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1 Introduction

In this paper, we review recent work aimed at the application of logic programming to
knowledge representation in artificial intelligence (AI). We consider various extensions of
“pure Prolog” (definite logic programs) and show how each of the added features extends
the representational power of the language.

1.1 Historical Perspective

Knowledge representation is one of the most important subareas of artificial intelligence.
If we want to design an entity (a machine or a program) capable of behaving intelligently
in some environment, then we need to supply this entity with sufficient knowledge about
this environment. To do that, we need an unambiguous language capable of expressing
this knowledge, together with some precise and well understood way of manipulating sets
of sentences of the language which will allow us to draw inferences, answer queries, and to
update both the knowledge base and the desired program behavior.

Around 1960, McCarthy [McCh9] first proposed the use of logical formulas as a basis for
a knowledge representation language of this type. This is how he explains the advantages of
such a representation:

Expressing information in declarative sentences is far more modular than ex-
pressing it in segments of computer programs or in tables. Sentences can be true
in a much wider context than specific programs can be used. The supplier of a
fact does not have to understand much about how the receiver functions or how
or whether the receiver will use it. The same fact can be used for many purposes,
because the logical consequences of collections of facts can be available.

This idea has been further developed by many researchers with various backgrounds and
interests. First, the classical logic of predicate calculus served as the main technical tool for
the representation of knowledge. It has a well-defined semantics and a well-understood and
powerful inference mechanism, and it proved to be sufficiently expressive for the representa-
tion of mathematical knowledge. It was soon realized, however, that for the representation
of commonsense knowledge, this tool is inadequate. The difficulty is rather deep and related
to the so-called “monotonicity” of theories based on predicate calculus. A logic is called
monotonic if the addition of new axioms to a theory based on it never leads to the loss
of any theorems proved in this theory. Commonsense reasoning is nonmonotonic: new in-
formation constantly forces us to withdraw previous conclusions. This observation has led
to the development and investigation of new logical formalisms, nonmonotonic logics. The
best known of them are circumscription [McC80, McC86, Lif85b], default logic [Rei80b], and
nonmonotonic modal logics [MD80, McD82, Moo85]. A collection of important papers on
nonmonotonic reasoning published before 1987 appears in [Gin87]. A survey can be found
in [Rei87a]. Much technical work has been done to investigate the mathematical properties
of these logics, as well as their applicability to the formalization of commonsense reason-
ing in various specific domains. This work has substantially deepened our understanding



of the properties of nonmonotonic reasoning and of the technical problems involved in its
formalization.

Another direction of research, started by Green [Gre69], Hayes [Hay73] and Kowalski
[Kow74], and continued by many others, combined the idea of logic as a representation
language with the theory of automated deduction and constructive logic. This led Kowalski
and Colmerauer to the creation of logic programming [L1o87] and the development of the
first logic programming language, Prolog [CKPRT73].

Even though logic programming and nonmonotonic logic share many common goals and
techniques, until recently, there were no strong ties between the two research communities.
Originally, declarative Prolog was defined as a small subset of predicate calculus. This
dialect of Prolog is now called “pure” Prolog. The restricted syntax of pure Prolog makes it
possible to efficiently organize the process of inference, while its semantics relies heavily on
the classical, model-theoretic notion of logical entailment. Unlike nonmonotonic logics, with
their emphasis on expressiveness, efficiency and development of programming methodology
seemed to be the main concern of the logic programming community.

With time, however, Prolog evolved to incorporate some nonclassical, nonmonotonic
features, which made it closer in spirit to the nonmonotonic logics mentioned above. The
most important nonmonotonic feature of modern Prolog is negation as failure [ClaT78, Rei78].
The initial definition of this construct was purely procedural, which inhibited its use for
knowledge representation and software engineering, as well as for the investigation of the
relationship between logic programming and other nonmonotonic formalisms. Work, started
by Clark and Reiter in the late 70’s, was aimed at the development of a declarative semantics
for logic programs with negation as failure.

The problem proved to be a rather nontrivial one. After more than ten years of extensive
investigation, we now have a much better understanding of the problems involved, but there
is still no universally accepted semantics for logic programs with negation as failure, even
though for large classes of programs a certain level of consensus seems to have been achieved.
The work on the declarative semantics of negation as failure has significantly enhanced our
understanding of the relationship between nonmonotonic logics and logic programming.

It became apparent, on the other hand, that in order to become satisfactory tools for
knowledge representation, logic programming languages should be expanded to allow for
better handling of incomplete information. Work in this direction was started by Minker
[Min82], Loveland [Lov87] and others, who investigated the possibility of expanding logic
programs by disjunctive information. In [GLI0, PW89, Gel92b], extensions of logic pro-
gramming by classical (or strong) negation and epistemic operators were suggested. Unlike
“traditional” nonmonotonic formalisms, these extensions are not based on the use of clas-
sical logical connectives, and do not include full first-order logic (not even its propositional
part). Their fairly simple syntactic form may facilitate the adaptation of query—answering
methods developed in the context of logic programming and deductive databases to more
complicated forms of knowledge representation and reasoning. At the same time, these logic
programming-based languages are rather expressive. In fact, they are more expressive than
first-order logic. (See Section 10.)

From the perspective of knowledge representation, such extensions of traditional logic
programming have the same status as other nonmonotonic formalisms and should be stud-



ied as such. This includes the investigation of the methodology of using these languages
for representing various forms of nonmonotonic reasoning and for describing knowledge in
specific domains; the mathematical investigation of properties of theories stated in these
languages, done from the stand point of their semantics and not necessarily related to any
particular computational mechanism; development of query answering systems; and inves-
tigation of the relationship between logic programming and other knowledge representation
methods.

1.2 Structure of the Paper

In this paper, we discuss some recent work in logic programming which contributes to this
view. We will not write a comprehensive survey of the field; the paper will reflect the authors’
views on what is important, with their preferences and biases, which explains the inclusion of
large parts of the authors” own work. This paper does not contain any new mathematical re-
sult with the single exception of Proposition 4.1. Many important developments are omitted
simply because of space and time limitation and/or inability of the authors to incorporate
them in the whole picture. We hope, however, that it will allow the readers to feel the flavor
of the problems involved in using logic programming for knowledge representation.

The rest of the paper is organized as follows. In Section 2 we consider general logic
programs (also known as normal logic programs) and show how general logic programs can
be used to represent knowledge in Al In particular we consider McCarthy’s [McC59] example
of flying birds and the Yale shooting problem [HM87] and show their formalization using
general logic programs. We also discuss formalization of normative statements' of the kind
“A’s are normally B’s” using general logic programs. Our discussion is based on the stable
model semantics of general logic programs. We briefly discuss the other semantics of general
logic programs and discuss classes of general logic programs where the various semantics
agree. We also review a method of computing the stable models of a general logic program.

In Section 3 we consider extended logic programs [GLI1, Wag91] that allow classical
negation (also referred to as “strong negation”) and discuss its expressibility in the context
of knowledge representation. We reformalize McCarthy’s example of flying birds and the
Yale shooting problem using extended logic programs and show the utility of using extended
logic programs in the presence of incomplete information where the closed world assumption
(CWA) [Rei78] can not be automatically assumed.

In Section 4 we consider disjunctive logic programs where disjunctions are allowed in
the heads of the rules of the program. We formalize two examples from the literature. In
particular we consider an example from [Poo89] that was used to demonstrate the difficulties
associated with representing disjunctive information in Reiter’s default logic. We also discuss
other semantics of general logic programs and review a method to compute the answer set
semantics of a disjunctive logic program.

In Section 5 we show the inadequacy of disjunctive logic programs in representing certain
kinds of information and introduce two new unary operators K (meaning known) and M
(meaning may be believed). The extension of disjunctive logic programs by these operators

!Normative or normic statements [Scr59, Scr63] frequently involve terms such as ‘naturally’, ‘normally’,
‘typically’, ‘tendency’, ‘ought’, ‘should’ and other.



(called epistemic logic programs) is used to overcome this inadequacy.

In Section 6 we consider the framework of meta-logic programming and discuss several
of its features. In particular we discuss an application of results related to logic program-
ming semantics to proving correctness of simple meta-interpreters for logic programs. We
also consider several meta-logic programs that formalize database updates and hypothetical
reasoning.

In Section 7 we discuss the modification of the semantics of logic programs and disjunc-
tive databases which allows for reasoning in the absence of the domain—closure assumption
[Rei80a]. This modification increases the expressive power of the language and allows one
to explicitly state the domain—closure and other assumptions about the domain of discourse
in the language of logic programming.

In Section 8 we discuss a logic programming language based on abduction. We then
discuss abduction as a formalism for explanation of observations and describe the connection
between abduction and negation as failure.

In Section 9 we discuss the relationship between the logic programming—based formalisms
discussed in the previous sections and various nonmonotonic logics developed in artificial
intelligence, such as circumscription, default logic, autoepistemic logic and truth maintenance
systems.

In Section 10 we discuss the complexity and expressibility of logic programming lan-
guages and in Section 11 we conclude by mentioning some further problems that need to be

addressed.



2 General Logic Programs

2.1 Preliminaries

The language of a logic program, like a first-order language, is determined by its object con-
stants, function constants and predicate constants. Terms are built as in the corresponding
first-order language; atoms have the form p(tq,...,%,), where the t’s are terms and p is a
predicate symbol of arity n.. A rule is an expression of the form

Ao — Ay, .., A, not Aqy, ... not A, (1)

where A;’s are atoms and not is a logical connective called negation as failure [ClaT8, Rei78].
The left-hand side of the rule is called the rule’s head or conclusion; the right-hand side is
called the rule’s body (or premise). A collection of rules is called a general logic program.
(They are also referred to as normal logic programs.) General logic programs that do not
have not are called definite programs. Formulas and rules not containing variables are called
ground. The set of all ground atoms in the language of a program II will be denoted by
H B(II) (Herbrand base of II) with Il omitted whenever possible. For a predicate p, atoms(p)
will denote the subset of H B(Il) formed with predicate p and for a set of predicates A,
atoms(A) will denote the subset of H B(II) formed with the predicates in A. Unless otherwise
stated, we assume that rules with variables (usually denoted by capital letters) are used as
shorthand for the sets of all their ground instantiations.

A logic program can be viewed as a specification for building possible theories of the world,
and the rules can be viewed as constraints these theories should satisfy. Semantics of logic
programs differ in the way they define satisfiability of the rules. In this paper we will mainly
use the stable model semantics [GL88] and its extensions but most of our discussion will be
semantics independent. Under this semantics the corresponding theories are sets of ground
atoms, called the stable models of a program. They are defined as follows:

Definition 2.1 The stable model of a definite program 1l is the smallest subset S of HB
such that for any rule Ag « Aq,..., A, from II, if Ay,... A, € S, then Ag € S.

The stable model of a definite program II is denoted by a(II).

Let II be an arbitrary general logic program. For any set S of atoms, let II® be a program
obtained from II by deleting

(i) each rule that has a formula not A in its body with A € S, and

(ii) all formulas of the form not A in the bodies of the remaining rules.

(Clearly, IT1° does not contain not, so that its stable model is already defined. If this stable
model coincides with S, then we say that S is a stable model of 1I. In other words, a stable
model of 1I is characterized by the equation

S = a(I1). 2)

a



A ground atom P is true in S if P € S, otherwise P is false (i.e. =P is true) is S. The
definition is extended to arbitrary first-order formulas in the standard way. II entails a
formula f (Il = f) if f is true in all stable models of II. We will say that the answer to a
ground query ¢ is yes if ¢ is true in all stable models of II (i.e. I |= ¢), no if =¢ is true in
all stable models of II (i.e. Il = —¢) and unknown otherwise.

Example 2.1 Assume that our language contains two object constants ¢ and b and consider
= {p(X) < not ¢(X), q(a) <}

Let us show that a set S = {qg(a),p(b)} is a stable model of II. By construction, II° =
{p(b) «—, q(a) <} whose stable model is obviously equal to S. Later we will show that
there is no other stable model of II. O

It is easy to see that logic programs are nonmonotonic, i.e. adding new information to the
program may force a reasoner associated with it to withdraw its previous conclusions about
the world. This happens for instance if we expand the program from Example 2.1 by a new
fact g(b) <. It is easy to see that the old program entails p(b) while the new one does not.

The above notion of entailment can also be defined in terms of models of classical logic.
To do that every rule in a program II of the form (1) is replaced by the first-order formula

Al/\/\Am/\_'Am+1/\_|AnDAO

The resulting first-order theory will be denoted by T7. If II is definite then 7Ty is a Horn
theory and the stable model of II coincide with the minimal (w.r.t. set-theoretic inclusion)
Herbrand model of Tf;. (By Herbrand model of a first-order theory T we mean a collection
of ground atoms that satisfies formulas from 7). It is easy to show that a stable model of a
general logic program 11 is a model of its classical counterpart Tr;. This explains the use of
the term “model” in the definition of the stable model semantics which was influenced by the
“preferred models” [ABWS88, Prz88a, VG88] approach to the semantics of logic programs.
According to this approach a logic program II is identified with its classical counterpart and
its semantics is given in terms of some (preferred) class of models of II. In many approaches
to the semantics of logic programs they are still (consciously as well as often subconsciously)
not separated from their classical counterparts. In extensions of logic programming discussed
in this paper mapping of programs into classical theories becomes more complicated so we
prefer to stress the non-classical character of the logic programming connectives from the
beginning and to try to avoid the use of the term model in the Tarskian sense.

Uniqueness of a stable model is an important property of a program. Programs which
have a unique stable model are called categorical.

The next two examples show that not all programs are categorical. There are programs with
multiple stable models and with no stable models at all. The latter will be called incoherent.
Programs with at least one stable model are called coherent.

Example 2.2 Consider the general logic program Il = {p <« not p}. We now show that it
is incoherent. Let us assume that it has a stable model S. Consider two cases:



(a) if p € S then II° is empty and so is its stable model. Since S is not empty it is not a
stable model of II

(b) if p € S then I1® = {p «}, its stable model is {p} and hence S is not a stable model of
II. The contradiction falsifies our assumption and therefore II has no stable models. a

The program from the next example has two stable models.

Example 2.3 Consider a general logic program

p «— nol ¢

q < not p.

It is easy to check that this program has two stable models {p} and {q¢}. 0

Coherence and categoricity are important properties of logic programs. There is a col-
lection of results giving sufficient conditions for these properties. We will now discuss some

of these results. We start with the class of stratified programs [ABW88, VG88, CH85].

Definition 2.2 A partition m,..., 7 of the set of all predicate symbols of a general logic
program Il is a stratification of 11, if for any rule of the type (1) and for any p € 7, 0 < s < k
if Ag € atoms(p), then:

(a) for every 1 <7 < m thereis ¢ and j < s such that ¢ € x; and A; € atoms(q)

(b) for every m 4+ 1 < ¢ < n there is ¢ and j < s such that ¢ € x; and A; € atoms(q).

i.e. mg,..., 7T 18 a stratification of = if for all rules in =, the predicates that appear only
positively in the body of a rule are in strata lower than or equal to the stratum of the pred-
icate in the head of the rule, and the predicates that appear under negation as failure are in
strata lower than the stratum of the predicate in the head of the rule.

This stratification of the predicates defines a stratification of the rules to strata Ilg,..., I,
where a strata II; contains rules whose heads are formed by predicates from =;. Il; can be
viewed as a definition of relations from m;. The above condition allows definitions which
are mutually recursive but prohibits the use of negation as failure for the yet undefined
predicates.

A program is called stratified if it has a stratification. a

Example 2.4 A general logic program II consisting of rules
p(f(X)) = p(X), not ¢(X)

pla) =

q(X) « not r(X)

r(a) «

is stratified with a stratification {r}, {q¢}, {p}. O



Given a program II, the dependency graph, D, of Il consists of the predicate names as
the vertices and < P;, P;,s > is a labeled edge in Dy iff there is a rule r in I with F; in its
head and P; in its body and the label s € {+, —} denoting whether P; appears in a positive
or a negative literal in the body of r. Note that an edge may be labeled both by + and —.
A cycle in the dependency graph of a program is said to be a negative cycle if it contains at
least one edge with a negative label.

Proposition 2.1 [ABWS88] A general logic program II is stratified iff its dependency graph
D does not contain any negative cycles. a

The notion of stratification plays an important role in the fields of logic programming,
deductive databases, and AI. The following theorem describes an important property of
stratified programs.

Proposition 2.2 [ABWS8S, GL88] Any stratified general logic program is categorical. O

It is easy to see that the program from Example 2.1 is stratified and therefore has only one
stable model.

Existence of stable models was further studied in [Fag90, Cav89, Dun92, Prz88a]. The
following result, due to Fages [Fag90], is representative of this direction of research.
A general logic program is said to be call-consistent [Kun89, Sat87] if its dependency graph
does not have a cycle with an odd number of negative edges.

Theorem 2.3 [Fug90] A call-consistent logic program whose dependency graph does not
have a cycle with only positive edges has at least one stable model. a

In our further discussion we will need the following Lemma about general logic programs.

Lemma 2.4 [MS89] For any stable model S of a general logic program II:

(a) For any ground instance of a rule of the type (1) from II,
it {Ay,...,A,} CSand {A,41,...,A4,} NS =0 then Ay € S.

(b) If S is a stable model of 11 and Ag € S, then there exists a ground instance of a rule of
the type (1) from II such that

(A1, An} C S and {Apsrs..., A} NS = 0. 0
2.2 Representing Knowledge in General Logic Programs

In this section we discuss several examples of the use of general logic programs for represen-
tation of knowledge and for commonsense reasoning. We will start by demonstrating how
general logic programs can be used to formalize normative statements, i.e., statements
of the form “A’s are normally (typically, as a rule, etc.) B’s.” Statements of this form are
commonly used in various types of commonsense reasoning. The following story is due to

McCarthy [McChH9].



Suppose that a reasoning agent has the following knowledge about birds: birds typically fly
and penguins are non-flying birds. He also knows that Tweety is a bird. Suppose now, that
the agent is hired to build a cage for Tweety, and he leaves off the roof on the grounds that
he does not know whether or not Tweety can fly. It would be reasonable for us to view this
argument as invalid and to refuse the agent’s product. This would not be the case if Tweety
could not fly for some reason (unknown to the agent), and we refused to pay for the bird
cage because the agent had “unnecessarily” put a roof on it. The following example shows
how this type of knowledge can be represented by a general logic program.

Example 2.5 Consider a program? B consisting of the rules

L. flies(X) « bird(X), not ab(rl, X)
2. bird(X) « penguin(X)

3. ab(rl, X) « penguin(X)

4. make_top(X) «— flies(X)

used together with some facts about particular birds, say,
fl. berd(tweety) «—
2. penguin(sam) «—

Most predicate names in this example are self-explanatory. r1 is a constant in our language
used to name the rule 1. and the atom ab(rl, X) stands for birds whose flying ability is sus-
pect (i.e. to which rule 1. is not applicable). The first rule expresses a normative statement
about the flying ability of birds. (Statements of this sort are often called default assumptions,
or just defaults.) It allows us to conclude that a bird X flies unless we can establish that
it is exceptional with respect to flying. Rule 3., which is used to block the application of
default 1. to penguins, is sometimes called a cancellation rule.

