lit(P ) , l is :p(t) if l is an atom p(t), and p(t) if l is

:p(t). For any set of literals X by X we will denote the set of all l such that

l 2 X.

In many situations speci�cations can be viewed as descriptions of relations

(denoted by predicate symbols from some set Q) in terms of other relations

(denoted by predicate symbols from, say, P ). Since our knowledge about

relations (or the relations themselves) can be incomplete we will represent

them by sets of literals.

Partial description of Q in terms of P can be given by any condition on the

corresponding sets of literals but, in this paper we concentrate on a special

class of descriptions de�ned by functions. This view leads to the following:

De�nition 1. By a functional speci�cationwe mean a four tuple< F;P;Q;
 >

where P and Q are sets of predicate symbols from 
 and F is a (possibly

partial) function from S

P

into S

Q

. The domain of F will be denoted by

Dom(F ).

Example 1. We are given a collection of disjoint classes of birds, such

as eagles, canaries, penguins, etc.. (called a catalog) together with lists of

birds belonging to each class and the list of unclassi�ed birds. We assume

that the lists contain correct but possibly incomplete information and can

be frequently expanded.

Our task is to �nd a representation of this information capable of answering

queries on classi�cation of particular birds.

As most speci�cations heavily relying on natural language the one above is

somewhat ambiguous. Below we describe its re�nement (formal speci�cation)

which will contain the description of the language of discourse, relations

involved, and the corresponding function.

Since our domain consists of two types of objects, classes of birds and individ-

ual birds, we assume that our alphabet 
 contains two types of constants (i.e.

names of objects), c

0

; : : : ; c

n

for classes and n

0

; : : : ; n

k

for individual birds.

We will also need two binary predicate symbols is and subclasswhere is(n; c)

intuitively means "bird n belongs to class c" and subclass(c

1

; c

2

) states that
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"class c

1

is a subclass of class c

2

". In anticipation of future extensions we

introduce constant b for the class of all birds.

The catalog will be represented by a set of atoms of the form subclass(c

i

; b).

The list of birds belonging to a class c will be described by a collection of

atoms of the form is(n

i

; c).

Our speci�cation can now be viewed as a function that given as an input the

catalog and the list of birds returns information about birds membership in

classes. More precisely our speci�cation is a partial function B from S

P

to

S

Q

where P = fis; subclassg and Q = fisg . To fully de�ne this function we

have to describe its domain (i.e. valid inputs) and specify how its values are

to be computed.

� According to our informal speci�cations classes are to be disjoint. This

implies that a set X of literals from S

P

belongs to the Dom(B) if

X � atoms(P ) and for any bird n there is at most one subclass c from

the catalog such that is(n; c) 2 X.

� The value of the function B on the given input X consists of all facts

about birds membership in classes that can be deduced from the in-

formation given in the input. All such facts can be divided into three

categories:

1. facts about birds membership in classes given explicitly in the

input

2. facts about the membership of any member of any class in the

class b of all birds

3. facts about non - membership of any bird that belongs to one of

the classes in any other class.

This implies that for any set X 2 Dom(B), we have B(X) = (X \

lit(Q)) [ I

1

[ I

2

where I

1

= fis(n; b) : is(n; c) 2 X) for some class cg

and I

2

= f:is(n; c

i

) : is(n; c

j

) 2 X for some i 6= jg.

Notice that there is no name for the class of unidenti�ed birds in the language.

Instead a bird n is considered to be unde�ned in input X 2 Dom(B) if

is(n; b) 2 X and there is no c from the catalog such that is(n; c) 2 X.

3

3

This allows us to expand the input database X by a new information, say, is(n; c)

without removing anything from X.
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Speci�cation de�nes a query language consisting of literals formed by is.

Answer to a ground query q w.r.t. input database X is yes if q 2 B(X), no

if q 2 B(X) and unknown otherwise. If a query q contains a variable then

answer to q is a list of terms t such that q(t) is in B(X).

Example 2. Assume now that in addition to information from Example 1

we want to represent a default statement birds normally y and that we are

given a list c

i

1

; : : : ; c

i

k

of classes of birds from the catalog that do not y.

Our representation should now not only be able to classify individual birds

but also to make conclusions about their ying abilities.

To re�ne our speci�cation B to include this information we expand alpha-

bet 
 by new predicate symbols ab and fly. The �rst relation is de�ned on

elements of a catalog and used to represent exceptions to the default. (Abbre-

viation ab stands for abnormal or exceptional). It will be added to the input

language P while fly will be added to the output language Q. To provide

a formal speci�cation that corresponds to the above information we de�ne a

function B

1

whose domain is like that of the function B from Example 1 but

contains also information about some classes being exceptional in the sense

that their members are non-ying birds. This implies that X

1

2 Dom(B

1

)

i� X

1

= X [ Y where X 2 Dom(B) and Y � atoms(ab).

The value of the function B

1

on the given input X should consist of all facts

about birds membership in classes and their ability to y that can be deduced

from the information given in the input. All such facts can be divided into

three categories:

1. facts about birds membership in classes that are deduced from the in-

formation supplied in the input in the same way it was done in Example

1

2. facts about ying ability of those birds that do not belong to any class

that is known to be exceptional with respect to ying

3. facts about inability to y for birds that belong to at least one class

that is atypical with respect to ying.

This implies that for any X

1

2 Dom(B

1

) we have B

1

(X

1

) = B(X)[F (X

1

)[

F (X

1

) where F (X

1

) = ffly(n) : is(n; b) 2 B(X) and for any class c if
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ab(c) 2 Y then :is(n; c) 2 B(X)g and F (X

1

) = f:fly(n) : there is class c

such that is(n; c) 2 B(X) and ab(c) 2 Y g.