In general, normative statements of the form “a’s are normally b’s” are represented in
the language of general logic programs by the rules

b(X) « a(X), not ab(r, X) (3)

where r is a constant of our language used to name the rule (3).
Similarly, the exception to a normative statement of the form “c’s are exceptional a’s.
They are not b’s” is represented by the rule

ab(r, X) « ¢(X) (4)

Exceptions of this sort will be called strong exceptions. (Compare with weak exceptions
in (13) in Section 3.) The cancellation rule (4) can be viewed as a particular instance of
a general reasoning principle called the Inheritance Principle [Tou86], according to which
more specific information is preferable to that which is more general.

2We will discuss several versions of this program and use B with subscripts to denote the different versions.



It is easy to see that a general logic program B consisting of rules 1. — 4. and the facts (fl)
and (f2) is stratified, and hence, has a unique stable model. Now let us use Lemma 2.4 to
find answers to some queries about the flying abilities of various birds. We will start with
the query flies(tweety). Let S be the stable model of B. By the lemma, flies(tweety) € S
iff

(a) bird(tweety) € S, and
(b) ab(rl,tweety) € S.

Statement (a) follows immediately from (f1) and the lemma. To prove (b), we need to show
that penguin(tweety) ¢ S, which follows immediately from the same lemma.

Hence, using (a) and (b), together with rule 1. and the first part of the lemma we have
flies(tweety) € S and hence the answer to the query flies(tweety) is yes. It is equally easy
to show that the answer to the query flies(sam) is no. a

The above example is a typical example of reasoning with inheritance hierarchies. We
will use it throughout the paper. There is a vast literature on representing inheritance hi-
erarchies using nonmonotonic formalisms (For a survey see [Hor]). Representing inheritance

hierarchies using logic programs is discussed in [GP90, Lin91, PAA, PAA91c].

We conclude this section with a brief discussion of the application of general logic pro-
grams to the formalization of reasoning about results of actions. Let us start with a form
of such reasoning called temporal projection, in which we are given a complete description
of the initial state of the world and a complete description of the effects of actions, and we
are asked to determine what the world will look like after a series of actions is performed.
The most frequently cited example of such reasoning is probably the Yale Shooting Prob-
lem(YSP) from [HM87]. The original formalization of the problem uses the language of
situation calculus [MHG69]. (An alternative approach can be found in [KS86].) The syntax of
the language contains variables of three sorts: situation variables S,5’,...; fluent variables
F,F',..;% and action variables A, A’,...* Tts only situation constant is sg, and res(A4,5)
denotes the new situation that is reached after the action A is executed in situation S. The
atom holds(F,S) means that the fluent F'is true in situation S. There are also some other
predicate and function symbols. The sorts of their arguments and values will be clear from
their use in the rules below.

Example 2.6 In the Yale Shooting Problem(YSP), there are two fluents: alive and loaded,
and three actions: wazit, load and shoot. We know that the execution of loading leads to the
gun being loaded, and that if the gun is shot while it is loaded, a turkey (named Fred) dies.
We want to predict that after the execution of actions load, wait and shoot (in that order),
Fred will be dead. It seems that the commonsense argument which leads to this conclusion

3A fluent is something that may depend on the sitnation, as, for instance, the location of a movable
object. We will use propositional fluents which are assertions that can be true or false depending on the
situation.

4Using a sorted language implies, first of all, that all atoms in the rules of the program are formed in
accordance with the syntax of sorted predicate logic. Moreover, when we speak of an instance of a rule, it
will be always assumed that the terms substituted for variables are of the appropriate sorts.

10



is based on the so-called axiom of inertia which says, “Things normally tend to stay the
same. [MH69]” This is a typical normative statement, which in accordance with (3), can be
represented by the rule:

y1: holds(F,res(A,S)) « holds(F,S),not ab(yy, A, F,5)
To represent the effect of the actions load, shoot and wait, we need only the rule

Yo : holds(loaded, res(load, S)) «—

and the cancellation rule

ys : ab(yy, shoot,alive, S) « holds(loaded, S)

which represent the priority of specific knowledge about the results of actions over the general
law of inertia. Let sq be the initial state and suppose we are given that

ya o holds(alive, sg).

Even though the resulting program ) consisting of y; to y4 is not stratified it is possible to
show (see Theorem 2.5) that it has a unique stable model. From this and Lemma 2.4 it is
easy to see that ) entails

holds(alive,res(load, sg)), and
—holds(alive, res(shoot, res(wait, (res(load, sg))))). O

As we can see, the logic programming solution [Eva89, AB91, EK89] to the original Yale
Shooting Problem is rather natural and simple. (This is not, of course, to say that it can
be easily generalized to more complicated forms of reasoning about actions.) It is worth
recalling that the original formulations of this story in the formalisms of circumscription and
normal defaults led to unacceptable results. Some of the later solutions, in particular those
from [Gel89], and [Mor88], were given in the language of autoepistemic logic and non-normal
default theory respectively, and are similar to the one presented here.

Representing inheritance reasoning and reasoning about actions in logic programming
is an active area of research [GL92, BG93, Dun93b, PR93, Esh88, DMB92, KS86]. Some
of the works on both subjects will be discussed in the upcoming sections. We especially
want to mention important challenges: formulation of more general forms of inheritance,
development of theories of actions with rich ontologies and finding efficient computational
means of detecting loops and dealing with floundering queries.

Existence of a unique stable model and some additional insights into the above solution can
be obtained from the fact that it belongs to the class of acyclic programs studied in [AB91].
We will briefly describe this class and its properties.

Intuitively, the atom dependency graph of a program II is analogous to the dependency
graph but has as its vertices ground atoms, instead of predicate names.

Consider a program II, whose rules with variables have been replaced by the sets of all
their possible ground instantiations. The atom dependency graph, ADy, of Il consists of the

11



ground atoms as the vertices. A triple < P;, P;,s > is a labeled edge in ADy iff there is a
rule v in IT with P in its head and P; in its body and the label s € {4+, —} denoting whether
P; appears in a positive or a negative literal in the body of r.

A general logic program is said to be acyelic it its atom dependency graph does not have
a cycle.
For example, the dependency graph of a program, Il = {p(a) <« p(b)} does contain a cycle
with only positive edges, but the atom dependency graph of Il does not. It is also easy to
see that program ) is acyclic.

As was shown in [AB91], most of the semantics of general logic programs coincide for this
class.

The following theorem is obtained by combining results from [AB91], [Cav89], and [Prz89a]
and is further discussed in Section 2.4.

Theorem 2.5 [AB91] Let 1l be an acyclic program. Then we have:

(i) I has a unique recursive® stable model;

(ii) For every ground atom A, Il E A iff comp(1l) U DC'A |= A; where comp(Il) stands
for the Clark’s completion of 11 and DC A is the domain closure axiom [Rei80a].

(iii) For all ground atoms A that do not flounder® , IT = A iff there is an SLDNF
derivation [Cla78] of A from II. O

The first condition of the theorem guarantees that, for a rather broad class of programs
(including }), there is an algorithm to answer all ground queries. (This is of course not true
in the general case even for definite programs. As was shown in [ANT8] there are definite
programs with non-recursive sets of ground consequences.) The second one states that
entailment in such programs II is equivalent to classical entailment in the first-order theory
comp(Il)U DC A. (More information on the form of this theory can be found in Section 2.4).
Finally, the last condition establishes the fact that a particular, rather efficient, decision
procedure, called SLDN F resolution, always terminates on non-floundering ground queries
of Y. This is especially important because SLDN F'is incorporated in most existing Prolog
interpreters.

2.3 Answering Queries

Several query answering methods have been suggested for stratified programs in the lit-
erature: in particular, SLDNF resolution [Cla78] and XOLDT resolution [TS86], [War91].
SLDNF resolution, though sound [ClaT78], is only complete for a subclass of stratified pro-
grams [JLL83]. Various practical Prolog systems have been developed based on SLDNF
resolution.

To answer queries with respect to programs with a multiple number of stable models,

several approaches have been suggested [PAA91a, BNNS94, FLMS93, S790, IKH92, WC93,
EKS89] in the literature. Warren’s XOLDT resolution uses a combination of bottom-up

A set is recursive if its characteristic function is recursive.
SIntuitively, we say A flounders with respect to II if while proving A from II using SLDNF-derivation a
goal is reached which contains only non-ground negative literals. For a precise definition see [L1087].
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and top-down methods. Bell et al. [BNNS94] present an approach to compute the stable
models by constructing a linear programming problem from the program and solving the
linear programming problem. In [Esg90], [PC89] truth maintenance systems are used to
compute the stable models of a general program. Fernandez and Lobo [FL92] propose an
almost top-down proof procedure to find answers to queries with respect to the stable model
semantics. A “fully top-down” procedure is impossible even in propositional case since for
some programs the truth of a literal w.r.t. stable model semantics can not be decided looking
only at the atom dependedncy graph below it. (See for instance the Example 2.11.) As
mentioned above no complete procedure (top-down or otherwise) is possible in the general
case. Fernandez et al. [FLMS93] and Inoue et al. [IKH92] propose bottom-up methods
to compute all the stable models of a general program. While Fernandez et al. [FLMS93]
transform a general logic program to a disjunctive logic program with constraints, Inoue et
al. [IKH92] transform a general program to a propositional theory. They show that the
minimal (in the sense of set-theoretic inclusion) models of the resultant theory that satisfy
certain conditions are the stable models of the original program.

To give the reader a flavor of the issues involved, we now present the approach of [IKH92]
in more detail. Their approach is based on transforming a general logic program into a
propositional theory in an extended language and reducing computing stable models of the
original program to computing minimal models of the transformed theory that satisfy certain
properties.

In the transformation we use new atoms that are constructed from the atoms of the
original program. For each atom A, we add the new atoms A~ and A% to the language of
the transformation. Intuitively, AT means A is believed to be true and A~ means A is not
believed to be true.

The transformation of II, ¢r(Il), is obtained by translating each ground rule of the
general logic program of the form (1):

Ag — A1,..., A, not Apyq, ..., not A,

to the propositional formula

AN NALD (A AN UNAD NA) VAL VLV AR

Let II be a general logic program and M (¢ri(Il)) denote the minimal models of tr(1I)
which satisfy the following (qualifying) properties:
(a) If a model contains A~ then it can contain neither A, nor A*
(b) If a model contains A%, it must also contain A.

Let stable(IT) = {S: 5" € M(tr1(Il)) and S is obtained from S’ by removing all atoms with
+ and — in their superscript }.

Theorem 2.6 [IKH92]For any general logic program 11, stable(11) is the set of stable models
of II. O

Example 2.7 Consider the general logic program I,
p «— not q
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try(Il1) consists of the rules:

and has the four minimal models:

{a=pp™yad, {a7,p, 0™}, {ap7, ¢} and {¢*, p*}.

The first one contains p and p~ and hence is disqualified. The fourth contains p* and ¢* but
contains neither p nor ¢ and hence is also disqualified. The second and the third satisty all
the qualifying properties. Hence, stable(Il;) consists of two stable models which are obtained
from the second and the third one and which are {p} and {q¢}. 0

There are several approaches to compute the minimal models of a positive disjunctive
program [FHI91, FM91]. Fernandez et al. [FLMS93] use model trees to compute minimal
models. Inoue et al. [IKH92] use an extension of the model generation theorem prover
(MGTP) [FHI1] to directly compute the minimal models of the formulas obtained using
tri. Obviously much more work is needed to find efficient methods of answering queries and
computing the stable models of general logic programs.

2.4 Other Semantics of General Logic Programs

In this section we briefly describe some of the other approaches to the semantics of general
logic programs. For more detailed discussion see the paper by Apt and Bol in this issue.”
The research on finding a declarative semantics for general logic programs started with
the pioneering work of Clark [Cla78] and Reiter [Rei78]. Clark [Cla78] introduced the con-
cept of program completion to define a declarative semantics for negation as failure. In a
general logic program, the bodies of clauses with a predicate p in the head can be viewed as
“sufficiency” conditions for inferring p from the program. Clark suggested that the bodies
of the clauses can also be taken as “necessary” conditions, with the result that negative
information about p can be assumed if all these conditions are not met. More precisely, the
Clark’s completion of a general logic program II denoted by C'omp(Il) is obtained through

the following steps:

Step 1: All rules in II of the type (1) where Ag is p(t1,...,1x), are converted to clauses of
the type
Y, AV (X = )AL A (X = ) AAACAAGARAL A AR AL) D p(X, . X)) (5)

where, X; ... X} are variables not appearing in the original rule, and Y;,... Y} are variables
appearing in the original rule.

“Since the paper of Apt and Bol in this issue is on semantics of logic programs and discusses the various
semantics in detail our treatment of semantics other than the stable model semantics is brief.
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Step 2: For each predicate p if

By D p(Xi,. ., Xi)

E, O p(X1, ..., X5

are all the clauses with p in its head that are generated in Step 1 (with each F; of the form
then C'omp(1l) contains the first order formula

Step 3: For each predicate ¢ if there is no rule with ¢ in its head in the program II then
Comp(Il) contains the first order formula

VXl .. .VXk_'Q(Xl, Ce ,Xk)

Comp(Il), Clark’s completion of a general logic program II contains the first order formulas
generated in Step 2 and Step 3 above and the corresponding equality theory [Cla78]. The
first order formulas obtained in step 2 and step 3 above allow us to infer negative facts.

Clark’s completion [Cla78] was the first declarative semantics of a general logic program.
It partially corresponded to the procedural NAF rule and the SLDNF-resolution. Clark
[Cla78] provided a constructive definition for completing a general logic program and used
it to prove the soundness of the NAF rule and the SLDNF-resolution. Moreover, for a large
class of programs (See for instance Theorem 2.5) the completion is computable, equivalent to
the stable model semantics and sound and complete with respect to the SLDNF-resolution.
The existence of Clark’s declarative semantics facilitated the development of a theory of
logic programs. It made possible first proofs of correctness of certain transformations of
logic programs such as fold/unfold [TS84], proofs of equivalence and other properties of
programs. It is still widely and successfully used for logic programming applications.

Unfortunately, Clark’s semantics appears too weak for representation of some type of
knowledge. Consider the following example due to Van Gelder:

Example 2.8 Suppose that we are given a graph, say,

edge(a,b) «—

edge(e,d) —

edge(d,c) «—

and want to describe which vertices of the graph are reachable from a given vertex a. The
following program seems to be a natural candidate for such description:

reachable(a) «—

reachable(X) « edge(Y, X), reachable(Y)
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We clearly expect vertices ¢ and d not to be reachable. However, Clark’s completion of the
predicate ‘reachable’ gives only

reachable(X) = (X = aV 3 Y(reachable(Y) A edge(Y, X)))

from which such a conclusion cannot be derived. The difficulty was recognized as serious
(for a good discussion of the subject see, for instance, [Prz89b]) and prompted the attempts
of finding other approaches to defining the semantics of logic programs. O

From this point the quest for an appropriate semantics for general logic programs pro-
ceeded in several directions which can be classified broadly and incompletely into three
different approaches.

The first approach was to put a syntactic restriction on the program. Chandra and
Harel [CH85] defined the concept of stratification and Apt, Blair and Walker [ABW88] and
Van Gelder [VG88] developed a fixpoint semantics for stratified programs. Przymusinski
[Prz88b] generalized the concept of stratification and introduced local stratification and
perfect models. The concept of local stratification was further extended by Przymusinska
and Przymusinski [PP88] when they introduced the concept of weak stratification.

The second approach [FBJ88, Fit85, Fit86, Kun87, Kun89, LM85, Myc83, VGRSI1] was
to use three-valued logic instead of the classical 2-valued logic. Fitting [FBJ88, Fit85, Fit86],
Kunen [Kun87, Kun89] and others [LM85, Myc83] used Kleene’s strong three-valued logic
while Van Gelder, Ross and Schlifp [VGRS91] used a different three valued logic to give the
well-founded semantics of a logic program. Przymusinski [Prz89a, Prz89d], Dung [Dun93a],
Van Gelder [VG89], and many others gave alternative formalizations of the well-founded
semantics.

The semantics of Fitting and Jacob differ from the well-founded semantics. For the
program consisting of the rule p « p, Fitting and Jacob assign the truth value unknown
to p while the well-founded semantics (also the perfect model semantics) assigns the value
false to p. The well-founded semantics is an extension of the perfect model semantics, unlike
Fitting and Jacob’s semantics.

The third approach is analogous to the traditional approach in Reiter’s default logic
[Rei80b] and Moore’s autoepistemic logic [Moo85] in which the definition of entailment is
based on the notion of beliefs. The stable model semantics [GL.88] used in this paper is
based on this approach. In [BS92], Baral and Subrahamanian introduce the concept of
stable classes as a generalization of the stable models.

Some of these approaches aimed at preserving reduction of the notion of entailment in
logic programming to entailment in “classical” two-valued or three-valued theories. Others
moved closer to non-traditional non-monotonic logics.

To give the reader a flavor of these developments, we introduce the well-founded seman-
tics, and compare it with the stable models semantics. We will follow the ideas from [BS91]

and [VG89.

Definition 2.3 [BS91] For any general logic program Il and a set of atoms S, consider
Fri(S) = a(I1°), where a and II° are as in Definition 2.1 of stable models. C, a set of
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interpretations® is said to be a stable class of 1 iff C' = {Fp(S): S € C'}.
A stable class is said to be a strict stable class if no proper subset of it is a stable class. O

For any general logic program II, stable models are the fixpoints of the operator Fy;. For
some programs this function may not have fixpoints. The intuition behind a stable class is
that even though Fp; may have no fixpoints (i.e. Fy does not cycle around a single point),
there might be a collection of interpretations so that Fiy cycles around them.

Example 2.9 Consider the following general logic program Ils:
a < not a
p —
This program does not have any stable models. But Il3 has two stable classes: Sy which is
the empty collection of interpretations and Sy = {I;, I3} where:
6L = {p}
I, = {Cl,p}
Thus, II3 has a unique non-empty stable class, viz. Si, and p is true in all interpretations
contained in 5. O

Lemma 2.7 [BS91, Fit91] Let [fp stand for least fixpoint and ¢ fp stand for greatest fix-
point. For any program II, {lfp(F{),qgfp(F3)} is a stable class, where Fj denotes the
operator that applies FIj twice. a

We now give a simple characterization of the well-founded semantics in terms of stable
classes.

Definition 2.4 [BS91] For a general logic program 1I, the stable class
{lfp(F3),qfp(F3)} defines the well-founded semantics of II. i.e.

1. a ground atom A is true in the well-founded semantics of I1 iff A € [ fp(F73), and
2. a ground atom A is false in the well-founded semantics of T1 iff A ¢ g fp(F}3).

3. a ground atom A is undefined in the well-founded semantics of II if neither of the
above two cases hold. O

It was shown in [VGRS91] that unlike the stable model semantics, the well-founded semantics
is defined for all general logic programs. Even though the stable model semantics is not
defined for I3 of Example 2.9 the well-founded semantics is defined and its answer to p and
a is true and unknown respectively.

In the following examples we show programs for which both semantics are defined but
give different answers to queries.

8 An interpretation is a set of ground atoms.
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Example 2.10 Consider the following program 11y :

p «— nota
p <« notb 1,

a «— noth
b«— nota

The above program has two stable models {p,a} and {p,b}. It has three stable classes,
{dp,a}}, {{p,b}}, and {{},{p,a,b}}. The stable class {{},{p,a,b}} corresponds to the well-
founded semantics of the above program. Therefore, p is a consequence of Il4 in the stable
model semantics, while the answer to p in the well-founded semantics is undefined. a

Example 2.11 Consider the following program I [VG88]:

q < notr
r « notq 1
p «— notp

p — notr

II; has a unique stable model, viz. {p,q}. Il5; has three strict stable classes (stable
classes which have no proper subset which is also a stable class), namely, Cy,Cy and Cs,
where C7 = {{q,p}}, C2 = {0,{p,q,r}} and C3 = {{r},{r,p}}. Of these, the class C,
corresponds to the well-founded semantics which says that p, ¢, r are all unde fined. Notice
that even though p is the consequence of II5 in the stable model semantics, its addition to
IT5 alters the set of consequences of Il5. In particular, we will no longer be able to conclude
q. O

Well-founded semantics can be considered an approximation of stable models in the sense
that the well-founded semantics is correct with respect to stable model semantics [Prz90a].
By “correct” we mean that if a program has stable models, then if an atom is true (resp.
false) with respect to the well-founded semantics then it is true (resp. false) with respect
to the stable model semantics.

For the broad class of weakly stratified programs [PP90b] the well-founded semantics
coincides with the stable model semantics.

There are several attempts to classify the various semantics of general logic programs.
One attempt uses the notion of complexity of query answering.® Another attempt is based on
establishing basic principles of nonmonotonic entailment. This approach was first suggested
in [Gab85] and further developed by Makinson, Lehman [Leh89] and others. For a good
application of this approach in the context of logic programming see [Dix91, Dix92]. Let
us illustrate the main idea by introducing one such property called cautious monotonicity
according to which an entailment relation (|=) defined by a logic programming semantics
should satisfy the condition

HE=a, HED
MU ] Eb (6)

9For example, in propositional case the well-founded semantics is computationally more efficient than the
stable model semantics. See Section 10 for more discussion on complexity issues.
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As mentioned in Example 2.11 entailment based on stable model semantics does not
satisfy this property while the well-founded semantics does [Dix91]. This fact can be and
often is viewed as an argument against stable model semantics. It can also be viewed as a
beginning of a search for broad classes of programs for which cautious monotonicity holds.
This is of course true for weakly stratified programs.

Let us suggest a broader class of programs for which we believe that the entailment
defined by stable model semantics is cautiously monotonic. We say that a general logic
program Il is strongly coherent if every subset (not necessarily proper) of II is coherent. A
similar property automatically holds for consistent first order theories. Namely, any subset
of a consistent theory is consistent. This of course is not the case for logic programs (see
Example 2.11 and the subset {p « not p}). Hence, strong coherence may be a better analog
of the consistency of first order theories than coherence. Our hypothesis is that strongly
coherent programs are cautiously monotonic.

The above discussion shows that despite substantial progress the nature of the the nega-
tion as failure operator not is still not fully understood. Our belief is that the best way to
improve the situation is to try to apply these semantics and their extensions to knowledge
representation problems and to compare the elegance and efficiency of the corresponding
representations. For a more comprehensive discussion on semantics of logic programs see
Apt and Bol’s paper in this volume.
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3 Extended Logic Programs

Categorical general logic programs discussed in the previous section provide a powerful
tool for knowledge representation in situations which warrant the use of the closed world
assumption'?. However, since every ground query to such programs is answered yes or no,
they do not allow a programmer directly to represent incomplete knowledge about the world.
To do that the language should allow for a third possibility - the unknown answer, which cor-
responds to the inability to conclude yes or no. In this section, we discuss “extended” logic
programs (ELP’s) [GLI1] (See also [Wag91, PAA92b, PW89]) that contain a second type
of negation = (called “classical”, “strong” or “explicit” by different authors who associate
different meanings to it) '' in addition to negation-as-failure not. General logic programs
provide negative information implicitly, through closed-world reasoning; an extended logic
program can include explicit negative information. In the language of extended programs,
we can distinguish between a query which fails in the sense that it does not succeed and a
query which fails in the stronger sense that its negation succeeds.

Formally, by an extended logic program, 11, we mean a collection of rules of the form
Lo~ Ly,....Ly,not Liyyq,...,n0t L, (7)

where the L’s are literals, i.e., formulas of the form p or —p, where p is an atom.

The set of all literals in the language of 11 will be denoted by Lit. By Lit(p) we denote the
collection of ground literals formed by the predicate p. The semantics of an extended logic
program assigns to it a collection of its answer sets - sets of literals corresponding to beliefs
which can be built by a rational reasoner on the basis of II. We will say that literal —p is
true in an answer set S if -p € 5. Recall that not p is true in S if p € 5. We will say that
II’s answer to a literal query ¢ is yes if ¢ is true in all answer sets of II, no if ¢'? is true in
all answer sets of II and unknown otherwise.

To give a definition of answer sets of extended logic programs, let us first consider programs
without negation as failure.

The answer set of Il not containing not is the smallest (in the sense of set-theoretic inclusion)
subset S of Lit such that

(i) for any rule Lo «— L1,..., Ly, from II,if Ly,... L, € S, then Ly € S;

(i) if S contains a pair of complementary literals, then S = Lit.

Obviously, every program II that does not contain negation as failure has a unique answer

set which will be denoted by b(11).

0Tnformally closed world assumption or CWA [Rei78] about a statement p means that p is assumed false
unless there is some evidence to the contrary

Tn this paper we refer to it as “classical” negation. As was shown by Pearce and Wagner, this negation
has close ties with constructive negation of Nelson [Nel49].

12For any literal [, the symbol [ denotes the literal opposite in sign to . i.e. for an atom a, if { = —a then
l=a, and if | = a then [ = —a.
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Definition 3.1 Let II be an extended logic program without variables. For any set S of
literals, let I1° be the logic program obtained from II by deleting

(i) each rule that has a formula not L in its body with L € S, and
(ii) all formulas of the form not L in the bodies of the remaining rules.

a

Clearly, II° does not contain not, so that its answer set is already defined. If this answer set
coincides with S, then we say that S is an answer set of 1I. In other words, the answer sets
of II are characterized by the equation

S = b(I1°). (8)
Consider, for instance, the extended program II; consisting of just one rule:
—g +— nol p.

Intuitively, this rule means: “q is false if there is no evidence that p is true.” The only
answer set of this program is {—=¢}. The answers that the program should give to the queries
p and ¢ are, respectively, unknown and false.

As another example, compare two programs that do not contain not:

P, P 7q

and

p q < 7p.

Let’s call them II; and Ils, respectively. Each of the programs has a single answer set, but
these sets are different. The answer set of 11, is {—p}; the answer set of 13 is {=p, ¢}. Thus,
our semantics is not “contrapositive” with respect to «— and —; it assigns different meanings
to the rules p « —¢ and ¢ « —p. The reason is that it interprets expressions like these as
inference rules, rather than conditionals. (For positive programs, both points of view lead
to the same semantics.) We can view this as an indication that the language of extended
programs includes classical negation, but not classical implication. (From an alternative
standpoint « can be viewed as a three-valued or a constructive implication and — as some
form of explicit negation.)

This approach has important computational advantages. Under rather general conditions,
evaluating a query for an extended program can be reduced to evaluating two queries for a
program that does not contain classical negation. Our extension of general logic programs
hardly brings any new computational difficulties.

Definition 3.2 An extended logic program is said to be inconsistent if it has an inconsistent
answer set. o

Proposition 3.1 An extended logic program II is inconsistent iff II has the unique answer
set Lat. O
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Syntactically, the class of general logic programs is a subclass of the class of extended logic
programs. For any general logic program its stable models coincide with its answer sets.
Notice however, that whenever a program not containing — answers no to a query ¢ under
the stable model semantics the answer to the same query under the answer set semantics
will be unknown.

Since general logic programs are also extended logic programs Example 2.1 is also an example
of an extended logic program with no answer sets. Similarly, Example 2.2 is an example of
an extended logic program with multiple answer sets.

Let us now show that extended logic programs can be reduced to general logic programs.
We will need the following notation:

For any predicate p occurring in II, let p’ be a new predicate of the same arity. The atom
P (X1,...,X,) will be called the positive form of the negative literal ~p(X7,..., X,,)). Every
positive literal is, by definition, its own positive form. The positive form of a literal L will
be denoted by LT. IIT stands for the general logic program obtained from II by replacing
each rule (7) by

Ly — Lf,. ... L} not L ... not LT

For any set S C Lit, St stands for the set of the positive forms of the elements of S.

Proposition 3.2 [GLI0] A consistent set S C Lit is an answer set of II if and only if S* is
a stable model of TI*. O

Proposition 3.2 suggests the following simple way of evaluating queries in extended logic
programs. To obtain an answer for query p run queries p and p’ on the program IIT. If II*’s
answer to p is yes then II'’s answer to p is yes. If II™’s answer to p’ is yes then II’s answer to
P 1s no.

The next proposition is an immediate consequence of Propositions 3.2 and 2.1.

Proposition 3.3 [GL90] An extended logic program II is categorical if
(a) I is stratified, and
(b) The answer set of IIT does not contain atoms of the form p(t), p'(). O

3.1 Representing Knowledge Using Extended Logic Programs

In this section we demonstrate the applicability of extended logic programs for formalization
of reasoning with incomplete information. More examples and discussions on the subject

can be found in [GLI1], [PAA91a], [KS90], [PAA].

Example 3.1 Let us go back to the bird’s story from Example 2.5 in which we knew that
birds typically fly, that penguins are exceptions to this rule - they are non-flying birds - and
that our information about penguins, birds and flying objects is complete. Let us first see
how this information can be expressed in the language of extended logic programs. Notice
that B from Example 2.5, viewed as an extended logic program, fails to answer no to
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queries penguin(tweety) and flies(sam), and therefore is not adequate for our goal. This
is, of course, not surprising, since the closed world assumption, which is responsible for the
correctness of answers given by B under the stable model semantics, is no longer present in
B under the answer set semantics. To represent the information correctly we need to express
the closed world assumption in the language of extended logic programs. This can easily be
done by adding to B the following rules

cl. =bird(X) « not bird(X)

c2. mpenguin(X) «— not penguin(X)

c3. ~flies(X) < not flies(X)

Notice that the program assumes that birds are the only flying objects in the universe. The

resulting extended logic program B; is equivalent to the original general logic program B5.
O

It is possible to show that this is always the case. More precisely, we define the closed
world interpretation CW (1) of a general program II to be the extended program obtained
from II by adding the rules

p(Xq,..., X)) — not p(Xq,...,X,) (9)

for all predicate constants p from the language of II, where X7,..., X, are distinct variables,
and n is the arity of p. The following proposition shows that the answer sets of CW(II) are
indeed related to the answer sets of Il as we expect. Recall that H B stand for the set of all
positive ground literals in the language of II.

Proposition 3.4 If S is an answer set of a general logic program II, then
SU{-A : Ae HB\ S} (10)

is an answer set of CW(II). Moreover, every answer set of CW(II) can be represented in
the form (10), where S is an answer set of II.
O

Example 3.2 Let us now assume that the specification from Example 2.5 is expanded
by a complete list of wounded birds and the following knowledge about their flying ability:
wounded birds may or may not fly. Our task is to incorporate this information into the
program.

Obviously, the full closed world assumption for flying birds is not applicable in this situation
and should be removed from the specification. We still assume that non-birds and penguins
do not fly, which can be expressed by two rules

nl. =flies(X) « penguin(X)
n2. —flies(X) « —bird(X)

Notice that the rule n2 reads as if X is not a bird then X does not fly, which corresponds
to our specification. This is different from the rule
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= flies(X) < not bird(X)

which has an epistemic character and says that if X is not believed to be a bird then X does
not fly.

The next two rules encode our general knowledge about wounded birds. The rule 22 cancels
the application of the default 1 (see program B below) to wounded birds and, as the corre-
sponding rule 3 for penguins, can be viewed as a formalization of the inheritance principle.

s2. bird(X) « wounded_bird(X)

i2. ab(rl, X) « wounded_bird(X)

Finally the rule ¢4 expresses the closed world assumption for wounded birds
cd. ~wounded_bird(X) « not wounded_bird(X)

Let us use these rules together with some facts about particular birds, say,
fl. berd(tweety) «—

2. penguin(sam) «—

3. wounded_bird(john) «—

Now we will show that the program B,

L. flies(X) « bird(X), not ab(rl, X)

2. bird(X) « penguin(X)

3. ab(rl, X) « penguin(X)

cl. =bird(X) « not bird(X)

2. ~penguin(X) < not penguin(X)

c4. ~wounded_bird(X) «+ not wounded_bird(X)
nl. = flies(X) « penguin(X) B
n2. = flies(X) « —bird(X)

s2. bird(X) «— wounded_bird(X)
i2. ab(rl, X') «— wounded_bird(X)
fl. bird(tweety) «—

2. penguin(sam) «—

3. wounded_bird(john) «—

has a unique consistent answer set. First let us notice that the general logic program By is
stratified with a stratification

Py = {bird, penguin, wounded_bird}

Py = {bird, penguin’, wounded_bird'}

Py, = {ab}

Ps={fly’, fly}

Using the Lemma 2.4, it is easy to show that there is no ground literal L such that the
answer set S contains L and LT. In virtue of Proposition 3.3, this implies that By has a
unique consistent answer set. Using this fact and the Lemma 2.4, it is easy to show that By’s

answer to the query flies(tweety) is yes, and that the queries flies(sam) and flies(john)
are answered no and unknown, respectively. a
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Example 3.3 Let us now modify the specification from Example 3.2 one more time by
removing the closed world assumptions for all predicates from our language. Let us also
assume that Tweety, Opus, and Sam are birds; Sam is a penguin; Tweety is not; and that
we do not know about Opus. Notice that since Opus may be a penguin, we do not want to
conclude that it flies. How can we represent this information?

The first natural idea seems to use B} obtained by removing the closed world assumptions
(i.e. removing cl, ¢2 and c4) from Bs. Unfortunately, this does not work. Indeed, consider
the query flies(opus). Since B} cannot prove that Opus is a penguin or a wounded bird, it
is forced to conclude that Opus flies, which contradicts our specification.

This is again not surprising, since the corresponding cancellation axioms were written
under the closed world assumptions and are too weak for an open world case. The more
general form of these axioms are:

ab(rl, X) « not ~wounded_bird(X)
ab(rl, X)) <« not =penguin(X)

These axioms stop application of rule 1 for any X which may be a non-flying bird according
to our specification. Two other necessary additions:

apenguin(X) «— —bird(X)

and

—wounded_bird(X) « —bird(X)

are needed to account for the contrapositive character of implication.

The resulting program Bs

L. flies(X) « bird(X), not ab(rl, X)
2. bird(X) « penguin(X)

nl. = flies(X) « penguin(X)

n2. = flies(X) « =bird(X)

s2. bird(X) «— wounded_bird(X)
1. bird(tweety) «—

2. penguin(sam) «—

3. wounded_bird(john) «—
ab(rl, X) « not ~wounded_bird(X)
ab(rl, X)) <« not =penguin(X)
—penguin(X) «— =bird(X)
—wounded_bird(X) « —bird(X)

B3

is more cautious than Bj. It agrees with B} on queries about Tweety and Sam but all inquires
about properties of Opus (except his being a bird) are (correctly) answered as unknown.

The resulting program works properly if it is used in conjunction with facts formed from
predicates bird, penguin and wounded_bird. It is also possible to show that for any query [
if B3 =1 then By |= [, i.e. Bs is correct w.r.t. Bs.

If, however, we allow facts of the form = flies(X), Bs may become inconsistent. In this case,
inconsistency may be avoided by replacing the rule 1 by a weaker rule
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flies(X) « bird(X), not ab(rl, X), not = flies(X). (11)

Let us denote the resulting program by By. It is possible to show that for any set of facts not
containing facts of the form = flies(t), where t is an arbitrary ground term, programs Bs and
B, are equivalent. For a general theorem to this effect see [GP93b]. This observation leads
us to a translation of normative statements to extended logic programs which is different
from the one suggested in Section 2. Namely,

a normative statement of the form “A’s are normally B’s” is represented by the rule

r: b(X) « a(X),not ab(r, X), not =b(X) (12)

Intuitively, the condition not ab(r, X) in the body of (12) is used to eliminate exception
to the rule r, while the condition not =b(X) in the body of (12) is used to eliminate possible
inconsistency because of exception to the conclusion of the rule. This more complex rule
should be used only if updates of the form =b(¢) are allowed by our specification.

The weak exception to the above normative statement implying that the above default
is not applicable to ¢’s is represented by the rule

ab(r, X') « not =¢(X) (13)

and the strong exception to the above normative statement implying that D’s are not B’s is
represented by the rule

—b(X) — d(X) (14)

Note that the weak exceptions (wounded birds) differ from the strong exceptions (pen-
guins). For penguins we would like to conclude that they do not fly, while for wounded birds,
we do not want to conclude either that they fly, or that they do not fly. Also, we no longer
need rules of the kind ab(r, X) < not =d(X). This is taken care of by the rule (12).

It should be noted that not is used only in particular cases: for representing normative
statements and weak exceptions, for representing the CWA and for representing “unknown”
information. For all other cases the classical = is used. This is illustrated in the program Bs
below.

Finally, let us see how we can use this program to model the behavior of the carpenter from
Example 2.5. Since we are more conscious in our conclusions about flying abilities of birds,
the rule 4 (from Example 2.5) becomes insufficient. It can be replaced by the following
informal rule guarding the carpenter’s actions: “Do not make a top of the cage for birds
known to be non-flying but make it otherwise.”

The following two rules formalize this in the language of extended logic programs:

—make_top(X) «— = flies(X)
make_top(X) « not —flies(X)

The complete program Bj, as given below,
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—make_top(X) « = flies(X)

make_top(X) « not —flies(X)

flies(X) « bird(X), not ab(rl, X), not = flies(X)
2. bird(X) « penguin(X)

nl. =flies(X) « penguin(X)

n2. —flies(X) « —bird(X)

s2. bird(X) «— wounded_bird(X) Bs
fl. bird(tweety) «—

2. penguin(sam) «—

3. wounded_bird(john) «—
ab(rl, X) <« not ~wounded_bird(X)
—penguin(X) «— =bird(X)
—wounded_bird(X) « —bird(X)

provides an alternative model of the reasoning used by the judge to justify his decision.
Because of its “cautious” approach, the authors prefer it to the formalization in Example
2.5. [BGK93] describes the precise relation between Bs and B and elaborates why Bs is
preferable to B.