It is worth noticing that our new speci�cation B

1

is de�ned using the original

speci�cation B. Studying various speci�cation constructors which allow us

to construct new speci�cations from the existing once in a systematic way is

one of the main topics of our paper. First however we need to discuss our

choice of representational language.

3 Representing speci�cations by lp-functions

In this section we briey describe the language we propose to use for rep-

resenting knowledge and give several examples of its use. The language is

based on the notion of an extended logic program from [12]. Let us recall

the necessary de�nitions. More information can be found in the Appendix.

Let L be a �rst-order language over an alphabet 
. An extended logic

program � in L is a collection of rules of the form:

l

0

 l

1

; : : : ; l

m

;not l

m+1

; : : : ;not l

n

where l's are literals of L and not stands for negation as failure ([7]). Rules

with variables are viewed as schemata representing the sets of their ground

instantiations. The entailment relation between extended logic programs and

ground literals of L is based on the answer set semantics of [11], according to

which � j= l i� l belongs to all answer sets of �. (For a de�nition of answer

sets see the Appendix). By head(�) we will denote the set of all literals that

belong to conclusions of the rules from � while by body(�) we will denote

literals that belong to premises of those rules.

Applicability of the language speci�ed above and of its extensions to knowl-

edge representation has been extensively studied by various researchers (for

a survey see [4]). To reect the functional character of the speci�cations that

we are planning to represent we adopt the approach suggested in [5] which

associates logic programs with functions from sets of literals to sets of liter-

als. The approach is similar to that used in Datalog, with some additional

care taken to account for the existence of inconsistent programs, possible

multiplicity of answer sets, and the absence of the closed world assumption.

This view led to the following de�nition:
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De�nition 2. By an lp-function we mean a four tuple < �; P;Q;
 >

where � is a logic program in language L, and P and Q are sets of predicate

symbols from its alphabet 
 called input and output predicates respectively.

Whenever possible we identify lp-function < �; P;Q;
 > with �. S

P

and

S

Q

will be denoted by inp(�) and out(�) respectively.

Now we will de�ne the domain (Dom(�)) and the value (�(X)) of the lp-

function �.

Let X 2 inp(�). Then

� X 2 Dom(�) i� � [X has a consistent answer set

� �(X) = fl : l 2 lit(Q) and � [X j= lg.

The next de�nition describes the notion of the representation of functional

speci�cation by an lp-function.

De�nition 3. We will say that an lp-function � =< �; P;Q;
 > represents

a functional speci�cation F =< F;P;Q;
 > if

� Dom(F ) � Dom(�)

� For any X 2 Dom(F ), F (X) = �(X).

Example 3. Let B be the speci�cation from Example 1. Consider the

following lp-function �

B

:

r1: is(x; b) subclass(c; b); is(x; c)

r2: :is(x; c

i

) subclass(c

j

; b); is(x; c

j

); i 6= j

)

�

B

with alphabet 
 from Example 1, P = fis; subclassg and Q = fisg.

To better understand this representation let us consider the input

X = fsubclass(c

0

; b); subclass(c

1

; b); is(n

1

; c

1

); is(n

2

; b)g.

Then it is easy to see that

B(X) = fis(n

1

; c

1

); is(n

1

; b); is(n

2

; b);:is(n

1

; c

0

)g

and hence answers to the queries is(n

1

; c

1

), is(n

1

; c

0

), and is(n

2

; c

1

) are yes,

no and unknown respectively, which corresponds to our speci�cation. It
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follows immediately from the basic properties of extended logic programs

that the lp-function �

B

represents speci�cation B.

Example 4. Now let B

1

be the speci�cation from Example 2 and consider

the following lp-function �

B

1

:

r1: is(x; b) subclass(c; b); is(x; c)

r2: :is(x; c

i

) subclass(c

j

; b); is(x; c

j

); i 6= j

r3: may be in(x; c) not :is(x ; c)

r4: may be ab(x) ab(c);may be in(x; c)

r5: fly(x) is(x; b);not may be ab(x )

r6: :fly(x) ab(c); is(x; c)

9

>

>

>

>

>

>

>

>

=

>

>

>

>

>

>

>

>

;

�

B

1

with alphabet 
 from Example 2, P = fis; subclass; abg and Q = fis; flyg.

Consider an input

X = fsubclass(c

0

; b); subclass(c

1

; b); ab(c

0

); is(n

0

; c

0

); is(n

1

; c

1

); is(n

2

; b)g

then

�

B

1

(X) = fis(n

0

; c

0

); is(n

1

; c

1

); is(n

0

; b); is(n

1

; b); is(n

2

; b);

:is(n

0

; c

1

);:is(n

1

; c

0

); fly(n

1

);:fly(n

0

)g

and hence answers to the queries fly(n

1

); fly(n

0

); fly(n

2

) are yes, no and

unknown respectively.

As in the previous example the lp-function �

B

1

represents speci�cation B

1

.

It is worth noting that lp-functions �

B

and �

B

1

give us not only provably cor-

rect but also (rather e�ciently) executable representations of speci�cations

B and B

1

.

In the next example we illustrate the use of an important, though simple,

family of speci�cation constructors, called simple input extensions.

Example 5. Let us consider the speci�cation B

2

obtained from speci�cation

B

1

in Example 2 by adding to the possible input a list of facts containing in-

formation about the ying ability of individual birds, i.e. a consistent collec-

tion of literals from lit(fly). We will say that B

2

is a simple input extension

of the speci�cation B

1

w.r.t. predicate fly. Somewhat more precisely,

� X 2 Dom(B

2

) i� X = X

1

[ X

2

where X

1

2 Dom(B

1

) and X

2

is a

consistent set of literals from lit(fly) such that for every bird n and

class c either fis(n; c); ab(c)g 6� X

1

or fly(n) 62 X

2

.
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� For any X 2 Dom(B

2

) and for any l 2 lit(fis; flyg) we have l 2 B

2

(X)

i� l 2 X

2

[ (B

1

(X

1

) nX

2

).