Let us now prove that the above program, taken in conjunction with consistent (positive and
negative) facts formed by predicates bird, penguin, wounded_bird, and flies is categorical.

It is easy to see that BF is stratified with a stratification
Py = {bird, penguin, wounded_bird},

P = {ab},

Py = {flies'},

Py = {flies}, and

P, = {make_top,make_top'}.

Now let us show that there is no constant ¢, such that the answer set S of B contains
flies(c) and flies’(¢). Suppose that flies’(¢) € S. By Lemma 2.4, flies(c) € S iff the

premise

bird(c), not ab(rl,c), not flies'(c)

of rule (11) is satisfied by S, which is obviously not the case.

A similar argument works for make_top. By Proposition 2.2, this implies that Il is categorical.

a

It is worth noting that the above techniques allow us to express priorities between de-
faults. Consider for instance the default “Things normally do not fly”. It can be written
as

~flies(X) «— thing(X), not ab(r2, X), not flies(X)
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where 72 is the name of this rule. This default shall not be applicable to birds (which are
also things), whose flying abilities are determined by more specific information. This means
birds are weak exceptions to rule r2 which can be expressed by the rule

ab(r2, X)) « not=bird(X)

The resulting program together with rules expressing the subclass-class relationship between
birds and things gives a correct formalization of the extended hierarchy.

The next example from [GL90] demonstrates how extended logic programs can be used
to reason about unknown information in the context of deductive databases.

Example 3.4 Consider a collection of rules &.

eligible( X)) «— highGPA(X)

eligible( X') «— minority(X), fairGPA(X)
—eligible( X)) «— —fairGPA(X), ~highGPA(X)
interview( X ) «— not eligible( X'), not —eligible( X)

&

=

used by a certain college for awarding scholarships to its students, where highGPA and
fairG P A represent possible examination scores. The first two rules are self explanatory (we
assume that variable X ranges over a given set of students). The third rule says that X
is not eligible if his GPA is neither fair nor high, while the fourth rule can be viewed as a
formalization of the statement:

“The students whose eligibility is not determined by the first three rules should be interviewed
by the scholarship committee.”

In its epistemic form the rule says : “interview(X) if neither eligible( X') nor —eligible( X) is
known”. In general, the statement “the truth of an atomic statement p is unknown” can be
represented by

not p, not —p. (15)

Let us now assume that the above program is to be used in conjunction with a database DB
consisting of literals specifying values of the predicates minority, highGPA, fairGPA. We
do not assume completeness of the database. Some of the entries about the GPA and the
minority status may be missing.

Consider, for instance, the DB consisting of the following two facts about one of the
students:

5. fairGPA(ann) «

6. —highGPA(ann) «—
(Notice that DB contains no information about the minority status of Ann.) Intuitively, it
is easy to see that rules 1.-6. allow us to conclude neither eligible(ann) nor —eligible(ann).
Therefore the eligibility of Ann for the scholarship is unknown, and by rule 4, she must be

interviewed. Formally, this argument is reflected by the fact that program &; consisting of
rules 1.-6. has exactly one answer set:

{fairGPA(ann), —highGPA(ann), interview(ann)}.
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However, if Mike is a student with highGPA or a minority student with a fairGPA the
corresponding program will entail eligible(mike). O

The representation (15) works properly for categorical extended logic programs. The corre-
sponding representation in the more general cases will be discussed in Example 5.3.

Example 3.5 In this example, we modify the program Y from Example 2.6 to allow tem-
poral projection with incomplete knowledge about the initial situation. The law of inertia is
expressed as:

ry: holds(F,res(A,S)) « holds(F,S), not ab(r1, A, F,S), not =holds(F,res(A,S))
ry o —holds(F,res(A,S)) « —holds(F,S), not ab(ry, A, F, S), not holds(F,res(A,S))
The effects of actions are represented by

holds(loaded, res(load, S)) «—

and
—holds(alive, res(shoot, S)) «— holds(loaded, S)

To represent the priority of the effect rules over the inertia rule we have the cancellation
rules:

ab(ry, load, loaded, S) «—

and

ab(ry, shoot, alive, S) « not =holds(loaded, S) (16)

Let so be the initial state and suppose we are given that

holds(alive, s¢) «—

and

—holds(loaded, sg) .

It is easy to see that the resulting program entails

holds(alive, res(shoot, s9)) and

—holds(alive, res(shoot, res(wait, res(load, sg)))).

Now suppose we have incomplete information about the initial state. i.e. we know
holds(alive, sq),

but we have no information about the gun being initially loaded. The resultant program
still entails

—holds(alive, res(shoot, res(load, so)))

but remains undecided about
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holds(alive, res(shoot, sg)).

Notice that, as in the birds example above, we needed to replace the cancellation rule
from Example 2.6 by a stronger rule (16). If this were not done, the program would produce
the counter-intuitive conclusion
holds(alive, res(shoot, sg)).

It can be shown that the above program is an extension of program ) and is categorical.
O

The examples demonstrate the power of extended logic programs as a knowledge rep-
resentation language and outline basic ideas of the methodology of representing knowledge
about action and time.

3.2 Other Semantics of Extended Logic Programs

So far we based our discussion on the answer set semantics of extended logic programs.
Several other semantics of extended logic programs are suggested in the literature [AP92,
PAA91c, PAA92a, PAA92b, Prz90a, KS90]. We now discuss some of them.

The formulation of well-founded semantics of general logic programs in [BS91] can be
extended to define the well-founded semantics [Prz90a] of extended logic programs. More
precisely, let us consider G(S) = b(I1°). Then for any extended logic program II, the
fixpoints of Gy defines the answer-set semantics, and {lfp(G%), 9fp(G%)} defines the well-
founded semantics. A literal [ is true (resp. false) w.r.t. the well-founded semantics of an
extended logic program 1 if [ € Ifp(GF) (resp. | & gfp(GF)). Otherwise [ is said to be
unde fined.

Pereira et al. [PAA92a] show that this definition gives unintuitive characterizations for
several programs.

Example 3.6 Consider the program Il

a «+ not b

b+ not a

—d —

The well-founded semantics infers —a to be true and a and b to be unknown with respect
to the above program. Intuitively, b should be inferred true and a should be inferred false.
O

Example 3.7 Consider the program II;

b < not —b

and the program I,

a < not —a

—a «— not a

The well-founded semantics infers b to be true with respect to Iy and infers b to be unde fined
with respect to II; U Il; even though Il does not have b in its language. O

To overcome the unintuitiveness of the well-founded semantics Pereira et al. [PAA92a]
propose an alternative semantics of extended logic programs which we refer to as the Q-well-
founded semantics. We now define the Q-well-founded semantics.
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Definition 3.3 [PAA92a] Let 11 be an extended logic program. S(II) the seminormal ver-
sion of II is obtained by replacing each rule of the form (7) by the rule:

Lo~ Ly,..., Ly, not Lyiq1,...,n0t L,,not =Lg (17)
O

Definition 3.4 [PAA92a] For any extended logic program 11, the function Qy is defined as
Qu(X) = Gu(Gsan (X)) 0

Definition 3.5 [PAA92a] A set of literals E is said to be an -extension of an extended
logic program II iff

1. F is a fixpoint of Q.

3. I is a subset of (Ggm(F)) a

Pereira et al. [PAA92a] show that if an extended logic program has an Q-extension then
Q1 is a monotonic function and hence has a least fixpoint. The Q-well-founded semantics
is defined as {{fp(n), Gsan(Ifp(Qm))}. Entailment w.r.t. the Q-well-founded semantics
is defined as follows: A literal [ is true (resp. false) w.r.t. the Q-well-founded semantics
of an extended logic program I if [ € [fp(Qn) (vesp. | & Gsany(lfp(Q2m))). Otherwise [ is
unde fined.

Example 3.8 [PAA92a] Consider the following program Il;

¢+ notb

b+ not a

a < not a

—b

The above program has {c, b} as the only Q-extension. The Q-well-founded semantics is

given by {{c, ~b}, {c,a, ~b}}. 0

Before we end this section we would like to briefly mention another class of semantics of
extended logic programs based on contradiction removal [Dun91b, Wag93, PAA91a, GM90].

To illustrate the problem let us consider the program Ily:

1. p+« notgq
3. 8§ «—

Obviously, under the answer set semantics this program is inconsistent. It is possible to
argue however that inconsistency of Il can be localized to the rules (1.) and (2.) and
should not influence the behavior of the rest of the program, i.e. Il ’s answer to query s
should be yes and the rules causing inconsistency should be neutralized. There are several
approaches to doing that. One, suggested in [KS90], modifies the answer set semantics to
give preference to rules with negative conclusions (viewed as exceptions to general rules).
Under the corresponding entailment relation Il concludes s and —p. Another possibility
is to first identify literals responsible for contradiction, in our case ¢. After that ¢ can be
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viewed as abducible!® and hence II; will entail s, =p and ¢. Another possibility arises when
Q-well-founded semantics is used as the underlying semantics of I14. In this case we may want
to have both ¢ and —¢g undefined. This can be achieved by expanding Il; by new statements
q « not ¢ and =q < not =q. The resulting program Il5 entails (w.r.t. the Q-well-founded
semantics) -p and s and infers p to be false. The last idea is developed to a considerable

length in [PAA91a, PA93].

13 Abducible literals are literals that can be assumed true if necessary. For more details see Section 8.
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4 Disjunctive Logic Programs

In this section, we will discuss a further extension of the language of extended logic programs
by the means necessary to represent disjunctive information about the world. Minker pio-
neered the use of disjunctions in the context of logic programming.'* Tn [Min82] he considers
positive disjunctive logic programs defined as collections of first-order clauses of the form

BiAN...NB, DA V...VA, (18)

where A’s and B’s are atoms. The type of incompleteness expressible in these logic programs
is, however, rather limited since their semantics suggested in [Min82] is closely related to
the notion of minimal model and implicitly assumes a form of the closed world assumption.
This work was generalized and/or modified by various authors (an overview can be found
in [PP90a], [LMRI2]) but most of the approaches still assume the closed world assumption,
and hence do not allow the representation of such simple forms of incompleteness as missing
information in the database tables, null values and partial definitions.

In this section, we discuss another approach to expressing disjunctive information based
on the expansion of the language of extended logic programs by a new connective or called
epistemic disjunction [GLI1]. (Notice the use of the symbol or instead of classical V. The
meaning of oris given by the semantics of disjunctive logic programs and differs from that
of V. The meaning of a formula AV B is “A is true or B is true” while a rule Aor B « is
interpreted epistemically and means “A is believed to be true or B is believed to be true.”
While for any atom A, AV = A is always true, it is possible that A or =A may not be true.)

By disjunctive logic programs we will mean a collection of rules of the form

Loor...orlLy « Lyy1,...Ly,not Ly, ..., not L, (19)

where L;’s are literals. When the [L;’s are atoms we refer to the program as a normal
disjunctive program. When m = n and the L;’s are atoms, we refer to the program as a
positive disjunctive logic program.

The definition of an answer set of a disjunctive logic program II [Prz91, GL91] is almost
identical to that of extended logic programs. Let us first consider disjunctive logic programs
without negation as failure.

An answer set of a disjunctive logic program'® Il not containing not is a smallest (in a sense
of set-theoretic inclusion) subset S of Lit such that

(i) for any rule Lo or... orLy « Lgyy ... Ly from 1, if Lyyq, ..., Ly, € 5, then for some 4,
0<:<k, L;eS;

(i) if S contains a pair of complementary literals, then S = Lit.

4Tndependently, Loveland [Lov87] considered extensions to Horn logic programs which he called near Horn
logic programs. His main concern was efficient implementation [Lov87, SL88].

5For positive disjunctive logic programs this definition is similar to Minker’s [Min82] original definition.
For a precise relationship see Proposition 4.4.
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Unlike extended logic programs without not, a disjunctive logic program without not may
have more than one answer sets. For example the program

p(a)or p(b)
has two answer sets {p(a)} and {p(b)}. We denote the answer sets of a disjunctive logic

program Il that does not contain not by a(Il). We are now ready to define the answer set
of an arbitrary disjunctive logic program.

A set S of literals is an answer set of a disjunctive logic program II if S € a(I1¥) where IT°
is defined in Definition 3.1.

We expand the notion of query to a formula made of literals, A and or. Let S be a set of
literals, p be an atom and f and ¢ be formulas.

pis true in S if pisin S and false in S if =pisin S.
fAgistruein Siff fistruein S and ¢ is true in S.
fAgis falsein S iff fis falsein S or g is false in S.
for gistruein S iff f is true in S or ¢ is true in S.

for gis falsein S iff fis false in S and ¢ is false in S.
6. —f is true(false) in S iff fis false (true)in S.

G o =

A formula is said to be true(false) with respect to a disjunctive logic program if it is
true( false) in all answer sets of the program; otherwise it is said to be unknown.

We again stress the difference between the epistemic or and the classical V. Consider a
program consisting of the rule

aor b«

This program has two answer sets {a} and {b}. The truth of formula (a or —a) is unknown

with respect to this program, i.e., unlike @ V —a, this formula is not a tautology.

To do some simple reasoning in disjunctive logic programs we will use a version of the
“supportiveness” Lemma 2.4.

Proposition 4.1 For any answer set S of a disjunctive logic program II:

(a) For any ground instance of a rule of the type (19) from II, if

{Liy1... Ly} €S and

{Lpy1...L,}NS =10

then there exists an ¢, 0 < ¢ < k such that L; € S.

(b) If S is a consistent answer set of Il and L € S then there exists a ground instance of a
rule of the type (19) from II such that

{Liy1... Ly} €5, and

{Lpy1...L,} NS =0, and

{Lo... Ly} NS ={L}. O

The definition of stratification can also be applied to disjunctive logic programs that do not
contain 1. The corresponding theorem guarantees existence of answer sets for such programs.
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Theorem 4.2 Any stratified disjunctive logic program that does not contain — has an
answer set. 0

Let us look at a few simple examples of disjunctive logic programs, and their answer sets.
Let Iy = {p(a) or p(b) «}.

It is easy to see that {p(a)} and {p(b)} are the only answer sets of Il since they are the only
minimal sets closed under its rule.

Let Iy = o U {r(X) « not p(X)}.

Obviously, this program is stratified and hence by Theorem 4.2 has an answer set S. By
part (a) of the Proposition 4.1, S must either contain p(a) or contain p(b). Part (b) of the
Proposition 4.1 guarantees that S does not contain both. Suppose S contains p(a). Then,
by part (a), S contains r(b), and by part (b), it contains nothing else, and hence, {p(a),r(b)}
is an answer set of II;. Similarly, we can show that {p(b),r(a)} is an answer set of II; and
that there are no other answer sets.

4.1 Representing Knowledge Using Disjunctive Logic Programs

The following examples demonstrate the methodology of representing disjunctive informa-
tion in commonsense reasoning. We start with representing the CWA in the presence of
disjunctive information.

The following example shows the interplay between epistemic disjunction and the repre-
sentation of the closed world assumption from previous sections.

Example 4.1 We will first use the representation of the CWA in (9). Let Iy = {p(a) or p(b) «—
b, and Iy = Ilo U {=p(X) « not p(X)} and assume that the language of Il contains three
constants a, b and c¢. It is easy to check that II; has two answer sets:

{p(a),=p(b), ~p(c)} and {=p(a), p(b), ~p(c)}.
and hence Iy answers “no” to the query p(c¢) and answers “unknown” to the queries p(a)
and p(b), which corresponds to our intuition.

Notice that Iy answers no to the query p(a) A p(b) (recall that Ily’s answer to the same
query is unknown). This shows that the addition of the closed world assumption supplies
the epistemic or with some degree of exclusiveness not present in it originally. The appro-
priateness of this effect for knowledge representation is an interesting subject for further
investigation.

The effect can be avoided by using a weaker form of the CWA which views a and b as
exceptions. This form can be expressed by the rules:

—p(X) — not p(X), not ab(r, X)
ab(r,a) «—

ab(r,b) «—

where r is the name of the first rule.
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11y with the above three rules has the answer sets

{p(a),ab(r,a),ab(r,b),—p(c)} and {p(b),ab(r,a),ab(r,b),—p(c)}.

[ts answers to the queries p(a), p(b) and p(c) is the same as Ily’s while its answer to the
query p(a) A p(b) is unknown. O

The next example was used in [Poo89] to demonstrate difficulties with representing dis-
junctive information in Reiter’s default logic. It is worth noting that it has a natural repre-
sentation in the language of disjunctive programs.

Example 4.2 Consider the following story [Poo89]:

Normally, a person’s left arm is usable, but a person with a broken left arm is an exception,
and similarly for the right arm. Suppose also that we remember seeing Matt with a broken
left arm or a broken right arm but we do not remember which.

Let us assume that our specification only allows updates about broken arms and that we
have CWA for “broken arms” predicates.

Let us represent this information in the language of disjunctive logic programs.

Under our assumptions, the first statement of the specification can be translated into
Ihusable(X) « not ab(l, X)

ab(l, X') « lh_broken(X)

rh_usable(X) « not ab(r, X)

ab(r, X') « rh_broken(X)

The second statement may be represented as

lh_broken(matt) or rh_broken(matt) «.

CWA about the broken arms is expressed by the following two rules.

lh_usable(X) « not lh_usable( X)

—rh_usable(X) <« not rh_usable(X)

The disjunctive logic program consisting of the above seven rules has two answer sets,
{lh_broken(matt), ab(l,matt), rhusable(matt), ~rh_broken(matt)} and
{rh_broken(matt),ab(l, matt),lh_usable(matt), ~rh_broken(matt)} and therefore infers
rh_usable(matt) or [h_usable(matt)

which corresponds to our intended specification. Correctness of our method of representa-
tion does not depend on the above assumptions. Representations using more complicated
translations of normative statements (such as 12 and 13 in Section 3.1) work equally well.
However, as shown in [Poo89], similar versions of the default logic representation lead to
counter-intuitive results.

O
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In the next example we consider a knowledge base containing a default rule about pred-
icate a and show that caution should be exercised when expanding the knowledge base by
new disjunctive rules about a.

Example 4.3 Suppose that a language £ contains a list of names such as muke, john,
mary, and assume that a disjunctive logic program, Ils, includes the following complete list
of professors in a computer science department:

L. p(mike,cs) «

2. p(john,cs)

To express the completeness of the list, we will again use the closed world assumption

3. p(X,Y) « not p(X,Y).

Let us also assume that we want to represent the following information about the department:

(i) “As a rule, professors in the computer science department have vax accounts. This rule
is not applicable to Mike. He may or may not have an account.”

In most general form this is formalized as
4. a(X,vax) — p(X,es), not ab(rd, X), not —a(X,vax),

where a(X,Y) stands for “X has an account on Y,” and ab(r4, X') means “(4) is not applicable
to X.” The second statement is translated as

5. ab(rd, mike) —

It is easy to see that the resulting theory entails a(john,vax), but stays undecided about
Mike.

Suppose now, that we have learned the following additional information:

(i) “every computer science professor has one of the vax or IBM accounts, but not both.”

In the absence of any other information about computer accounts this can be represented
by the rules:

6. a(X,vax)or a(X,ibm) «— p(X, cs)
7. ma(X,0bm) — a(X,vaz), p( X, cs)
8. ma(X,vax) — a(X,1bm), p(X,cs)

It may appear that to find a formalization of both (i) and (ii) it suffices to merge their
formalizations. Unfortunately, this does not work. To see why let us notice that we expect
the resulting theory to conclude, among other things, that John has a vax account. This is,
however, not the case, since the merge will have two belief sets: one containing a(john,vax)
and another containing a(john,ibm). The problem occurs because of the two contrary rules
(4) and (8) which can both be applied to the same professor X, and no priority is given to
the rule (4). The correct solution requires a finer analysis of the situation. First we should
notice that the rule (4) should be used whenever possible and that the new information is
only applicable to the professors which are exceptions to (4). Two types of exceptions are
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possible: firstly, we may know that a professor X does not have a vax account. In this case,
we should incorporate the information that X has an ibm account. This is easily done by
adding the rule:

9. a(X,ibm) «— —a(X,vazx), p(X,cs).

Now the predicate a is unknown only for the professors known to be abnormal. For such
professors we have reason to prefer neither :bm nor vax accounts and this lack of preference
is reflected by the rule

6’. a(X,vax)or a(X,ibm) «— p(X, es),ab(rd, X).
Our new formalization, D is:

L. p(mike,cs) «—

2. p(john,cs) «—

3. p(X,Y) « not p(X,Y)

4. a(X,vax) — p(X,es), not ab(rd, X), not ~a(X,vax)
5. ab(rd, mike) «— D
6. a(X,vax) or a(X,ibm) «— p(X,cs),ab(r4, X)
7. ma(X,ibm) « p(X, cs),a(X,vax)

8. ma(X,vax) «— p(X,cs),a(X,1bm)

9. a(X,ibm) — —a(X,vax), p(X,cs)

The new formalization, D implies that john has a vax account while mike has either a
vax account or an tbm account but not both. D apparently satisfies the specification and
may be used with any collection of facts formed by predicate symbols p and «a. a

4.2 Answering Queries

There has been considerable research in developing query answering methods for positive
disjunctive programs [MZ82, MR90, FM91, LMR92, HP88]. It should be noted that for pos-
itive programs minimal models coincides with answer sets. By using the renaming technique
(as in Section 3) of replacing negative literals =p by new positive atoms p’ we can extend
the query answering methods to answer queries in the presence of =. For disjunctive pro-
grams with not, Fernandez et al.and Inoue et al. [IKH92] have developed bottom-up query
answering methods.

In this section we present the query answering algorithm for disjunctive logic programs
of [IKH92], which is a bottom-up procedure based on computing the answer sets of a pos-
itive disjunctive logic program. It extends the approach of computing the stable models of
general logic programs as described in Section 2 to compute the answer sets of disjunctive
logic programs. Like the computation of the stable models, a disjunctive logic program
is transformed to a disjunctive program without not. [IKH92] show that the answer sets
of the transformed program that satisfy certain additional properties (similar to integrity
constraints in databases) are the answer sets of the original disjunctive program. In the trans-
formation we use new atoms that are constructed from the literals of the original program.
For each literal L, we add the new atoms L~ and L% to the language of the transformation.
Intuitively, L™ means L is believed to be true and L™ means L is not believed to be true.
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We also use some intermediate atoms denoted by X;’s. Recall that the symbol L denotes
the literal opposite in sign to L.

The transformation of IT ([IKH92]), ¢tr2(II) is obtained by translating each rule of the dis-
junctive logic program of the form (19) to the following disjunctive logic program (without
not)

Xoor...orX;or L;';H_lor cooor LY — Ly, ..o, Ly,
Lm—l—lHXO

L; HXO
LOHXO

Lr_n-l—l — Xk

LkHXk

Definition 4.1 Let II be a disjunctive logic program. Let M(try(Il)) denote the collection
of all the answer sets of tro(1l) and G(tr2(Il)) denote the answer sets in M(try(Il)) that
satisfy the following (qualifying) properties'®:

(a)An answer set can not have both L~ and L

(b)An answer set can not have both L~ and L*
(c)An answer set can not have both L and L
(d)An answer set can not have both LT and L
(e
)

An answer set can not have both L™ and (L)*
If an answer set has LT it must also have L.

We define answerset(Il) to be the set of minimal elements of the set {S : 5" € G(try(II))
and S is obtained from S by removing all atoms with 4+ and — in their superscript, and the
intermediate atoms X;’s } 0

Theorem 4.3 [IKH92] For any consistent disjunctive logic program II, answerset(I1) is the
set of answer sets of 1I. O

Example 4.4 [IKH92] Consider the following version of Example 4.2 from [IKH92].

lh_usable(X) « person(X), not aby(X)
rh_usable(X') « person(X), not aby(X)
aby(X) — =lh_usable(X)
aby(X) — —rh_usable(X)

person(a) «—

=lh_usable(a) or —rh_usable(a) «—

16In the context of databases such properties are encoded as integrity constraints.
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The transformation of II consists of the following program

21(X) or abf (X) « person(X)
aby (X) « x4(X)

lhousable(X) «— x1(X)

z9(X) or abf (X) « person(X)
aby (X) « x9(X)

rh_usable(X) « x2(X)

aby(X) — =lh_usable(X)

aby(X) — —rh_usable(X)
person(a) «—

=lh_usable(a) or —rh_usable(a) «—

try(11)

The answer sets of try(11) obtained using model generation techniques are
{person(a),~lh_usable(a), abi(a), rh_usable(a),abf(a), aby (a),za(a)}
{person(a),~lh_usable(a), abi(a), abf (a), abs(a)}

{person(a), =rh_usable(a), aby(a), lh_usable(a),ab(a), aby (a),z1(a)}
{person(a),—rh_usable(a), aby(a), aby (a),aby(a)}

The second answer set has abj (a) and does not have aby(a) and the fourth answer set has
aby (a) and does not have aby(a); hence they do not satisfy property (d) of Definition 4.1.
The first and the third answer set satisfy all the properties of Definition 4.1 and the answer
sets of 1I are obtained from them by removing all atoms with + and — in their superscript
and the atoms with predicate x. i.e. the answer sets of II are

{person(a),—lh_usable(a),abi(a), rh_usable(a)}
and {person(a),rh_usable(a),aby(a),lh_usable(a)}. O

Answer sets of disjunctive logic programs can be obtained using model generation techniques
[BS85, FM91, FH91, FM92, MB88]. Inoue et al. [IKH92] extend the model generation
theorem prover (MGTP) [FH91] to compute the answer sets of the program obtained using
try. Their method avoids using the intermediate atoms X;’s.

4.3 Other Approaches to Disjunctive Logic Programs

Minker [Min82] defines the model theoretic semantics for positive disjunctive logic programs
(viewed as first-order clauses of the form (18)) based on minimal Herbrand models. According
to this semantics, a literal is a consequence of a disjunctive program if and only if it is true
in every minimal Herbrand model of the program. The syntactic counterpart for inferring
negative literals, called the generalized closed world assumption, is defined as follows: (We
will use the terminology from [GP86].) A disjunction D of ground atoms is called essential
w.r.t. theory T if T |E D and no sub-disjunction of D is entailed by T. A ground atom is
called free for negation in T if it does not belong to any clause essential in 7. Let T be the
set of negations of all ground atoms free for negation in T'. Then

GOWA(T) =T.
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Minker [Min82] proves that for 7' with finite number of constants and no function symbols,
T UGCW A(T) classically entails a literal ¢ iff ¢ is true in all minimal Herbrand models of
T. This result was extended to arbitrary 7" in [GP86, She88].

The following proposition establishes the connection between Minker’s semantics and
answer set semantics of disjunctive logic programs.

Proposition 4.4 [Gel92b] Let II be a program consisting of rules of the form
Agor...or Ay — Apy1... A, (where A’s are atoms), and the closed world assumptions of
the form

—p(X) «— not p(X), for all predicates in II.
Now let (1) be II's first-order counterpart consisting of clauses
Ak-|—1/\---/\Am DAV ...V AL

Then for any literal query ¢, II’s answer to ¢ under answer set semantics coincides with the
answer to ¢ by a(Il) under Minker’s semantics. O

Minker’s GCWA was later extended by many people [YH85, GP86, GPP86] in several var-
ious directions. Several semantics have been proposed for normal disjunctive programs (dis-
junctive programs with not but without =) [LMR92, RM90, BLM92, BLM91, Ros89, Prz90b,
Sak89, BED92]. The semantics proposed in [Bar92] (DWFS — Disjunctive Well-Founded Se-
mantics) uses a fixpoint operator similar to the fixpoint operators used in [VGRS91, Prz89a]
to define the well-founded semantics and iterates it starting from a “nothing is known” initial
state until a fixpoint is reached. The semantics proposed in [BLM92] (GDWFS — Generalized
Disjunctive Well-Founded Semantics) uses a fixpoint operator which contains an additional
model theoretic part. Some of the other interesting semantics of normal disjunctive programs
suggested in the literature are the extended well-founded semantics of Ross [Ros89], station-
ary semantics by Przymusinski [Prz90b] and the possible world semantics by Sakama [Sak89].
Minker and Ruiz [MR93] discuss extensions of the various semantics of normal disjunctive
logic programs to disjunctive logic programs (They refer to it as extended disjunctive logic
programs. ).

The following examples give a flavor of the differences between the various semantics of
disjunctive logic programs.

Example 4.5 Consider the program D; consisting of the following rules:

pla) or p(b) «

pla) —

All semantics of normal disjunctive logic programs, except the possible model semantics

[Sak89] and the WGCWA [RLM89, RT88] infer p(b) to be false with respect to the above

program. The possible model semantics infers p(b) to be unknown. a

Example 4.6 Consider the program 114 of Example 2.10. DWFS and stationary semantics
infer p to be unknown with respect to the program Il;. But, GDWFS and the answer-set
semantics infer p to be true. a

Example 4.7 Consider the program II3 of Example 2.9. DWFS and stationary semantics
infer p to be true with respect to the program Il3 but II3 does not have any answer-sets. O
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Example 4.8 Consider the following program, D;

a+— notb
a < notc 3y Dy
bor ¢ «—

The extended well-founded semantics [Ros89], and the GDWFS do not infer a to be true from
the above program. But the stationary semantics, the DWFS and the answer-set semantics
infer a to be true. O

More detailed comparison of the various semantics of normal disjunctive logic programs
can be found in [Bar91, Dix91, Dix92]. [Bar91] gives a framework for the various semantics
based on iterating a fixpoint operator (also known as an information accumulating operator)
from a “nothing is known” initial state. Dix [Dix91, Dix92] studies the various semantics
based on their behavior as a nonmonotonic entailment relation.
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5 Epistemic Logic Programs

The framework of disjunctive logic programs is the most general form of logic programming
that we have discussed so far. In disjunctive logic programs we use two forms of negation,
the classical =, and the nonmonotonic not. The semantics of a disjunctive logic program is
defined in terms of answer sets. The answer to a query is true if it is true in all the answer
sets. But there is no way to reason in the language itself about a particular literal being
true in all the (or some of the) answer sets.

The following example demonstrates the need for an extension of the language of dis-
junctive logic programs that will allow such reasoning:

Example 5.1 Consider the following information. We know that

(A) Either “john” or “peter” is guilty (of murder).

(B) “ a person is presumed innocent if (s)he cannot be proven to be guilty”

(C) “a person can get a security clearance if we have no reason to suspect that (s)he is
guilty.”

Statement (A) can easily be written as a disjunctive rule:
Ay o gwilty(john) or guilty(peter) «—

If we try to write statement (B) in the language of disjunctive logic programs using not, we
have:
By @ presumed_innocent(X) « not guilty(X)

This however is not appropriate because the program consisting of A; and By has two answer
sets {guilty(john), presumed_innocent(peter)} and

{guilty(peter), presumed_innocent(john)}, and therefore presumed_innocent(john) is in-
ferred to be unknown. Intuitively, we should be able to infer that presumed_innocent(john)
is true. Hence, the operator not in the body of By is not the one we want.

Similarly, if we consider representing statement (' in the language of disjunctive logic pro-
grams using not, we have :

C1: cleared(X) < not guilty(X)

But, '} is not appropriate, because the program consisting of A; and (] has two an-
swer sets: {guilty(john),cleared(peter)} and {guilty(peter),cleared(john)}, and we infer
cleared(john) to be unknown. Intuitively, we would like to infer that cleared(john)is false.

Hence, we should expand our language and redefine answer sets in such a way that:

(B2) We would infer presumed_innocent(a) iff there is at least one answer set that does not
contain gulty(a).

(Cy) We would infer cleared(a) iff none of the answer sets contain guilty(a). O

To capture the intuition in (By) and (C3) in the above example, we use two unary
operators K and M [Gel92b] and add them to our language. Intuitively, K L stands for L
is known and M L stands for L may be believed. For a literal L, and a collection of sets of
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literals S, we say that KL is true with respect to S ( S | KL ) iff L is true in all sets in
S. ML is true with respect to S (S | ML ) iff [ is true in at least one set in 5. We say
SE-KLiff S} KL and we say S | -ML iff S £ M L. This means =KL is true with
respect to S iff there is at least one set in S where L is not true, and =ML is true with
respect to S iff there is no set in .S where L is true.

Using K and M we can represent the statements (B) and (C) in the above example by
the rules:

innocent(X) «— =K guilty(X)

and

cleared(X) « ~Mguilty(X)

We now define the syntax and semantics of epistemic logic programs which are obtained
by adding K and M to the language of disjunctive logic programs. We refer to a literal L
(without K or M) as an objective literal, and we refer to formulas of the form KL, ML, - K L

and M L as subjective literals.

An epistemic logic program is a collection of rules of the form:
Lior...orLy — Gyy1,...,Gp,not Lyiq,...,not L, (20)

where the L’s are objective literals and the GG’s are subjective or objective literals.

Let T be an epistemic logic program and S be a collection of sets of literals in the language
of T. By T we will denote the disjunctive logic program obtained from T by:

1. removing from 7' all rules containing subjective literals G such that S }£ G,

2. removing from rules in T' all other occurrences of subjective literals.

Definition 5.1 A set S will be called a world view of T if S is the collection of all answer
sets of 7. Elements of S will be called belief sets of T'. The program T will be called the
reduct of T w.r.t. S. O

We now limit ourselves to epistemic programs with a unique world view.

An objective literal is said to be true( false) with respect to an epistemic program if it is
true( false) in all elements of its world view; otherwise it is said to be unknown. A subjective
literal is said to be true( false) with respect to an epistemic program if it is true( false) in
its world view. Notice that subjective literals can not be unknown.

Example 5.2 Consider the epistemic logic program T:
L. guilty(john) or guilty(peter) «—

2. presumed_innocent(X) «— = Kguilty(X)
3. cleared(X) «— = Mguilty(X)

4. =presumed_innocent(X) « not presumed_innocent(X)
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5. = cleared(X) « not cleared(X)

Let Sy = {guilty(john), presumed_innocent(john), presumed_innocent(peter),
—cleared(john), —cleared(peter)}

and Sy = {guilty(peter), presumed_innocent(john), presumed_innocent(peter),
—cleared(john), —cleared(peter)}

and S = {Sl,SQ}

Since, M guilty(john) and M guilty(peter) are both true with respect to S,

S W = Mguilty(john) and S £ - Mguilty(peter), and therefore, T1° does not contain any
ground instance of rule 3. Similarly, S | = Kguilty(john) and S | =K guilty(peter) and
hence T,° consists of the rules:

guilty(john) orguilty(peter) «—
presumed_innocent(john) «—
presumed_innocent(peter) «—

—presumed_innocent(X) < not presumed_innocent(X)

= cleared(X) « not cleared(X)

The answer sets of T,° are Sy and Ss. Hence, S is a world view of T. It is possible to show
that S is the only world view of Ty [GP91] and therefore T} |= presumed_innocent(john),
Ty E presumed_innocent(peter), Ty | —cleared(john) and Ty | —cleared(peter) which
corresponds to our specification. a

Example 5.3 [Representing Unknown] Consider the extended logic program & from Fx-
ample 3.4. Recall that it consists of rules used by a certain college for awarding scholarships
to its students, and a rule saying “if the three rules do not determine the eligibility of a
student then (s)he should be interviewed.”

In Example 3.4 we state that for categorical extended logic programs (15) is an appropriate
representation of unknown information. In this example, we show that rule (15) is not
adequate for programs with multiple answer sets.

Assume that, in addition to the rules (1) - (4) of &, we have the disjunction
5. fairGPA(mike) or highGPA(muike) «—

The epistemic logic program T5 consisting of (1) - (4) from & and (5), has two answer sets:
Ay = {highGPA(mike), eligible(mike)}

and

Ay = {fairGPA(muke), interview(mike)},

and therefore the reasoner modeled by 75 does not have enough information to establish
Mike’s eligibility for the scholarship (i.e. answer to eligible(mike) is unknown). Hence,
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intuitively the reasoner should answer yes to the query interview(mike). But this is not
achieved by the above representation.

The intended effect is achieved by replacing (4) by the rule
4. interview(X) «— - Keligible( X), —K=eligible(X)

The epistemic logic program, &, obtained by replacing (4) in T5 by (4’) has the world
view A = {A;, Ay} where

Ay = {highGPA(mike), eligible(muke), interview(muke)},

Ay = {fairGPA(muke), interview(make)}.

Hence, & answers unknown to the query eligible(mike) and yes to the query interview(mike),
which is the intended behavior of the system. a

Hence, in general (for theories with multiple answer sets), the statement “the truth of an
atomic statement P is unknown” is appropriately represented by

not K P, not =K P. (21)

So far we only considered epistemic programs with a unique world view. The following
example shows epistemic programs that have multiple world views.

Example 5.4 Let T, consist of the rules

L. p(a)or p(b) «—

2. ple) «—

3. q(d) —

4. =p(X) — ~Mp(X)

The specification Ty has three world views:

Ay = {{q(d), p(c), p(a), =p(b), =p(d)}},
Az = {{q(d), p(c), p(b), =p(a), —p(d)}}, and
As = { {q(d), p(a), p(c), ~p(d)}, {q(d), p(b), p(c), =p(d)}}.