The \distance" between speci�cations B

1

and B

2

seems to be rather small,

which raises a natural question: is it possible to �nd an lp-function �

B

2

representing B

2

which is \close" to �

B

1

?

It is easy to see that the �rst (natural) attempt to construct such �

B

2

by

using the same program �

B

1

and extending the domain under consideration

by allowing in it literals formed by predicate fly fails. (Check, for instance,

that fis(t; b);:fly(t)g 2 Dom(B

2

) but fis(t; b);:fly(t)g 62 Dom(�

B

2

).)

A more sophisticated transformation � is obtained by replacing r5 and r6 in

�

B

1

by the rules:

r5

0

: fly(x) is(x; b);not may be ab(x );not :y(x )

r6

0

: :fly(x) ab(c); is(x; c);not :y(x )

)

As a result we obtain a new lp-function

�

B

2

=< �

B

2

; fis; subclass; ab; flyg; fis; flyg;
 >

which represents speci�cation B

2

.

It is interesting to notice that lp-function

�

�

B

2

=< �

B

2

; fis; subclass; abg; fis; flyg;
 >

provides an alternative representation of speci�cation B

1

. Which one is

preferable? �

B

1

is slightly simpler and allows more e�cient query-answering

while �

�

B

1

is more tolerant with respect to possible modi�cations. It will

allow the speci�er to go from B

1

to B

2

without changing the representation.

The choice will be determined by the speci�er based on the likelihood of the

possible expansion of the domain of B

1

to its values.

Next example demonstrates another speci�cation constructor commonly used

in building speci�cations. It is called incremental extension and denoted by

�.

Example 6. Consider speci�cation B

2

from Example 5 together with the

following simple speci�cation C informally described by the rule:

\If a bird does not y, its cage does not need the top. Otherwise, (i.e. when

the bird ies or when its ying abilities are not known) the top is necessary".
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The language of C consists of the language of B

2

together with a new pred-

icate top, where top(n) stands for \a cage for bird n needs the top". The

speci�cation can be de�ned as follows:

C =< C; ffly; isg;ftopg;
 [ ftopg >

where for any consistent set X from lit(ffly; isg)

� :top(n) 2 C(X) i� fis(n; b);:fly(n)g � X

� top(n) 2 C(X) i� is(n; b) 2 X and :fly(n) 62 X

It is easy to check that C is represented by the following lp-function:

r1: top(x) is(x; b);not :y(x )

r2: :top(x) is(x; b);:fly(x)

)

�

C

The speci�cations B

2

and C can be used to construct a new speci�cation

C �B

2

which takes sets from the domain of B

2

as inputs and uses B

2

and C

to compute the values from lit(fis; fly; topg) as follows:

C �B

2

(X) = B

2

(X) [ C(B

2

(X))

This new speci�cation is called incremental extension of B

2

by C.

Again we are interested in �nding lp-function representation for C �B

2

as a

natural combination of lp-functions �

B

2

and �

C

. The lp-function �

B

2

[ �

C

seems to be a natural candidate and it is easy to see that it works.

The above constructions and observations were discussed for fairly simple

examples. Do they allow generalization to broader classes of speci�cations

and their representations? What are the typical modi�cations of speci�ca-

tions and what is their relationship with the corresponding representations?

Can complex speci�cations be constructed from some collections of \basic"

speci�cations with the help of a relatively small number of operations? If the

answer to the last question is positive can we use the structure of a speci�ca-

tion to automatically build its representation from the representations of its

basic parts? To draw attention to these questions and to outline a possible

approach to �nding the answers is the main goal of this paper.

In the next two sections we provide formal de�nitions of input and incre-

mental extensions as speci�cation constructors and state theorems giving

su�cient conditions for existence of their realizations.

14



4 Incremental Extensions of Functional Spec-

i�cations

We �rst introduce a binary speci�cation constructor we call incremental ex-

tension.

De�nition 4. Let < F;P;Q;
 > and < G;Q;R;
 > be functional speci�-

cations such that:

� R \Q = ;

� for any X 2 Dom(F ), F (X) 2 Dom(G).

Functional speci�cation G � F =< G � F;P;Q [R;
 > with the properties:

� Dom(G � F ) = Dom(F )

� G � F (X) = F (X) [ G(F (X))

will be called an incremental extension of F by G.

It is easy to see that functional speci�cation discussed in Example 6 is an

incremental extension of speci�cations B

2

and C. As we have noted before

representation of C �B

2

can be obtained by combining the rules from B

2

and

C. Unfortunately this is not always the case as illustrated by the following:

Example 7. Consider an alphabet 
 consisting of an object constant a

and predicate symbols p; q; r. Let F and G be two speci�cations de�ned as

follows

F =< F; ;; fp; qg;
 > and

G =< G; fp; qg; frg;
 > where

Dom(F ) = f;g, Dom(G) = f;; fq(a)gg and

F (;) = ; and G(;) = G(fq(a)g) = fr(a)g.

It is easy to see that F and G can be represented by lp-functions

�

F

= fp(a) not q(a); q(a) not p(a)g and

�

G

= fr(a) ;:r(a) p(a)g and that

�

G

[�

F

does not represent an incremental extension of F by G. Indeed,

G � F (;) = fr(a)g while �

G

[�

F

(;) = fr(a); q(a)g

15



This is of course not surprising. The di�culty is caused by the multiplicity

of answer sets of �

F

. One can expect properties of a program to depend on

the collection of its answer sets and not on the collection of entailed literals

only. Even though �

G�F

is consistent with the intersection of answer sets of

�

F

it is not consistent with one of them, namely fp(a)g which causes the loss

of incrementality. In some cases �

G�F

will not even be consistent with the

intersection of answer sets of �

F

. This observation leads us to the following

de�nition.

De�nition 5. We will say that an lp-function < �; P;Q;
 > is categorical

if for any X 2 Dom(�) and any answer sets A

1

and A

2

of � [X we have

� A

1

\ lit(Q) = A

2

\ lit(Q)

In what follows by L(�) we will denote the set of all literals that either

appear in program � or belong to lit(P [Q).

The following condition will guarantee correctness of our construction of

�

G�F

w.r.t. incremental extension.

De�nition 6. Wewill say that lp-functions< �

F

; P;Q;
 > and < �

G

; Q;R;
 >

are upward compatible if

� head(�

G

) \ L(�

F

) = ;

� L(�

G

) \ L(�

F

) � lit(Q)

We can now state the realization theorem for incremental extensions.

Theorem 1. Let F and G be functional speci�cations represented by cate-

gorical lp-functions < �

F

; P;Q;
 > and < �

G

; Q;R;
 > respectively, and

let G�F be the incremental extension of F by G. If �

F

is upward compatible

with �

G

then lp-function �

G�F

=< �

G

[�

F

; P;Q[R;
 > represents G�F .

Example 8. It is easy to see that lp-functions �

B

2

and �

C

from Exam-

ple 6 satisfy the conditions of Theorem 1 which explains correctness of the

corresponding representation of C �B

2

.
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5 Simple Input Extensions of Functional Spec-

i�cations

We now describe a class of unary speci�cation constructors we call simple

input extensions.

De�nition 7. Let F =< F;P;Q;
 > be a functional speci�cation. A

speci�cation F

�

=< F

�

; P [Q;Q;
 > such that

� Dom(F ) � Dom(F

�

)

� for any X 2 Dom(F

�

), X

P

= X \ lit(P ) 2 Dom(F )

� for any X 2 Dom(F

�

) and for any literal l 2 lit(Q), l 2 F

�

(X) i�

l 2 ((X

Q

[ F (X

P

)) nX

Q

) where X

Q

= X nX

P

is called a simple input extension of F .

It is easy to see that speci�cation B

2

from Example 5 is a simple input

extension of speci�cation B

1

.

In what follows we present a realization theorem which provides a general

method of constructing lp-function representations of simple input extensions

from the lp-function representations of the original functional speci�cations

and which implies correctness of the construction of �

B

2

in Example 5.

Let F =< F;P;Q;
 > be a functional speci�cation represented by lp-

function � and let F

�

=< F

�

; P [ Q;Q;
 > be a simple input extension of

speci�cation F . We are interested in constructing an lp-function �

�

repre-

senting speci�cation F

�

. The Example 5 from the earlier section suggests a

natural candidate for �

�

that can be de�ned as follows:

De�nition 8. Let � be a program and Q be a collection of predicates. The

result of replacing every rule

l

0

 l

1

; : : : ; l

m

;not l

m+1

; : : : ;not l

n

of � with l

0

2 lit(Q) by the rule

l

0

 l

1

; : : : ; l

m

;not l

m+1

; : : : ;not l

n

;not l

0

is called a guarded version of � (w.r.t. Q) and denoted by

^

�

Q

. (Whenever

possible, the index Q will be omitted.)
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Unfortunately, the guarded version

^

� of � does not always work as a repre-

sentation of F

�

as illustrated by the following:

Example 9. Consider an alphabet 
 consisting of object constants a; b and

predicate symbols p; q; r. Let functional speci�cation F be de�ned as follows:

F =< F; fpg; fqg;
 > whereDom(F ) = ffp(a)gg and F (fp(a)g) = f:q(a); q(b)g

and let � be the following lp-function:

q(X) r(X)

:q(a) 

r(a) not r(b); p(a)

r(b) not r(a); p(a)

It is easy to see that �(fp(a)g) = f:q(a); q(b)g and hence it represents F

while lp-function

^

�

q(X) not :q(X ); r(X )

:q(a) not q(a)

r(a) not r(b); p(a)

r(b) not r(a); p(a)

has a property

^

�(fp(ag) = ; and represents no simple extension of F .

We will now introduce a notion of a well structured lp-function and show that

for any speci�cation F represented by such lp-function its guarded version

represents all simple extensions of F .

De�nition 9. Let � =< �; P;Q;
 > be an lp-function. We will say that �

is well structured if there are programs �

1

and �

2

(called components of �)

such that

� � = �

1

[ �

2

� (lit(�

1

) [ body(�

2

)) \ lit(Q n P ) = ;

� head(�

2

) � lit(Q n P )

� for any set X 2 Dom(�) and any answer set A of �

1

[ X, A [ �

2

is

consistent.
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We can now state realization theorem for simple extensions.

Theorem 2. Let F be a functional speci�cation represented by a well

structured lp-function � with components �

1

and �

2

. Then the lp-function

�

�

=< �

1

[

^

�

2

; P [Q;Q;
 > represents every simple extension F

�

of F .

It is easy to see that lp-function �

B

1

from Example 4 is well structured

and thus functional speci�cation B

1

satis�es the conditions of Theorem 2

which explains correctness of the corresponding representation �

B

2

of the

speci�cation B

2

.

6 Conservative Extension Property of Logic

Programs

Theorem 1 is closely related to the so called conservative extension prop-

erty of logic programs. If we extend a program � by rules whose heads

do not occur in � (which can be viewed as expanding � by de�nition of

new predicates), then, typically, we do not expect to see any new conse-

quences of the program among the literals occurring in �. This conservative

extension property (called \the weak principle of strati�cation" by Schlipf

[23] and \relevance" by Dix [8]) is not valid even for general logic programs

under stable model semantics without additional restrictions. Consider, for

instance, a program � = fp  not q; q  not p; g and the de�nition

D = fr  not r ; q; r  pg of r. It is easy to see that � [ D entails p

while � does not. The question of discovering conditions under which the

conservative extension property holds was addressed in [13]. Some of these

results were generalized in [15]. To prove Theorem 1 we give here another

(stronger) su�cient condition of conservativeness.