Intuitively As is preferable to the other two world views of Tj as it treats p(a) and p(b) in

p
p

the same manner (unlike A; and As) and can be used to answer queries with respect to Ty
For a detailed discussion on this phenomena see [Gel92b]. O

It remains to be seen if epistemic specifications with multiple world views will prove to
be useful for knowledge representation.
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6 Meta-logic Programming

In this section we briefly discuss another important tool for representing knowledge, in
particular, knowledge in the domains containing logic programs as objects of discourse.
Logic programs representing such knowledge are called meta-programs and the process of
their design is referred to as meta-programming. The situations requiring various types
of meta-programming are numerous. (For many interesting examples and discusion see
[Kow90]). Meta-programming is used for representing and analyzing proof procedures, for
assimilating new knowledge and updating knowledge bases, for modeling knowledge and
beliefs of multiple agents, for hypothetical reasoning, for structured and object oriented logic
programming and for many other purposes. The literature on the subject is vast. Interesting
meta-programs can be found in various textbooks on logic programming. Several workshop
proceedings contain papers addressing theoretical problems related to meta-programming
[AR89, Met92]. Logic programming languages based on the ideas of meta-programming
such as Godel [HL91], Hilog [CKW93], Reflexive Prolog [CL89] among others are beginning
to gain ground in logic programming community. In this paper we will not even attempt to
mention all directions of research related to meta-programming. Instead we consider a few
simple (but important) meta-programs and try to outline several fundamental points related
to their construction and declarative meaning.
We will start with an investigation of a two argument proof predicate

demo(1l, ¢)

(first introduced in [Kow79]), which expresses that the general logic program named II can
be used to demonstrate the conclusion named g.

The predicate demo and its numerous variations are used for many meta-programming
applications. As an illustration let us consider its possible use for knowledge assimilation.
Assume that we need to design a program representing the following relation

assimulate(Old, NewlIn fo, New)

between two general logic programs and an atom, where assimilate(Old, NewlInfo, New)
means that the program New is the result of incorporating a new information Newlnfo
into a program Old.

Let us assume that the domain of this relation consists of general logic programs and
atoms written in the language £ (called object programs and atoms) and that a language
L, (which possibly includes £) contains some means of “naming” programs and atoms from
L. There are many different, and not equivalent ways of doing this. One of the simplest
is to view rules of £ as terms of £,, and to name programs by lists of their rules. For
some applications such a naming scheme is both appropriate and convenient. For other
applications, however, it is not. For an interesting discussion on pros and cons of different
naming schemes see [Kow90].

Now we are ready to give a definition of assimzilate. The informal specification of this relation
will be developed concurrently with the formal one. The first attempt at the definition leads
to a simple rule
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assimilate(Old, NewInfo, Old+ Newlnfo) «—

where + is used to combine a program with an atom. We assume that £,, contains such
an operator. Its precise implementation depends on the choice of representation of object
programs and atoms in L,,. If an object program is represented by the list of names of its
rules then 4+ can be implemented via simple append.

Even though in some cases this definition is sufficient it has at least two drawbacks. First,
under the stable model semantics the expansion of a program p < not p, ¢ by a new atom ¢
leads to incoherency and hence some type of consistency checking is necessary. Even though
the problem disappears if, say, well-founded semantics is used it reappears if classical nega-
tion is allowed in L. For example the program

p «— nol q,r

_|p —

when updated by the atom r is inconsistent under well-founded semantics. Second, indis-
criminant addition of new information to a program may lead to unnecessary growth. Often,
the following program, using the demo predicate is suggested to remedy the second problem:

assimilate(Old, NewlIn fo, Old) « demo(Old, NewlIn fo)
assimilate(Old, NewlInfo, Old+ Newlnfo) «— not demo(Old, NewlIn fo)

The approach works fine if our programs are monotonic, i.e. do not contain not. In case
of nonmonotonic programs though the first rule is too strong and may lead to a loss of
information. Consider for instance a program old = {p < not ¢} and assume that p is
the new information which should be assimilated into the program old. Obviously, the
above assimzilate will not change the program. The problem occurs if we now learn ¢. The
resulting program will be new = {p « not q, ¢ <} which does not entail p, and, therefore,
the observation p becomes lost.

To avoid the problem let us introduce a new predicate monotonic(X,Y ") (X is the monotonic
part of a program Y'), where the monotonic part of a program consists of the rules not
containing negation as failure. Now assimilate can be defined as follows:

noupdate(Old, NewlIn fo) < monotonic(X, Old),demo( X, Newlnfo)
assimilate(Old, NewlIn fo, Old) « noupdate(Old, Newln fo)
assimilate(Old, NewlInfo,Old+ Newlnfo) «— not noupdate(Old, NewlIn fo)

More complicated assimilation schemes may incorporate sophisticated consistency checking
and various forms of abduction but, for simplicity’s sake let us assume that this scheme is
the one needed for our purposes and concentrate on the definition of demo.

Let us first assume that the first parameter of demo is fixed. The following program [ is
commonly used to define demo in this case:

demo(empty) «—

demo(X&Y') « demo(X), demo(Y)
demo(not(X)) <« not demo(X)
demo(X) « clause(X,Y),demo(Y)
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For any general logic program II, Iy denotes the program consisting of I together with a
fact of the form

clause(Ag, A1& ... & A& not(Anm1)& ... & not(A,)) «—

for every rule of the form

Ag— Ay,... Ay, not Ayq, ..., not A, and a fact of the form

clause( A, empty) «—

for every rule A « in II.

The resulting program [y is called (untyped) vanilla interpreter for 1I. Notice, that terms

of the language of Iy are build from atoms of the language of I, constant empty, and two
function symbols not and &.

In analysis of this program we will follow [MDS92a, MDS92b]. Since we use a stable model
semantics we should first prove that Iy has a stable model. Notice that Irj is neither stratified
nor locally stratified. It is possible to show however [MDS92a] that for any stratified program
I, I is weakly stratified and hence categorical, i.e. has a unique stable model [PP90b].
This implies that at least for stratified programs we should not worry about existence of
reasonable semantics for their vanilla meta-interpreters. So let us assume that II is stratified.
To check correctness of Ir; we need to show that for every query ¢, Il | ¢ iff Iy = demo(q).
Unfortunately this is not always the case even for ground queries, i.e. [y is semantically
incorrect. To see that consider a program Il consisting of the rules:

r(a) <« not ¢(a)

q(a) — not p(X)

pla)

and assume that a is the only object constant in the language of Ily. It is easy to see that Il
entails r(a). This conclusion is based on the fact that the Herbrand universe of 1y consists

of a single constant ¢ and Ily is identified with the set of all of its ground instances. Now
consider I, which consists of I and the facts

clause(r(a),not(q(a))) <
clause(q(a),not(p(X))) «
clause(p(a)) —

Since predicate demo is supposed to represent entailment in Ily we expect I, to entail
demo(r(a)). It is easy to see that this is not the case. The problem is caused by the fact
that the Herbrand universe of Iy, is much richer than that of Ily. In addition to a it contains
terms p(a), r(p(a)),.... This causes incorrect treatment of the implicit quantifiers and makes
our representation of the relation clause incorrect. The object-level rule

* g(a) « not p(X)
is implicitly universally quantified. So is its meta-level counterpart

* clause(q(a),not(p(X))) «.
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Therefore, instead of expressing that the rule (*) belongs to the program I, (**) states that
for any term ¢ of the language of I, ¢(a) < not p(t) belongs to Il which is of course not
the case.

Despite this problem vanilla meta-interpreters are frequently and successfully used in prac-
tice. We discuss the explanation of this phenomena provided in [MDS92a], where the authors
define a broad class of programs for which the above definition of demo is semantically cor-
rect. We give a slightly less general formulation here.

A rule in a program II is called range restricted it any variable in the rule appears in a
non-negated atom in the rule’s body. A program II is called range restricted if all its rules
are range restricted.

A program p(X) < ¢(X), not r(X) is range restricted while the program Il above or any
program containing the rule p(X) « are not. The notion of range restriction is closely
related to the notion of allowedness [TS88] and is extensively used for analysis of such
notions as domain independence, floundering, and typing. It is probably fair to say that
the vast majority of logic programs used in practical applications are range restricted. This
observation explains the importance of the following

Theorem 6.1 [MDS92a] Let Il be a stratified, range restricted program. Then for every
ground atom A from the language of II,

I E Aiff In = demo(A). 0

The result can be generalized to the following definition of a binary predicate demo:
demo(T, empty) —

demo(T, X&Y') — demo(T, X),demo(T,Y)

demo(T,not(X)) « not demo(T, X)

demo(T, X) «— clause(T, X,Y), demo(T,Y)

where ternary clause is a natural generalization of its binary counterpart. This result implies
correctness of the above definition of assimzilate for stratified, range restricted programs.
Most likely it can be pushed a little further. [MNR93] uses more general condition than range
restriction. Stratified programs can be replaced by weakly stratified programs, or possibly, a
suitable three valued version of demo can be designed for arbitrary range restricted programs
under well-founded semantics.

Let us now look at a slightly more complicated example. Consider, for instance, the following

story from [BM90].

Example 6.1 Consider a database II; consisting of lists of students and courses, atomic
formulas take(s,c) asserting that student s has taken course ¢, and a definition of predi-
cate grad(s) which means that student s is eligible for graduation. We want to represent
the property near_grad(s) meaning that student s is within one course of satisfying the
graduation requirement.
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In [BM90] this story is used to illustrate the power of intuitionistic logic programming with
embedded implication <=. In such a language near_grad is defined by the rule:

near_grad(S) « course(C), student(5), [grad(S) < take(S,C)]

Intuitively this rule states that student s is nearly a graduate if there exists some course ¢
such that, if the student took this course, then he could graduate. Intuitionistic semantics
for such programs can be found in [Mil86, BM90, GO92]. Roughly speaking, to establish
the derivability of near_grad(s) in the corresponding intuitionistic program II; under this
semantic one should add the rule take(s,c) < to Il; and then try to prove grad(s). As
noticed in [BMPT92], similar meaning can be naturally expressed via the use of predicate
demo(T, q) as follows:

1. near_grad(S) « course(C), student(S), demo(lly + take(S,C), grad(S))

To make the case slightly more interesting let us consider a program II; consisting of 11,
definitions of meta predicates demo and clause, rule (1) and the rule (2) below:

2. eligible_for_scholarship(S) « student(S), not near_grad(S)

Notice that the language of II; includes both, object language of the original program and
the meta language of demo, clause and other associated meta predicates. Programs with this
property are called amalgamated. They were first introduced and investigated in [KowT79],
[BK82]. To deal with such programs one should address a basic problem associated with
their meaning. The problem is caused by overloading the symbols in the language. Clearly,
the predicate symbols of II; occur both as predicate and function symbol in Il5. [MDS92b]
argues that for a broad class of programs this does not cause a problem. Apparently, the
program above belongs to this class. It will be interesting to generalize this statement to
programs from [BM90] and carefully investigate the relationship between the two approaches.
More complicated (but also more general) meta-programming schemes are based on naming
statements of object programs by ground terms on the meta-level as in [BK82] and [HL91],
on allowing sentences name themselves as in [Ric74], or by other naming devices. Normally,
these approaches require the development of special semantics. Additional complications
occur if we allow self-referencing meta-programs. Consider, for instance, the rule

3. grad(X) « started_earlier(X,Y),near_grad(Y), not ab(X)

which says that if student X enrolled at the university a year earlier than Y and Y is near
graduation, then normally X is eligible for graduation.

It seems that to incorporate this rule in Iy we should expand Il; by (3.) and replace Iy in
rule (1.) by Il;. This of course immediately makes the meaning of the program somewhat
problematic. It is interesting to investigate to what extend such self-referencing programs
are needed for knowledge representation and how their semantics are related to each other
and to more conventional semantics used in the above examples. a

Another intriguing question is the relationship between meta-programming and modal logics.
A version of demo predicate formalizing entailment in classical logic was used in [KK91]
to represent knowledge of multiple agents. In particular the paper contains an elegant
meta-programming formalization of the three wise men problem. The object theory of the
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formalization is classical theory containing disjunctive information. It may be interesting to
see if this development can be linked to epistemic specifications of Section 5.
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7 Reasoning in Open Domains

7.1 The Semantics

In this section, we discuss the modification of the semantics of logic programs and disjunc-
tive databases which allows for reasoning in the absence of the domain—closure assumption
([GP93a]). This modification increases the expressive power of the language and allows one
to state explicitly the domain—closure and other assumptions about the domain of discourse
in the language of logic programming.

To understand the problem, let us recall that the definition of answer set of a program
was given in two steps: first the rules from Il were replaced by their ground instances,
and then the definition of an answer set was given for programs not containing variables.
Equating a program II with the set of its ground instances, which occurs during the first
step, was justified by the domain closure assumption [Rei80a] which asserts that all objects
in the domain of discourse have names in the language of 1. Even though the assumption is
undoubtedly useful for a broad range of applications, there are cases when it does not properly
reflect the properties of the domain of discourse and causes unintended consequences. To
illustrate this point, let us consider the following simple example from the literature:

Example 7.1 Consider the positive logic program II consisting of the rule:

pla) «
and the query ¢ = VX p(X). O

Under the domain—closure assumption, the semantics of this program is given by its least
Herbrand model [vEKT76], i.e, the answer to VX p(X) is yes iff for any ground term ¢ in the
language of II the answer to p(t) is yes. Hence, II’s answer to a query ¢ will be yes. However,
if we add to Il an apparently unrelated fact r(b), the answer of the new program II* to the
same query ¢ becomes no. This lack of modularity, and the surprising ability of a program
to entail positive facts not entailed by the corresponding classical theory were recognized
as problems of the semantics of general logic programs. Przymusinski in [Prz89b] termed
the above problem the universal query problem and suggested as a solution the semantics
of general logic programs based on arbitrary (not necessarily Herbrand) minimal models.
This allows him to avoid the universal query problem. Under the proper definition of the
answer to a query, both II and II* answer unknown to ¢. At the same time, the semantics
from [Prz89b] does not diverge too far from the least Herbrand model semantics. In fact,
these two semantics are equivalent for existential queries [GPP90].'" Other solutions of the
universal query problem are suggested in [Ros89], [Kun87], and [VGRS91]. They are based
on the assumption that the language of any logic program contains constants and function
symbols not appearing in it explicitly. Under this semantics, both programs Il and IT* answer
no to the query ¢, which, in a sense, amounts to preferring open domains over closed ones.
Such a preference appears somewhat arbitrary. Unless open or closed domain assumptions
are stated explicitly, unknown seems to be the more intuitive answer to ¢.

YT, Przymusinski’s approach is not limited to positive programs. In [Prz89b], it is extended to perfect
model semantics.
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To obtain this answer we will use a slightly different approach. We will parametrize the
definition of an answer set w.r.t. the domains of 1I. For simplicity we limit ourselves to
extended logic programs.

Let II be a program over the language L. To give the semantics of II, we will first expand
the alphabet of £y by an infinite sequence of new constants c¢q,..., ¢k, ... We will call these
new constants generic. The resulting language will be denoted by L.,. By L; we will denote
the expansion of Ly by constants ¢q,...,cp. I, where 0 < k < oo, will stand for the set of
all ground instances of II in the language L. The truth relation in the language £; will be
denoted by [Eg. The index will be omitted whenever possible.

Definition 7.1 By k-answer set of II we will mean a pair < k, B >, where B is an answer
set of Il in the language L. O

In the new semantics, the answer to a query ¢ will be determined by the collection of all
consistent k-answer sets which we will call parametrized answer sets.'®

Example 7.2 Consider a language Lq over the alphabet {a} and a general logic program
II from Example 7.1, consisting of the rule p(a) «.

The following are parametrized stable models of II:
{<0,{p(a)} >} {< L {p(a)} >}, {< 2,{p(a)} >}, ...

VX p(X) is true in the first model as the only constant in the language Lo is a while it is not
true in all other models as the the corresponding languages contain constants other than a.
Hence, as intended, II’s answer to the query VX p(X) is unknown. O

Example 7.3 Let us view rules p(a) «, ¢(a) < not p(X) as an extended logic program
IT over the language Lo with the alphabet {a}. It is easy to see that the k-answer set of Il
is < k,{pla)} > if k=0 and < k,{p(a),q(a)} > otherwise. Hence II’s answer to the query
q(a) is unknown. O

7.2 Applications

Let us start by showing that the new semantics has enough expressive power for a formal-
ization of the domain-closure assumption.

Let II be an arbitrary logic program in a language Lo,. We expand Lq by the unary
predicate symbol h which stands for named elements of the domain. The following rules can
be viewed as the definition of h:

Hi. h(t) « (for every ground term ¢ from L)
Hy. =h(X) < not h(X)
The domain-closure assumption can be expressed by the rule:

DCA. — —h(X)™®

181f 11 is a general logic program we will talk about parametrized stable models.

19A rule « I’ with an empty conclusion is a shorthand for the rule —true «— I'. We will also assume that
every logic program contains the rule ¢{rue <. Rules of this sort prohibit the reasoner from believing in I’
and differ from —I' < which asserts that I' is false.
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Example 7.4 Let II be the extended logic program from FExample 7.3 expanded by the
rules Hy, Hy and the closed world assumptions

~p(X) « not p(X)

=q(X) « not q(X)

for p and ¢ (needed for equivalence of answers obtained in general and extended logic pro-
grams). The k-answer set of II is

{< 0,{h(a),pla),q(a)} >}, if k=0, and
{< k,{h(a),—h(c1)...=h(ck),pla), q(a),mp(c1), nq(er) ... mp(ex), ngler), } >}, if k>0,

and therefore, II's answer to the query ¢(a) is unknown. The answer changes if Il is expanded
by the domain closure assumption (DCA). The resulting program, I, has the unique answer
set {< 0,{h(a),p(a),~q(a)} >} and therefore, II¢’s answer to g(a) is no, exactly the answer
produced by the answer set semantics. a

It is possible to show that this is always the case, i.e. any disjunctive database II in £,
under the answer set semantics is equivalent in Ly to the database IIU{H;, Hy, DC' A} under
the open domain semantics.

Now we will briefly discuss an example that shows the use of domain assumptions and of
the concept of named objects.

Example 7.5 Consider a departmental database containing the list of courses which will
be offered by a department next year, and the list of professors who will be working for
the department at that time. Let us assume that the database knows the names of all the
courses which may be taught by the department but, since the hiring process is not yet over,
it does not know the names of all of the professors. This information can be expressed as
follows:

course(a) «— course(b) —

prof(m) «  prof(n) —

= course(X) «— —h(X)

The k-answer set of this program is

< k,{course(a), course(b),— course(cy) ... course(cy), prof(m),prof(n)} >°
and therefore, the above program answers no to the query

X (course(X) A =h(X))

and unknown to the query

AX (prof(X) A =h(X)).

Notice that in this example, it is essential to allow for the possibility of unknown objects.

200f course, the answer set also contains h(a), h(b), h(m), h(n), =h(c1)...=h(ct). In the descriptions of
answer sets we will omit literals formed with h.
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Let us now expand the informal specification of our database by the closed world assumptions
for predicates course and prof. The closed world assumption for course says that there are
no other courses except those mentioned in the database and can be formalized by the
standard rule

—course(X) «— not course(X).