4

Recall that head(�) stands for the set of all literals that belong to conclusions

of the rules from �. By neg(�) we will denote the set of all literals whose

negation as failure appears in � while lit(�) is the set of all literals formed

by predicates from �.

Theorem 3. Let D and � be logic programs such that:

4

A slightly weaker version will su�ce for this goal but we believe that Theorem 3 is of

independent interest. In particular, it is useful for proving the counterpart of Theorem 1

for non-functional speci�cations.
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� head(D) \ lit(�) = ;

� for any consistent answer set A of � program D [ (A \ lit(D)) is con-

sistent.

Then we have:

� If A

1

is a consistent answer set of � then there is a consistent set

A

2

� head(D) such that A = A

1

[ A

2

is an answer set of the program

D [�.

� If A is a consistent answer set of the program D [ � then set A

1

=

A \ lit(�) is a consistent answer set of the program �.

Corollary 1. Under the same conditions as in Theorem 3 program D [ �

is a conservative extension of the program �.

Before proving Theorem 3 we will recall an important property of logic pro-

grams called Splitting Set Theorem [15].

A splitting set for a logic program � is any set U of literals such that, for

every rule r 2 �, if head(r) \ U 6= ; then lit(r) � U .

Given program � and its splitting set U the set of rules r 2 � for which

lit(r) � U is called the bottom of � w.r.t. U and denoted by b(�; U). The

remaining set of rules in � will be called the top of � w.r.t. U and denoted

by t(�; U).

Given program � and set of literals S we will denote by red(�; S) a new pro-

gram obtained from program � by removing from it all rules whose premises

do not hold in S and by removing from the remaining rules in � all expres-

sions of the form l or not l where l 2 S.

Theorem 4. (Splitting Set Theorem [15]). Let U be a splitting set for a

program �. A set A of literals is a consistent answer set for � if and only if

A = A

1

[A

2

where A

1

is a consistent answer set for the b(�; U) and A

2

is a

consistent answer set of red(t(�; U); A

1

).

Corollary 2. ( [15]). Let � be a logic program and let X be a set of literals

such that X \ head(�) = ;. A set A of literals is a consistent answer set for

�[X if and only if X is consistent and A = A

1

[X where A

1

is a consistent

answer set for the red(�;X).
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The following simple consequence of the Splitting Set Theorem will be used

in the prove of Theorem 2.

Observation 1. If � is a well structured lp-function with components �

1

and �

2

then for every X from the Dom(�) a set of literals A is a consistent

answer set of � [X i� A = A

1

[ A

2

where A

1

is a consistent answer set of

the program �

1

[X and A

2

= red(�

2

; A

1

) � lit(Q n P ).

Now we are ready for the proof of the Theorem 3.

Proof. Since head(D) \ lit(�) = ; therefore lit(�) is a splitting set for the

program D[� with b(D[�; lit(�)) = � and t(D[�; lit(�)) = D. In virtue

of the Splitting Set Theorem set A is a consistent answer set of this program

if and only if A = A

1

[A

2

where A

1

is a consistent answer set of the bottom

part of the program (i.e. �) and A

2

is a consistent answer set of the reduct

of the top of the program (i.e. D) w.r.t. A

1

. To complete the proof of the

theorem we have to show that red(D;A

1

) is consistent for every consistent

answer set A

1

of �. Let us �rst observe that red(D;A

1

) = red(D;A

0

1

) where

A

0

1

= A

1

\ lit(D). Using assumptions of the Theorem we can conclude that

program D [ A

0

1

has a consistent answer set. Since A

0

1

� lit(�) we have

A

0

1

\head(D) = ; and thus in virtue of the Corollary 2 above this answer set

is a union of A

0

1

and an answer set of red(D;A

0

1

). This shows that red(D;A

1

)

is consistent and completes the proof of the Theorem.

Proposition 1. The su�cient condition for the conservative extension prop-

erty given in Corollary 1 is a generalization of the condition provided by

Proposition 1 in [15]. More precisely if � is a logic program and C is a

consistent set of literals that do not occur in � and whose complements also

do not occur in � and if D is a nondisjunctive program such, that for every

rule r 2 D , head(r) � C and neg(r) � lit(�) then D [ � is a conservative

extension of �.

Proof. To prove Proposition 1 it is enough to show that programs � and

D satisfy the assumptions of Theorem 3. It follows from the assumptions of

the Proposition that head(D) \ lit(�) = ;. To prove that for any consistent

answer set A of � program D [ (A \ lit(D)) is consistent let us notice that

programD and set of literalsA\lit(D) satisfy assumptions of Corollary 2 and

thus D [ (A\ lit(D)) is consistent if and only if program red(D;A \ lit(D))

is consistent. Since for every rule r 2 D we have neg(r) � lit(�), program
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red(D;A\lit(D)) contains no negation as failure and since set C is consistent

it has a consistent answer set.

The next example together with Proposition 1 shows that Corollary 1 is

stronger than Proposition 1 from [15].

Example 10. Let � be a program consisting of rules r5; r6; : : : of the pro-

gram �

B

1

from Example 3 and letD = �

B

1

n�. It is easy to see that D[X is

consistent for any consistent setX � lit(b; w; c

1

; : : : ; c

n

) and hence, by Corol-

lary 1, �

B

1

is a conservative extension of �. At the same time Proposition 1

([15]) is not applicable to these � and D.

7 Proofs of Theorems 1 and 2

We will now use the results of the previous section to prove realization the-

orems for incremental and simple extensions.