Using this assumption, we will be able to prove that a and b are the only courses taught in
our department. In the case of predicate prof, however, this (informal) assumption is too
strong — there may, after all, be some unknown professor not mentioned in the list. However,
we want to be able to allow our database to conclude that no one known to the database is a
professor unless so stated. For that we need a weaker form of the closed world assumption,
which will not be applicable to generic elements. This can easily be accomplished by the
following rule:

aprof(X) « h(X), not prof(X).
The k-answer set of the resulting program II looks as follows:

<k, {c(a)v c(b)v _'c(m)v _'c(n)v _'c(cl) e _'c(ck)v p(m), p(n), _'p(a)v _'p(b)} >
where ¢ stands for course and p stands for prof. This allows us to conclude, say, that « is
not a professor without concluding that there are no professors except m and n. a

Open domain semantics is also useful for representing certain types of null values in
databases [GT93]. An application to formalization of anonymous exceptions to defaults
[EKP91] can be found in [GP93a]. [Sch93] contains some results of query answering in open
domain semantics. Related work in the context of autoepistemic logic and default logic
can be found in [Lif89, Lif90]. It will be interesting to further investigate the relationship
between these approaches and that of this section.
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& Abduction

Abduction is a method of reasoning which given a knowledge base T" and an observation ()
finds possible explanations of () in terms of a particular set of predicates referred to as the
abducible predicates. Abduction was introduced by C. Peirce in the beginning of the century
(see [peid2]) and has been used in Al for explaining observations, diagnosis, planning, and
natural language understanding. [kak92] gives a survey and analysis of work on the extension
of logic programming to perform abductive reasoning. In this paper, we will briefly discuss
the traditional role of abduction as a formalism for explanation of observations and the
connection between abduction and negation as failure. We then demonstrate how abductive
logic programming can be used for both deduction and explanation.

8.1 Abduction for Explaining Observations

In this subsection we briefly review the traditional view of abduction in Al as a mechanism to
explain observations. C. Peirce viewed abduction as “probational adaptation of a hypothesis
as explanation of observed facts, according to known rules.” This intuition is approximated
by the following definition:

An abductive framework is a triple < T, A, I >, where T' is a knowledge base with entailment
relation =, [ is a set of first order formulas called integrity constraints and A is a set of
abducible predicates.

Let T' be a theory with the first-order entailment relation. It can belong to some class
of theories, e.g. Horn, or be an arbitrary collection of first-order formulas. Abductive
frameworks of this sort (most frequently used in Al applications) are normally combined
with definition of explanation which has the following form:

For a given set of formulas (7, called observations, A C Lit(A) is said to be an abductive
explanation of G with respect to < T, A, [ > if:

1. TUA E F for any formula F' € G,

2. TUA satisfies I.

There are various ways to define what it means for a knowledge base KB (T U A in our
case) to satisfy an integrity constraint /. The theoremhood view requires that K B satisfies
I'iff KB =1 (i.e., KB entails every element of I'). Consistency view requires K BU [ to be

consistent. There are more sophisticated definitions: we will mention some of them in our
further discussion.

The following example, drawn from [Pea87], can serve to illustrate a typical application of
abductive frameworks to the formalization of the process of explaining observations.

Example 8.1 Consider an abductive framework < T') A, I > with T' (representing the back-
ground knowledge of a reasoning agent) consisting of:

grass_is_wet «— rained_last_night

grass_is_wet «— sprinkler_was_on
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shoes_are_wet «— grass_is_wet,
the set A = {rained_last_night, sprinkler was_on} of abducibles and I = {.

The statements of T' can be viewed as propositional clauses. Their intuitive meaning is self-
explanatory. Suppose now, that the reasoner modeled by our abductive framework observes
G = {shoes_are_wet}. It is easy to check that the observation G has three explanations:

Ay = {rained_last night},
Ay = {sprinkler was_on}, and
Az = {sprinkler was_on, rained_last night},

which correspond to the commonsense explanations of (. O

The existence of multiple explanations is a general characteristic of abductive reasoning, and
the selection of “preferred” explanations is an important problem. Some kind of minimality
condition seems to be a natural choice. Set-theoretic minimality will leave us with the first
two explanations. If later we learn that there was no rain last night and add this fact to the
integrity constraints I, we will have only the second explanation left. It seems that in some
commonsense arguments, more complicated preference relations on explanations are used.
The discovery and investigation of such relations is an interesting topic for further research.

Let us now expand the story from the previous example by the following information: “Nor-
mally, shoes are dry”. There are several possible ways to incorporate this information into
the abductive framework above. To better illustrate the possible use of integrity constraints
let us consider a framework < II, A, I; > where II is a general logic program obtained by
adding to T' the rules

shoes_are_dry « not ab,

ab — grass_is_wet,
and [y = {—~(shoes_are_dry A shoes_are_wet)}.

Abductive frameworks whose first components are general logic programs are called abduc-
tive logic programs. Since 1l is no longer a first-order theory we need a new definition
of explanation. Various (non-equivalent) definitions can be found in the literature. (For
comparison of several of them see [Ino92a].)

Here we shell concentrate on the proposal by Kakas and Mancarella (based on the un-
published paper by Esghi and Kowalski [EK88]). In [KM90] they develop a semantics of

abductive logic programs closely related to stable model semantics of general logic program.

Let < II, A, I > be an abductive logic program. A set M of ground atoms is a generalized
stable model of < 11, A, I > if there is A C atoms(A) such that M is a stable model of TTUA
which satisfies 1. We will say that M is generated by A.

A is an explanation of an observation (i if there is a generalized stable model M of
< II, A, I > which is generated by A and satisfies all formulas from G.

It is easy to check that explanations of the observation G = {shoes_are_wet} given by the
program < II, A, I > according to this definition are exactly the same as that given by
the abductive framework < T, A, [ > above. Notice also that, due to the presence of the
constraint, < II, A, I; > does not have a generalized stable model generated by A = { }.
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In addition to having a clear semantics for abduction, it is also important to have an
effective method for computing abductive explanations. Theorist of [PGA8T], [Poo88] pro-
vides an implementation of abduction for first-order based abductive frameworks which uses
resolution-based proof procedure. There are also several procedures for answering queries for
abductive logic programs and computing abductive explanations. In [EK89] a basic query
answering procedure for abductive programs based on SLDNIF resolution is defined. In
addition to the usual yes/no answer of SLDNF| this procedure also returns an abductive
explanation of the corresponding query. The idea was further developed in [KM91], [Dun91a],
and [DDS92]. The procedure is shown to be correct w.r.t. the stable model semantics for
call-consistent logic programs, but (as pointed out in [EK89]) not in general. This fact led
to modification of the procedure to achieve correctness w.r.t. the stable model semantics
[S192], as well as to work on modification of the semantics to fit the inference method of
the procedure [KM91],[Dun9la]. These methods were applied to formalizations of various
benchmarks in temporal, legal and other types of reasoning [Sha89, DMB92, Esh88].

There are several useful generalizations of the notion of abductive logic programs. In [Gel91],
abduction is combined with reasoning with classical negation and epistemic disjunction, and
generalized stable models are replaced by their answer set counterparts. In [Ino91], [Ino92a]
this work is further extended by replacing abducible literals by abducible logic programs.

8.2 Abduction and Negation as Failure

There are some close similarities between abductive reasoning and negation as failure. The
first attempt to make this relationship precise is due to Esghi and Kowalski. In [EK89],
they give a transformation from a general logic program II to an abductive framework <
I*, A*, I* > (where II* is a Horn logic program, A* is a set of abducible predicates, and * is
a first order theory) and show that the stable models of 11 have a one-to-one correspondence
with the abductive extensions (as defined below) of < II*, A*, I* >.

A general logic program II is transformed to an abductive framework < II*, A*, I* > in
the following way:

e A new predicate symbol p (the opposite of p) is introduced for each p in I, and A* is
the set of all these predicates.

e A Horn theory IT* is obtained from II by replacing every occurrence of literals of the
form not p(t) by p(t) (and interpreting « as an implication).

o [* is the set of all integrity constraints of the form:
VX Ap(X) A (X)) and
VX[p(X) Vv p(X)]

We say that 11" U A satisfies integrity constraints from [ if for every ground atom a from
the language of 11

(a) FUAFEaANa and b)) IFUAEFaor II"UA Ea
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Proposition 8.1 [FK89]
1. If M is a stable model of II then IT* U {a : a is a ground atom, a ¢ M} satisfies [*.

2. If II* U A satisfies I* then {a : a is a ground atom, @ ¢ A} is a stable model of II. O

The Proposition shows that an expression not p(?) in logic programs can be interpreted as
abductive hypotheses that can be assumed to hold provided that, together with the program,
they satisfy a canonical set of integrity constraints.

[IS91] and [Ino91] further investigate relationship between abduction and negation as failure.
In particular, they define a transformation of an abductive logic program < II, A, { > into
an extended logic program II* obtained from II by adding two rules

p — notl —p
—p «— not p
for every atom p € atoms(A).

[Ino91] shows that, under certain natural conditions on the syntax of II, there is a simple one-
to-one correspondence between generalized stable models of < II, A, () > and answer sets of
IT*. In [PAA91c], similar transformation under the Q-well-founded semantics is investigated.

8.3 Combining Explanation and Deduction

In this section we introduce an entailment relation for abductive logic programs based on the
notion of generalized stable model and briefly discuss its use for knowledge representation
21 We will say that an abductive logic program T entails a formula f and write T' = f if
f is true in all generalized stable models of T'. Here, unlike in extended logic programs, we
are using the standard classical notion of a formula being true in a model. Accordingly, T
answers yes to a query fif T f, noif T = —f and unknown otherwise.

Example 8.2 To illustrate the definition, let us again consider the story of birds from
Example 2.5. Its formalization in abductive logic programming is given by an abductive
logic program Tj, consisting of a general logic program Il:

1. flies(X) « bird(X), not ab(rl, X)

2. bird(X) « penguin(X)

3. ab(rl, X) « penguin(X),

the set A = {penguin, bird} of abducibles,

and a set [ C Lit(A) of integrity constraints such as, say
I = {bird(tweety), penguin(sam)}.

?1Kakas and Mancarella use generalized stable models to define explanation for observations and do not
seem to have this notion of entailment mentioned explicitly. For an alternative approach based on Clark’s
predicate completion see, for instance, [CDT91]).

60



Notice, that in this formalization knowledge about particular birds is not placed in Iy but
in the integrity constraints. The rules of Iy represent general knowledge about birds and
their flying abilities.

Since every generalized stable model of Ty must satisfy I, every such model contains penguin(sam).
Hence no generalized stable model of Ty contains flies(sam) and therefore, Ty = = flies(sam).

In contrast, the generalized stable model corresponding to Ag = {bird(tweety), penguin(sam)}
contains flies(tweety) while the model corresponding to Ay = {penguin(tweety), penguin(sam)}
does not and therefore Ty & flies(tweety). Now consider Ty obtained from Ty by adding to

I an integrity constraint —penguin(tweety). Obviously, Ti |= flies(tweety). O

To understand why in abductive approach certain positive facts are included in I, and
not in II it may be useful to view an abductive logic program T =< 11, A, I > as a function
A from 25 to 25 defined as

AX) ={s: <A, TU X > s}

According to this view T' is a program describing our general knowledge about the world
while X consists of particular observations. Then A(X) is the set of facts (both positive and
negative) that have to be true (according to T') whenever X is true. This use of integrity
constraints seems to be different from the original intent in which constraints were mainly
used to express knowledge not easily formulated in the syntax of logic programs.

The following example may provide some additional help.

Example 8.3 Consider a simpler version of the bird example (Example 2.5) containing
general rules about birds.

L. flies(X) « bird(X), not ab(rl, X)
2. bird(X) « penguin(X)

3. ab(rl, X) « penguin(X)

4. hasbeak(X) « bird(X)

Let A = {penguin,bird} and I = ().

Now suppose we observe flies(a),i.e. X = {flies(a)}. We have two options. We can either
include the observation as part of the integrity constraint or add it to the program II;.

If we follow the first option we can use the definition of A(X) and show that
A({flies(a)}) = {flies(a), bird(a), ~penguin(a), hasbeak(a)}.

In the first option, the resulting abductive program < 113, A, I U X > not only explains the
observation flies(a) by concluding bird(a) and —penguin(a) (which can also be achieved
by the standard approach of abductive logic programs [EK88, KM90]) but also entails the
conclusion hasbeak(a), which is apparently not done by the standard approach.

In the second option, the resulting abductive program < II; U X, A, I > only entails flies(a)
and does not entail any of the new conclusions entailed in the previous case. a
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Example 8.4 Let us now consider an extension of 77 from Example 8.2 by including infor-
mation about wounded birds as in Example 3.2 and demonstrate how this information can
be represented by an abductive logic program.

Suppose that John is a wounded bird. Recall that since the degree of John’s injury
is unknown the corresponding abductive program should answer unknown to the query
flies(john). Obviously, postulating the exceptional status of wounded birds using a rule
similar to (3.) does not produce the desired effect. We need some way of distinguishing
strong and weak exceptions to defaults. A possible solution can be obtained by expanding
the language of 17 by two more abducible predicates — badly _wounded and lightly wounded
and by introducing the following rules:

5. wounded_bird(X) « badly_wounded(X)

6. wounded_bird(X) « lightly wounded(X)

7. ab(rl, X) « badly_wounded(X)

8. bird(X) « wounded_bird(X)

Consider the abductive program T: consisting of rules 1-8 with

I = {wounded_bird(john), —penguin(john), =(badlywounded A lightly_ wounded)} and
A = {penguin, bird, lightly_wounded, badly_wounded}.

To satisfy wounded_bird(john) from [ the program must assume lightly wounded or
badly wounded. In the first case John will be able to fly (by rule 1) while in the second one
he will not (by rule 7) and therefore Ty answers unknown to the query flies(john).

This methodology is, of course, rather general, and can be applied to any weak exception
to an arbitrary default. a

Example 8.5 [MD93] In our next example, we consider an abductive logic program for the
Yale shooting problem from Example 2.6. It consists of axioms (1) — (5) below

holds(F, sg) «— initially(F)

holds(F,res(A,S)) « holds(F,S), not ab(A, F,S)

holds(loaded, res(load, S)) «—

ab(load, loaded, S) «—

ab(shoot, alive, S') «— holds(loaded, S)

A

with A = {initially} and the integrity constraints containing knowledge about the initial
situation, say

I = {holds(alive, sg), =holds(loaded, so)}
It is easy to see that the resulting program entails
holds(alive, res(shoot, s9)) and —holds(alive, res(shoot,res(load, sg))).

It is possible to show that if information about the initial situation is complete, this for-
malization is equivalent to the one given in the language of general logic programs. But it
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also works well if our knowledge is incomplete. Let us assume, for instance, that we have
no information about whether or not the gun is initially loaded. Assuming that all other
information is unchanged, we can obtain the representation of the new situation by removing
=holds(loaded, sg) from the old integrity constraints. The new program still entails
—holds(alive, res(shoot, res(load, s¢))) but remains undecided about

holds(alive, res(shoot, s9)). This is of course inexpressible in the classical paradigm. If we
learned about an additional integrity constraint, say,

—holds(alive, res(shoot, sg)) then the resulting system entails initially(loaded). Hence by
rule 1., it also entails holds(loaded, so) which can be viewed as an explanation of I. a

We hope that the above discussion shows that abductive logic programming provides us
with a viable alternative to more traditional extensions of logic programming. More work
however is needed to better understand the role played by abduction in commonsense rea-
soning and the degrees in which various semantics of abductive programs reflect this role
(or roles). We also need some additional insights into the mechanisms of preferring one ex-
planations to another, into the use of integrity constraints, into computational mechanisms
associated with abduction and the relationship between abductive programs and other ex-
tensions of logic programming discussed in this paper.

The notion of an abductive framework and its applications to explanations, causal reason-
ing, diagnoses, and other reasoning tasks was widely studied in Al ([Pea87, PGA87, CP86,
Rei87b] among many others). Even though there is some obvious flow of ideas between this
work and the work in abductive logic programming (for instance, the relation between ab-
duction and negation as failure was influenced by Poole’s [PGA87] Theorist which showed
for the first time how abduction could be applied to default reasoning), much can be gained
from a better understanding between the two approaches.
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9 Relating logic programming and other nonmono-
tonic formalisms

In this section, we will briefly discuss the relationship between the logic programming—based
formalisms discussed in the previous sections and various nonmonotonic logics (for a review
see [Rei87a]) developed in artificial intelligence, such as circumscription [McC80], default
logic [Rei80b] and autoepistemic logic [Moo85]. Even though some affinity between logic
programs and nonmonotonic logics was recognized rather early [Rei82], [Lif85a], the inten-
sive work in this direction started in 1987 after the discovery of model theoretic semantics
for stratified logic programs [Apt89]. Almost immediately after this notion was introduced,
stratified logic programs were mapped into the three major nonmonotonic formalisms inves-
tigated at that time: circumscription [Lif88],[Prz88al, autoepistemic logic [Gel87] and default
theories [BF91], [MT89]. Research in this area was stimulated by the workshop on Foun-
dations of Deductive Databases and Logic Programming [Min88] and by the workshops on
Logic Programming and Nonmonotonic Reasoning [NMS91, PN93]. Collection of important
papers can also be found in the forthcoming special issue of Journal of Logic Programming
devoted to “logic programming and nonmonotonic reasoning”. This issue includes a recent
overview on the relations between logic programming and nonmonotonic reasoning [Min93]
and an article on performing nonmonotonic reasoning with logic programming [PAA].

This direction of research proved to be fruitful for logic programming as well as for
artificial intelligence. The results uncovered deep similarities between various, seemingly dif-
ferent, approaches to formalization of nonmonotonic reasoning. They helped to understand
better the nature of negation as failure as a new nonmonotonic operator and led to the
development of the stable model and other similar semantics of logic programs, as well as to
the development of extensions of traditional logic programming with disjunction and modal
operators, which apparently do not have obvious counterparts in “classical” nonmonotonic
formalisms. All this greatly contributed to the better understanding and appreciation of the
representational power of logic programming.

On the other hand logic programming also had a significant impact on the development
of nonmonotonic logic. It not only helped to single out important classes of theories such as
stratified autoepistemic theories and their variants, with comparatively good computational
and other properties but also led to the development of new versions of basic formalisms, such
as “default theories” [LY91, PP92], disjunctive defaults [GLPTI1], reflexive autoepistemic
logic [Sch91], introspective circumscription [Lif89], and MBNF [Lif91, LS90], to mention
only a few. Many of these formalisms are new, and we are in the beginning stages of
evaluating their utility to knowledge representation, but their role in gaining a much better
understanding of commonsense reasoning cannot be seriously disputed.

In what follows, we will briefly discuss some of these results. Results relating logic
programs with different semantics to various modifications of original nonmonotonic theories

can be found in [PAA92a, Prz89c] among others.
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9.1 Autoepistemic Logic and Logic Programming

We will start with an autoepistemic logic [Moo85] whose formulas are built from propositional
atoms using propositional connectives and the modal operator B.

Definition 9.1 For any sets 7" and F of autoepistemic formulas, F is said to be a stable
expansion of 1" iff
E=Cn(TU{Bé:¢pc EyU{=By:¢ ¢ FE})

where C'n is a propositional consequence operator. a

Intuitively, T' is a theory, the elements of T" are its axioms and F is a possible model of the
world together with the reasoner’s beliefs. A formula F' is said to be true in T if F' belongs
to all stable expansions of T'. If T' does not contain the modal operator B, T has a unique
stable expansion [MT91]. We will denote this expansion by Th(T).