We will begin with the following:

Proposition 2. If lp-function < �; P;Q;
 > is categorical then for any

X 2 Dom(�) and any answer set A of � [X we have:

� �(X) = A \ lit(Q)

Proof. By de�nition �(X) consists of all elements of lit(Q) which belong

to all answer sets of the program � [X. In case of categorical lp-functions

intersections of all answer sets of � [X with lit(Q) are identical.

We will also need the following:

Lemma 1. Let F and G be functional speci�cations represented by cate-

gorical lp-functions < �

F

; P;Q;
 > and < �

G

; Q;R;
 > respectively, and

let G � F be the incremental extension of F by G. If �

F

is upward compat-

ible with �

G

then for any X 2 Dom(�

F

) programs �

G

and �

F

[X satisfy

assumptions of Theorem 3.

Proof. The condition that head(�

G

) \ lit(�

F

[ X) = ; is guaranteed by

upward compatibility of �

F

with �

G

. We have to show that for any consistent

answer set A of �

F

[X program �

G

[ (A\ lit(�

G

)) is consistent. From the

assumption that G � F is an incremental extension of F by G it follows that

F (X) 2 Dom(G) and since �

F

and �

G

represent functional speci�cations of
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F and G respectively we can conclude that �

F

(X) 2 Dom(G) and therefore

�

G

[ �

F

(X) is consistent. Since �

F

is categorical using Proposition 2 we

obtain �

F

(X) = A\ lit(Q) and thus program �

G

[ (A\ lit(Q)) is consistent.

It is easy to see that set of literals A \ (lit(Q) n lit(�

G

)) is a splitting set

for this program and therefore a consistent answer set of �

G

[ (A \ lit(Q))

is the union of A \ (lit(Q) n lit(�

G

)) and the consistent answer set of �

G

[

(A \ (lit(�

G

) \ lit(Q)). Using again upward compatibility of �

F

with �

G

we have A \ (lit(�

G

) \ lit(Q)) = A \ lit(�

G

). This shows that for any

consistent answer set A of �

F

[X program �

G

[ (A\ lit(�

G

)) is consistent

and completes the proof of the Lemma.

Now we are ready to prove Theorem 1.

Theorem 1. Let F and G be functional speci�cations represented by cate-

gorical lp-functions < �

F

; P;Q;
 > and < �

G

; Q;R;
 > respectively, and

let G�F be an incremental extension of F by G. If �

F

is upward compatible

with �

G

then lp-function �

G�F

=< �

G

[�

F

; P;Q[R;
 > represents G�F .

Proof. To show that �

G�F

represents G � F we have to show that:

� If X 2 Dom(G � F ) then X 2 Dom(�

G�F

).

� If X 2 Dom(G � F ) then G � F (X) = �

G�F

(X).

Let us �rst observe that by de�nition Dom(G � F ) = Dom(F ) . Since F

is represented by lp-function �

F

we have Dom(F ) � Dom(�

F

) and thus

if X 2 Dom(G � F ) then X [ �

F

is consistent. On the other hand using

de�nition of �

G�F

we can conclude that X 2 Dom(�

G�F

) i� X [�

F

[�

G

is

consistent. Therefore we have to show that for any consistent setX � lit(P ),

if X [�

F

is consistent then X [�

F

[�

G

is consistent. In virtue of Lemma 1

programs �

G

and �

F

[ X satisfy assumptions of Theorem 3 and hence,

by the �rst part of this theorem, X [ �

F

[ �

G

is consistent and hence

X 2 Dom(�

G�F

).

Now let us observe that G �F (X) = F (X)[G(F (X)) and since �

F

and �

G

are representations of F and G respectively we have G � F (X) = �

F

(X) [

�

G

(�

F

(X)). Let X 2 Dom(G � F ) (i.e. X [�

F

is consistent) and let A be

any consistent answer set of X[�

F

. Using Proposition 2 w.r.t. �

F

we obtain

G�F (X) = (A\ lit(Q))[�

G

(A\ lit(Q)). Let B be any consistent answer set

of the program �

G

[(A\lit(Q)). In virtue of Corollary 2 B = (A\lit(Q))[B

2
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where B

2

is an answer set of the program red(�

G

; (A \ lit(Q)). Using again

Proposition 2 (now w.r.t. �

G

) we can conclude that G�F (X) = (A\lit(Q))[

(B

2

\ lit(Q [R)).

Let us now consider �

G�F

(X). By de�nition �

G�F

(X) = fl 2 lit(Q [ R) :

�

F

[�

G

[X j= lg i.e. it is the set of all literals in lit(Q[R) which belong to

all consistent answer sets of the program �

F

[�

G

[X. In virtue of Lemma

1 programs �

F

[X and �

G

satisfy assumptions of the Theorem 3 and thus

every consistent answer set of the program �

F

[�

G

[X has the form A

1

[B

1

where A

1

is an answer set of the program �

F

[X and B

1

is an answer set of

the red(�

G

; A

1

). This implies that literal l belongs to �

G�F

(X) i� it belongs

to all the sets of the form (A

1

\ lit(Q)) [ (B

1

\ lit(Q [R)) where as before

A

1

is an answer set of the program �

F

[ X and B

1

is an answer set of the

red(�

G

; A

1

).

To complete the proof of the Theorem it is now enough to show that for any

A

1

and B

1

above we have:

� A

1

\ lit(Q) = A \ lit(Q)

� B

1

\ lit(Q [R) = B

2

\ lit(Q [R)

where A and B

2

are the answer sets of X [ �

F

and red(�

G

; (A \ lit(Q))

respectively, chosen above.

The �rst part is a consequence of the categoricity of lp-function �

F

. To prove

the second part we observe that upward compatibility of �

F

with �

G

implies

that L(�

F

) \ L(�

G

) � lit(Q) and therefore red(�

G

; A

1

) = red(�

G

; A

1

\

lit(Q) = red(�

G

; A\ lit(Q)). Since B

1

is an answer set of the red(�

G

; A

1

) =

red(�

G

; A\ lit(Q)) we can conclude that A\ lit(Q)[B

1

is an answer set of

the program �

G

[ (A \ lit(Q)) and thus using categoricity of �

G

we obtain

B

1

\ lit(Q[R) = B

2

\ lit(Q[R) which completes the proof of the Theorem.

Theorem 2. Let F be a functional speci�cation represented by a well

structured lp-function � with components �

1

and �

2

. Then the lp-function

�

�

=< �

1

[

^

�

2

; P [Q;Q;
 > represents every simple extension F

�

of F .

Proof. To prove that the lp-function �

�

represents every simple extension F

�

of F we have to show that for everyX 2 Dom(F

�

) we have F

�

(X) = �

�

(X).

Let X

1

= X \ lit(P ) and X

2

= X n X

1

then �

�

(X) = fl 2 Q : l 2 A

for any consistent answer set A of �

1

[

^

�

2

[ X

1

[ X

2

g. It is easy to see
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that lit(�) n lit(head(�

2

)) is a splitting set for �

1

[

^

�

2

[ X

1

[ X

2

and the

bottom of the program is �

1

[ X

1

. It implies that every consistent answer

set A of �

1

[

^

�

2

[ X

1

[ X

2

has a form A

1

[ A

2

where A

1

is a consistent

answer set of �

1

[X

1

and A

2

is a consistent answer set of red(

^

�

2

[X

2

; A

1

).

Let us �rst observe that red(

^

�

2

[ X

2

; A

1

) =

^

red(�

2

; A

1

) [ X

2

. On the

other hand since lp-program � represents functional speci�cation F and since

F

�

is a simple extension of F we can conclude that X

1

2 Dom(�) and

F (X

1

) = �(X

1

). It means that program �

1

[ �

2

[X

1

is consistent and in

virtue of the Observation 1 set of literals B is an answer set of this program

if and only if B = B

1

[B

2

where B

1

is a consistent answer set of the program

�

1

[X

1

and B

2

= red(�

2

; B

1

). From this it follows that

� F (X

1

) = fl 2 lit(Q) : l 2 B

1

[ red(�

2

; B

1

) for every consistent answer

set B

1

of �

1

[X

1

g.

Let B

1

be such an answer set. Since � is well structured we can conclude

that red(�

2

; B

1

) is a consistent set of literals. This implies that red(�

2

; B

1

)

is the unique answer set of the program red(

^

�

2

; B

1

) and thus B

2

= (X

2

[

red(�

2

; B

1

)) nX

2

is the unique answer set of the program red(

^

�

2

[X

2

; B

1

).

Let us now assume that l 2 lit(Q). From the above considerations it follows

that l 2 �

�

(X) i� l 2 (B

1

[ X

2

[ red(�

2

; B

1

)) n X

2

for every consistent

answer set B

1

of �

1

[ X

1

. It is easy to see that this is equivalent to l 2

(F (X

1

) [X

2

) nX

2

= F

�

(X) which proves that for every l 2 Q and for every

X 2 Dom(F

�

) we have l 2 F

�

(X) i� l 2 �

�

(X) and thus completes the

proof of the Theorem.

8 Conclusions

To make logic programming a viable paradigm for software engineering one

should understand each step in the following diagram describing a standard

software development process:

Speci�cation) Representation) Implementation

In the last decade most of the theoretical work in logic programming con-

centrated on the last two steps, especially on the development of declarative

logic programming as a language of knowledge representation and on im-

proving e�ciency and termination properties of various logic programming
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implementations. The goal of this paper is to contribute to the better un-

derstanding of the �rst step of the diagram. To this goal we

� introduced the notion of speci�cation independent of particulars of the

language used for its description

� suggested the use of lp-functions as representations of functional speci�ca-

tions

� de�ned the notions of speci�cation constructor and its realization.

We used these de�nitions to demonstrate, by way of examples, that correct-

ness and quality of representation of a speci�cation S depends on:

� the type of input to the corresponding knowledge base

� the type of allowed queries

� the likelihood of possible modi�cations of the system.

The �rst two dependencies are reected in the de�nition of lp-function. To

study the third dependency we suggest to consider various typical modi�-

cations and carefully investigate their realizations. Two such modi�cations,

incremental extension and simple extension, were investigated and condi-

tions guaranteeing elaboration tolerance of lp-representations w.r.t. these

modi�cations were presented in Theorems 1 and 2. (A su�cient condition

allowing to prove the conservative extension property of logic programs was

established as a side e�ect). There are of course other important modi�-

cations of functional speci�cations. One such modi�cation - removing the

closed world assumption [21] from the input predicates of speci�cation S -

was studied in [5] from the position similar to the one advocated here. In

general, adding and removing assumptions about the domain of speci�cation

S, such as the closed world assumption, the unique name assumption, etc.,

seem to frequently occur in practice. We believe that the study of these, as

well as the discovery and investigation of other frequent modi�cations, is an

important topic for the further research. We are also interested in extending

the proposed approach to the class of arbitrary (not necessarily functional)

speci�cations.
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9 Appendix: Extended Logic Programs

Extended logic programs provide a powerful tool for knowledge representa-

tion that allows direct representation of the incomplete knowledge.

Formally, by an extended logic program, �, we mean a collection of rules of

the form

l

0

 l

1

; : : : ; l

m

;not l

m+1

; : : : ;not l

n

where the l's are literals, i.e., formulas of the form p or :p, where p is an atom

and not denotes negation as failure. When all l's are atoms the program is

called a general logic program.

The set of all literals in the language of � will be denoted by lit(�).