Let a be a mapping [Gel87] which takes a general logic program II, and translates its
rules (of the form (7)) into autoepistemic formulas of the form
AN NALN-BAL N AN B A, D Ag, where B is the belief operator of autoepistemic
logic. In [Gel87], it was shown that the declarative semantics of stratified logic programs
can be characterized in terms of the autoepistemic theory obtained by this transformation,
and that therefore, negation as failure can be understood as an epistemic operator. The
stronger result establishes a one-to-one correspondence between the stable models of an
arbitrary general logic program II and the stable expansions of a(Il). Other mappings of
logic programs into autoepistemic logic and its variants were investigated in [MT89], [Lif89]
[Sch91], and [L.S89] but none of these mappings seem to extend in a natural way to logic
programs with classical negation and disjunction. Recently, several such mappings were
independently found by several researchers [L.S93], [MT93], [Che93]. The mapping 5 from
[Lif93], and [Che93] translates rules of a disjunctive logic program II (of the form (19) into
autoepistemic formulas of the form

(Ligt ABLig1) A oo . A (Ly ABLy)A=B Lypgy A...A=B L, D (Lo A B L)V (B Ly A Ly).

We now state the relationship between the disjunctive logic program I and the autoepistemic

theory S(II).

Proposition 9.1 [Lif93],[Che93] For any disjunctive database II, and any set A of literals
in the language of II, A is an answer set of Il iff Th(A) is a stable expansion of A(II).
Moreover, every stable expansion of 3(II) can be represented in the above form. a

There are similar results describing mappings of disjunctive databases into reflexive au-
toepistemic logic [Sch91] and a logic of minimal belief and negation as failure called M BN F
[LW92], [LS92].

9.2 Defaults and Logic Programming

A default is an expression of the form

F«G: MHy,...,MHy, (22)
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where F, G, Hy,..., Hy (k > 0) are quantifier-free formulas®® . F is the consequent of the
default, GG is its prerequisite, and Hy,..., Hy are its justifications. M H is interpreted as “it
is consistent to believe H.” A default theory is a set of defaults.

The operator I'p associated with a default theory D is defined as follows: for any set of
sentences I, I'p(F) is the smallest set of sentences such that

(i) for any ground instance (22) of any default from D, if G € I'p(F) and =Hy,...,~H, ¢ F
then ' € I'p(E);

(ii) I'p(F) is deductively closed.

F is an extension for D if I'p(FE) = E. Extensions of a default theory D play a role similar
to that of stable expansions of autoepistemic theories. The simple mapping from extended
logic programs to default theories identifies a rule

Lo~ Ly,.... Ly, not Lyyq,...,n0t L,

with the default
LOHLl/\.../\Lm:szm+1,...,MI/n, (23)

where L stands for the literal complementary to L. Every extended program is identified in
this way with some default theory. It is clear that a default theory is an extended program if
and only if each of its justifications and consequents is a literal, and each of its preconditions
is a conjunction of literals.

Proposition 9.2 [GL90] For any extended program II,
(i) if S is an answer set of II, then the deductive closure of S is an extension of II;

(ii) every extension of Il is the deductive closure of exactly one answer set of 11.

Thus, the deductive closure operator establishes a one-to-one correspondence between the
answer sets of a program and its extensions. This result is a simple extension of results from
[BF91], and [MT89]. Perhaps somewhat surprisingly, it is not easily generalized to disjunctive
databases. One of the problems in finding a natural translation from such databases into
default theories is related to the inability to use defaults with empty justifications in reasoning
by cases: the default theory consisting of the defaults p « ¢ :, p < r: and ¢V r « does not
have an extension containing p and therefore, does not entail p. This property accounts for
the difficulty in formalizing Example 4.2 in default logic. It is easy to see that its disjunctive
logic program counterpart entails p.

2ZWe limit ourselves to the quantifier-free case. For an interesting discussion on defaults with quantifiers

see [Lif90].
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9.3 Truth Maintenance Systems and Logic Programming

Finally, we will briefly discuss the relationship between logic programs and nonmonotonic
truth maintenance systems (TMSs) [Doy79]. Systems of this sort, originally described by
procedural (and sometimes rather complicated) means, commonly serve as inference engines
of Al reasoning systems. We will follow a comparatively simple description of TMSs from
[E1k90]. We will need the following terminology: a justification is a set of directed proposi-
tional clauses of the form a A f D ¢ where ¢ is an atom, « is a conjunction of atoms and /3
is a conjunction of negated atoms. By an interpretation we will mean a set of atoms. The
justification o A 8 D ¢ supports the atom ¢ w.r.t. an interpretation M if a A § is true in
M. A model M of a set of justifications Il is grounded if it can be written M = {¢q,...,¢,}
such that each ¢; has at least one justification av A B D ¢; that supports it whose positive
antecedents o are a subset of {¢1,...,¢j_1}. The task of a nonmonotonic TMS is to find a
grounded model of a set of justifications II. The form of justifications suggests the obvious
analogy with rules of logic programs where negated literals = A from [ are replaced by not A.
Let us denote the corresponding logic program by II*. The following theorem establishes the
relationship between TMSs and logic programs:

Proposition 9.3 [Elk90] M is a grounded model of a collection of justifications IT iff it is a
stable model of a program II*.

Similar results were obtained in [WB93], [GM90], [PC89], [RM89], and [FH89]. (The last two
papers use autoepistemic logic instead of logic programs). They led to a better understanding
of the semantics of nonmonotonic truth maintenance systems, to their use for computing
stable models [Esg90] and autoepistemic extensions [JK91], for doing abductive reasoning
[1S91], [RPI1], and to the development of variants of TMSs based on other semantics of logic
programs. A good description of one such system, based on the well-founded semantics,
together with the proof of its tractability can be found in [Wit91].
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10 Expressiveness and complexity results

In this section, we will briefly discuss the complexity and expressibility of logic programming
languages. In [Sch92], a survey containing most of the recent results is provided.**

Apart from the theoretical appeal, complexity and expressiveness results for logic pro-
gramming are significant for practice. Characterizations of the complexity of logic program-
ming formalisms allow us to get insight into computational obstacles for designing efficient
programs. Furthermore, by the well-developed theory of structural complexity, we often can
derive immediate results on the possibility of simulating one formalism by another. Com-
plexity is closely related to expressiveness, which, roughly speaking, measures the class of
relations that a logic programming formalism can express. Expressiveness results show up
limitations on the applicability of logic programming formalisms for describing particular
problems.

We will assume some familiarity with complexity theory.

Let us start with the language of propositional general logic programs. The main com-
plexity problem we will discuss is the decision problem formulated as follows: given a logic
program Il and a literal [, determine whether [ is a consequence of Il in the given semantics.
By |II| and |P| we will denote the number of rules and the number of propositional letters
in II respectively. Then the following holds:

Theorem 10.1 (a) the decision problem for stratified II is O(|II|) (follows from [DG84]),

(b) the decision problem for IT under completion semantics and under stable model semantics

is co-N P complete ([KP87] and [MT91] respectively), and

(c) the decision problem for II under 3-valued program completion semantics and under the
well-founded semantics is O(|I1]) and O(|II|) * | P| respectively (folklore). O

Let us now consider programs with variables. The above results are of course only meaningful
for such programs if their ground instantiations consist of a finite number of clauses. In the
general case we can only talk about definability of relations defined by logic programs.
Recursion-theoretic characterization of such definability provides us with insights into the
expressive power of logic programming languages under different semantics.

Let us first introduce the necessary terminology:

Definition 10.1 A relation s on the set of ground terms of a language L is definable in logic
programming under semantics |= if there exists a program Il and predicate symbol p in the
language £ such that for every ground term ¢ of L,

s(ty=1 E p(t) or s(t) =11 = —p(t). O

To discuss the expressive power of logic programs, we will need the following classification
of formulas of second order arithmetic, i.e., arithmetic with quantifiers over sets of natural

numbers [Sho67]. Variables for such sets will be denoted by X’s and Y'’s.

23[(CS92] contains a survey on complexity results for nonmonotonic logics.
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Definition 10.2 A formula is X1 (II}) if it is of the form IXF (VX F ) where F is a first
order formula. A formula is II3 if it is of the form VX 3IY'F where F' is first order. O

It is well known that general X} formulas are far more expressive than first order formulas,
and general TI} formulas are far more expressive than general ¥} formulas, and so on.

Definition 10.3 A set s of natural numbers is ¥ (I13) definable if it satisfies Vn(s(n)
®(n)) where formula ® is X} (I13).

o

The following theorem [Sch90] [MNR93] characterizes the expressibility of the stable model
semantics of logic programs over natural numbers

Theorem 10.2 [Sch90],[MNR93] A set s of natural numbers is I} definable iff s is definable

by a logic program under the stable model semantics. O

The actual results of [Sch90], [MNR93], and [AB90] are stronger than the above theorem.
Instead of definability of sets of natural numbers, these papers deal with definability over
arbitrary infinite Herbrand universes. Moreover, they show that the problem of determining
if a literal [ is a stable model consequence of a program II is TI} complete, i.e. is represen-
tative of the hardest decision problem in II}. As shown in [VG89], [KP87], and [Fit85], the
same result holds for the well-founded semantics as well as for two-valued and three-valued
completion based semantics of logic programs.

The following results demonstrate the decrease in expressive power caused by additional
restrictions on the classes of logic programs under consideration:

Theorem 10.3 [MNR93] A set s of natural numbers is definable by a logic program with
a unique stable model iff s is Af, i.e., s and its complement are II] definable. a

It is known that A} is strictly smaller than IIj, but is still highly non-recursive. The com-
plexity is further decreased if we limit ourselves to stratified programs.

Theorem 10.4 [AB90] A set s of natural numbers is definable by a stratified logic program
iff s is definable by a first-order arithmetic formula. a

The above theorem implies that any semantics of arbitrary logic programs is uncom-
putable whenever the semantics agrees with the perfect model semantics on stratified pro-
grams.

There are other interesting ways of measuring complexity of logic programs. We mention
a measure, applicable to first order logic programs without function symbols, called data
complexity. As in the theory of deductive databases, we will think of a logic program as
consisting of two parts: a database of facts, plus a set of rules for inferring additional infor-
mation. More precisely, we assume that the set of all predicate symbols of £ is partitioned
into the set called FDB, or extensional relations, and the set I DB, or intensional relations.
The database of facts is formed from predicates in EDB and ground terms of £, while the
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heads of the rules from the “rule part” are formed from predicates in IDB. Let us now fix
IDB and consider the problem of checking if a ground query [ is entailed by /DB U D for
a given set D of K DB facts. The corresponding complexity can be viewed as a function of
the size of D. This is called data complexity.

Theorem 10.5 [MT91] The data complexity of logic programs without function symbols
under the stable model semantics is co-N P complete. a

Theorem 10.6 [V(G89],[VGRS91]. The data complexity of logic programs without function
symbols under the well-founded semantics is polynomial in the size of D. a

These results demonstrate that (worst-case) entailment in logic programs under the well-
founded semantics is “computationally feasible”, while under the stable model semantics it is
not. To pay for this feasibility we lose in expressiveness. For instance, with the stable model
semantics one can write a program which says that a propositional formula is satisfiable,
while with the well-founded semantics one cannot.

We conclude this section by briefly addressing some recent complexity and expressiveness
results for disjunctive logic programming, where the heads of clauses may be disjunctions of
atoms instead of single atoms (cf. [LMR92]).

The main decision problem for the language of propositional disjunctive logic programs
(not containing — ) is as for nondisjunctive programs: given a disjunctive logic program II
and a literal [, determine whether [ is a consequence of II in the given semantics. Then the

following holds:

Theorem 10.7 (a) the decision problem for II under the disjunctive database rule [RT8§]
and the equivalent weak generalized CWA [RLM89] is polynomial [Cha93] (co-N P-complete
if heads can be empty),

(b) the decision problem for II under the possible models semantics [Sak89] and the
equivalent possible worlds semantics [Cha93] is polynomial (co-N P-complete again if heads
can be empty),

(c) the decision problem for IT under the careful CWA [GP86] is I}’ -hard and in AL[O(log n)],
and

(d) the decision problem for IT is IT1}'-complete for the following semantics [EG93a, EG93c,
EG93d]: the generalized CWA [Min82], the extended generalized CWA [YHS85], the extended
CWA [GPP89], the iterated CWA [GPP89], the perfect model semantics [Prz88b], and the

partial as well as total disjunctive stable model semantics [Prz91]. O

Here 117 and AL[O(logn)] are classes above co-NP (= 1) in the refined polynomial
hierarchy, which is a subrecursive analog to the Kleene arithmetical hierarchy (cf. [Wag90]).
Results for important restricted cases have been derived in [CL90]. For the extension of logic
programming by classical negation [GL91], the following holds.

Theorem 10.8 The decision problem for a disjunctive logic program (containing = and not)
IT under the answer set semantics is I1}'-complete [EG93b]. O
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For a special but broad class of disjunctive logic programs ( in particular the headcycle-
free programs) the decision problem under the answer set semantics is co- N P-complete
[BED92].

Note that similar complexity results have recently been derived for various forms of
nonmonotonic reasoning such as default and autoepistemic logic [Got92], nonmonotonic 54
[ST93], theory revision [EG92], and abduction [EG93e].

For programs with variables, consider the case of first order disjunctive logic programs
without function symbols. Then following holds.

Theorem 10.9 [EGM935] (a) The data complexity of first order disjunctive logic programs
without function symbols under stable model semantics is IIZ-complete, and

(b) The class of first order disjunctive logic programs without function symbols under
stable semantics expresses 112 . O

Notice that first order disjunction-free logic programs without functions expresses co-
NP [Sch90]; hence, by allowing disjunction the expressive power of stable models increases
a lot. For example, with disjunction we can write a program which determines whether
the maximum size of a clique in a graph is odd, which is not possible by a disjunction-free
program (unless the polynomial hierarchy collapses).

11 Conclusion

In this paper we considered several extensions of the language of definite logic programs
and demonstrated their applicability to solving a large variety of difficult knowledge rep-
resentation problems, such as formalization of normative statements, the closed world and
the domain closure assumptions and their open counterparts as well as other types of de-
fault and epistemic statements. We considered several examples from such diverse domains
as, reasoning in inheritance hierarchies, reasoning about result of actions, reasoning about
knowledge and belief, reasoning about databases with incomplete information and several
others.
Among other things we tried to demonstrate

(a) that the choice of the representation language depends on the level of completeness
of knowledge about the problem. For instance, when knowledge is assumed complete the
language of general logic program seems to be appropriate. When the only form of incom-
pleteness is complete lack of knowledge (like missing entries in database tables) the language
of extended logic programs seems to be the language of choice. Representation of vari-
ous forms of partial knowledge requires disjunctive logic programs and their extensions or
abductive frameworks.

(b) that the choice of particular representation of normative statements and other constructs
of natural language depends not only on the representation language but also on the type of
updates that are allowed. For example, if the only updates allowed by the specification are

of the form ¢(t) the normative statement “p’s are normally q’s” is translated as

p(X) — ¢(X), not ab(X)
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It we allow updates consisting of literals formed with predicate p then the above normative
statement should be translated as

p(X) — ¢(X), not ab(X), not =p(X)

Fortunately, in many cases the more complex formalization seem to be correct extensions
of the simpler ones [BGK93, Tur93]. The precise relationship between these different ap-
proaches is an interesting subject for further investigation.

We believe that the proposed formalizations compare favorably with those given in tra-
ditional nonmonotonic formalisms: recall for instance that Example 2.6 poses a serious
problem for Circumscription and Example 4.2 causes difficulties for Reiter’s Default logic.
It is not clear how to represent epistemic reasoning, say from Example 5.1, in any known
form of nonmonotonic modal logic. However, extended logic programming languages allow
all these examples to be treated in a uniform fashion.

Restrictive syntax of logic programming languages facilitates the adoption of query an-
swering methods developed in the context of traditional logic programming and deductive
databases to more complicated forms of knowledge representation and reasoning. It also
helps to avoid another problem associated with the use of superclassical logics: existence of
several natural, but nonequivalent translations from natural language statements into the
formalism. Consider for instance Example 4.2. Simple disjunctive statement “Matt’s left

or right hand is broken” can be translated in, say, MBNF [LW92], as
[h_broken V rh_broken

or as

B lh_broken vV B rh_broken

where B is the belief operator of MBNF. Only the second translation (probably the less
obvious one) leads to the correct result.

There are of course many remaining problems. Even though in many cases application of
our techniques led to modular representation of knowledge ** a greater degree of modularity
is desirable. It remains to be seen if this can only be achieved by limiting the types of
updates allowed by our formalization. It is well known in the theory of data structures
that data representation is dependent on the operations allowed on the data. Realization
of its importance led to the developments of abstract data types. Similar considerations
can lead to the discovery of interesting knowledge structures. It is also possible that more
work on the methodology of representing knowledge and/or extension of the language can
help to solve the problem of modular updates. The problem of updates is closely related
to the more general problem of belief revision. A better understanding of this process and
development of its mathematical models in the context of logic programming paradigms
presents an interesting and important challenge to the logic programming community.

Another important question which requires much more work is the development of query-
answering systems for the new languages. Even though traditional inference methods of
Prolog and deductive databases are easily adaptable to categorical extended logic programs
much improvement is needed in developing methods computing well-founded, stable and/or

Z4Formalization of knowledge is called modular if small changes in the informal knowledge base cause small
changes in its formal counterpart.
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other types of semantics. Very promising work in this direction is done by Pereira et al.
[PAA9LD], Chen and Warren [WC93] and others. Some of the other important issues are
to learn to deal with floundering queries and planning problems, and to incorporate new
logic programming paradigms such as constrained logic programming and concurrent logic
programming in the nonmonotonic framework. Extensions of the languages by allowing
more complex data such as sets and aggregates are very important in database applications
[KS91, BRSS92, Gel92a).

Even more questions remain for noncategorical programs, i.e. logic programs with mul-
tiple answer sets or disjunctive logic programs. In this case one of the most important
problems seems to be the lack of clear procedural interpretation of rules of a program. Such
interpretation of definite logic programs which treats predicates as procedure calls and in-
terpreters the rule Ag «— Ay,... A, as saying “to execute procedure Aq execute procedures
Ay, ... A7 was suggested by Kowalski in [Kow74] and lies at the heart of logic programming
paradigm. It remains to be seen if similar interpretation can be discovered for disjunctive
logic programs and the other formalisms described in the paper.

Another crucial direction of research is related to using extensions of logic programming
to representing knowledge in particular domains. Theories of actions and time, representing
null values and other forms of incomplete information in databases, legal reasoning and
reasoning about diagnoses is an incomplete list of interesting examples. Building theories is
a slow process which only succeeds if new ideas are built on the old ones. To learn how to do
that in a careful mathematical way is one of the major challenges faced by the field. Finally,
we would like to mention that real progress in all of these areas is tightly related to building
mathematical theory of declarative logic programming. We hope that the paper showed that
such a theory, even though it is still in the stage of infancy, contains some nontrivial results
and methods. We also hope that the paper will contribute to its further development.
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