The semantics of an extended logic program assigns to it a collection of its

answer sets - sets of literals corresponding to beliefs which can be built by a

rational reasoner on the basis of �. We will say that literal l is true in an

answer set S if l 2 S and that not l is true in S if l 62 S. We will say that

�'s answer to a literal query q is yes if q is true in all answer sets of �, no if

�q

5

is true in all answer sets of � and unknown otherwise.

The answer set semantics of extended logic programs treats a rule with vari-

ables as shorthand for the set of its ground instances and thus it su�ces to

de�ne answer sets for variable free programs.

To give a de�nition of answer sets of extended logic programs, let us �rst

consider programs without negation as failure.

The answer set of the variable free program � not containing not is the

smallest (in the sense of set-theoretic inclusion) subset S of lit(�) such that

� for any rule l

0

 l

1

; : : : ; l

m

from �, if l

1

; : : : ; l

m

2 S, then l

0

2 S

� if S contains a pair of complementary literals, then S = lit(�).

Obviously, every program � that does not contain negation as failure has a

unique answer set.

De�nition 10. Let � be an extended logic program without variables. For

any set S of literals, let �

S

be the logic program obtained from � by deleting

5

For any literal l, the symbol

�

l denotes the literal opposite in sign to l. i.e. for an atom

a, if l = :a then

�

l = a, and if l = a then

�

l = :a.
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� each rule that has a formula not l in its body with l 2 S

� all formulas of the form not l in the bodies of the remaining rules.

Clearly, �

S

does not contain not , so that its answer set is already de�ned.

If this answer set coincides with S, then we say that S is an answer set of �.

Example 11. Assume that our language contains two object constants a

and b and consider

� = fp(X) not q(X ); q(a) g.

Let us show that a set S = fq(a); p(b)g is an answer set of �. By construction,

�

S

= fp(b) ; q(a) g whose answer set is obviously equal to S. Later we

will show that there are no other answer sets of �.

Example 12. Let the extended program � consist of just one rule: :q  

not p. Intuitively, this rule means: \q is false if there is no evidence that p

is true." The only answer set of this program is f:qg. The answers that the

program should give to the queries p and q are, respectively, unknown and

no.

Uniqueness of an answer set is an important property of a program. Programs

which have a unique answer set are called categorical.

The next two examples show that not all programs are categorical. There

are programs with multiple answer sets and with no answer sets at all.

Example 13. Consider the logic program � = fp not pg. We will show

that this program has no answer sets. Consider two cases:

� If p 2 S then �

S

is empty and so is its answer set. Since S is not empty

it is not an answer set of �.

� If p =2 S then �

S

= fp g and hence S is not an answer set of �.

The program from the next example has two answer sets.

Example 14. Consider a logic program

p not q

q not p
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It is easy to check that this program has two answer sets fpg and fqg.

An extended logic program � is said to be inconsistent i� it has the unique

answer set lit(�).

Applicability of the extended logic programs to knowledge representation

depends on the existence of practical query evaluation methods. We will

start discussing this problem by considering a subclass of the class of extended

logic programs consisting of general logic programs.

A general logic program � is said to be strati�ed if there is no recursion

through negation as failure not in �. More precisely it means that program

� can be divided into a family of disjoint subprograms f�

k

: k < ng where

�

0

is a positive logic program and for any 0 < k < n if not p appears in the

body of the rule in �

k

then p does not appear in the head of any rule from

�

j

where j � k.

The following theorem describes an important property of strati�ed pro-

grams.

Proposition 3. [2, 10] Any strati�ed general logic program is categorical.

It is easy to see that the program from Example 11 is strati�ed and therefore

has only one stable model while program from Example 14 is not strati�ed.

For strati�ed logic programs SLDNF resolution [7] provides a sound compu-

tational mechanism. This implies that PROLOG which is based on SLDNF

resolution can be viewed as a practical query answering mechanism for a

broad class of programs i.e. strati�ed programs which satisfy safety and

termination conditions.

Example 15. Consider general logic program � from Example 11. By

changing " " to ": �" we obtain the PROLOG program consisting of clauses

p(X) : �not q(X ): and q(a):

It is easy to see that for any ground query q an answer yes is given by this

PROLOG program i� q belongs to the unique answer set of �.

To answer queries with respect to general logic programs with a multiple

number of answer sets, several approaches have been suggested. For an

interesting method that uses linear programming see [3].

Let us now show that extended logic programs can be reduced to general

logic programs. We will need the following notation:
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For any predicate p occurring in �, let p

0

be a new predicate of the same

arity. The atom p

0

(x

1

; : : : ; x

n

) will be called the positive form of the negative

literal :p(x

1

; : : : ; x

n

). Every positive literal is, by de�nition, its own positive

form. The positive form of a literal l will be denoted by l

+

. �

+

stands for

the general logic program obtained from � by replacing each literal in each

rule in � by its positive form. For any set S � lit(�), S

+

stands for the set

of the positive forms of the elements of S.

Proposition 4. [11] A consistent set S � Lit is an answer set of � if and

only if S

+

is an answer set of �

+

.

This Proposition suggests the following simple way of evaluating queries in

extended logic programs. To obtain an answer for query p run queries p and

p

0

on the program �

+

. If �

+

's answer to p is yes then �'s answer to p is yes.

If �

+

's answer to p

0

is yes then �'s answer to p is no. In the remaining cases

the answer is unknown. Thus under rather general conditions evaluating

query for an extended logic program can be reduced to evaluation of two

queries in a general logic program. This implies that for the broad class

of extended logic programs PROLOG can be used as the query answering

mechanism .

Example 16. For the program � from Example 12 we have �

+

= fq

0

 

not pg. It is easy to see that the PROLOG program corresponding to �

+

gives answers no to q; p; p

0

and yes to q

0

and therefore the answers to queries

q and p based on program � are, respectively, no and unknown.
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