Representing Knowledge in A-Prolog

Michael Gelfond

Department of Computer Science
Texas Tech University
Lubbock, TX 79409, USA
mgelfond@cs.ttu.edu
http://www.cs.ttu.edu/ “mgelfond

Abstract. In this paper, we review some recent work on declarative
logic programming languages based on stable models/answer sets se-
mantics of logic programs. These languages, gathered together under the
name of A-Prolog, can be used to represent various types of knowledge
about the world. By way of example we demonstrate how the correspond-
ing representations together with inference mechanisms associated with
A-Prolog can be used to solve various programming tasks.

1 Introduction

Understanding the basic principles which can serve as foundation for building
programs capable of learning and reasoning about their environment is one of
the most interesting and important challenges faced by people working in Arti-
ficial Intelligence and Computing Science. Frequently search for these principles
is centered on finding efficient means of human-computer communication, i.e. on
programming languages'. Such languages differ according to the type of infor-
mation their designers want to communicate to computers. There are two basic
types of languages - algorithmic and declarative. Programs in algorithmic lan-
guages describe sequences of actions for a computer to perform while declarative
programs can be viewed as collections of statements describing objects of a do-
main and their properties. A semantic of a declarative program II is normally
given by defining its models, i.e. possible states of the world compatible with
II. Statements which are true in all such models constitute the set of valid con-
sequences of II. Declarative programming consists in representing knowledge,
about the domain relevant to the programmer’s goals, by a program IT (often
called a knowledge base) and in reducing various programming tasks to finding
models or computing consequences of IT. Normally, models are found and/or
consequences are computed by general purpose reasoning algorithms often called
inference engines. There are a number of requirements which should be satisfied
by a declarative programming language. Some of these requirements are common

! In this paper by programming we mean a process of refining specifications. Conse-
quently, the notion of a programming language is understood broadly and includes
specification languages which are not necessarily executable.

II

to all programming languages. For instance, there is always a need for a simple
syntax and a clear definition of the meaning of a program. Among other things
such a definition should provide the basis for the development of mathematical
theory of the language. It is also important to have a programming methodology
to guide a programmer in the process of finding a solution to his problem and
in the design and implementation of this solution on a computer. These and
other general requirements are well understood and frequently discussed in the
programming language community. There are, however, some important require-
ments which seems to be pertinent mainly to declarative languages. We would
like to mention those which we believe to be especially important and which will
play a role in our discussion.

e A declarative language should allow construction of elaboration tolerant knowl-
edge bases, i.e. the bases in which small modifications of the informal body of
knowledge correspond to small modifications of the formal base representing this
knowledge. It seems that this requirement is easier satisfied if we use languages
with nonmonotonic consequence relation. (A consequence relation =, is called
nonmonotonic if there are formulas A, B and C in £ such that A = C but
A, B }£ C, i.e. addition of new information to the knowledge base of a reasoner
may invalidate some of his previous conclusions [59]). This property is espe-
cially important for representing common-sense knowledge about the world. In
common-sense reasoning, additions to the agent’s knowledge are frequent and
inferences are often based on the absence of knowledge. Modeling such reasoning
in languages with a non-monotonic consequence relation seem to lead to simpler
and more elaboration tolerant representations.

e Inference engines associated with the language should be sufficiently general
and efficient. Notice however that, since some of the relations one needs to teach a
computer about are not enumerable, such systems cannot in general be complete.
Language designers should therefore look for the ’right’ balance between the
expressive power of the language and computational efficiency of its inference
engine.

We are not sure that it is possible (and even desirable) to design a knowledge rep-
resentation language suitable for all possible domains and problems. The choice
of the language, its semantics and its consequence relation depends significantly
on the types of statements of natural language used in the informal descriptions
of programming tasks faced by the programmer.

In this paper we discuss A-Prolog — a language of logic programs under answer set
(stable model) semantics [30],[31]. A-Prolog can be viewed as a purely declarative
language with roots in logic programming [42, 43, 85], syntax and semantics of
standard Prolog [18], [22], and in the work on nonmonotonic logic [73], [62].
It differs from many other knowledge representation languages by its ability to
represent defaults, i.e. statements of the form “Elements of a class C normally
satisfy property P”. One may learn early in life that parents normally love their
children. So knowing that Mary is a mother of John he may conclude that Mary
loves John and act accordingly. Later one can learn that Mary is an exception

II1

to the above default, conclude that Mary does not really like John, and use this
new knowledge to change his behavior. One can argue that a substantial part of
our education consists in learning various defaults, exceptions to these defaults,
and the ways of using this information to draw reasonable conclusions about the
world and the consequences of our actions. A-Prolog provides a powerful logical
model of this process. Its syntax allows simple representation of defaults and
their exceptions, its consequence relation characterizes the corresponding set of
valid conclusions, and its inference mechanisms allow a program to find these
conclusions in a “reasonable” amount of time.

There are other important types of statements which can be nicely expressed
in A-Prolog. This includes the causal effects of actions (“ statement F' becomes
true as a result of performing an action a”), statements expressing the lack of
information (“It is not known if statement P is true or false”), various complete-
ness assumptions, “Statements not entailed by the knowledge base are false”,
etc. On the negative side, A-Prolog in its current form is not adequate for rea-
soning with real numbers and for reasoning with complex logical formulas - the
things classical logic is good at.

There is by now a comparatively large number of inference engines associated
with A-Prolog. There are well known conditions which guarantee that the tradi-
tional SLDNF-resolution based goal-oriented methods of “classical” Prolog and
its variants are sound with respect to various semantics of logic programming
[86,27,45,1]. All of these semantics are sound with respect to the semantics of
A-Prolog, i.e. if a program II is consistent under the answer set semantics and
IT entails a literal [under one of these semantics then I entails [in A-Prolog.
This property allows the use of SLDNF based methods for answering A-Prolog’s
queries. Similar observations hold for bottom up methods of computation used
in deductive databases. The newer methods (like that of [14]) combine both,
bottom-up and top-down, approaches. A more detailed discussion of these mat-
ters can be found in [48]. In the last few years we witnessed the coming of age of
inference engines aimed at computing answer sets (stable models) of programs
of A-Prolog [65,66,21,17]. The algorithms implemented in these engines have
much in common with more traditional satisfiability algorithms. The additional
power comes from the use of techniques from deductive databases, good under-
standing of the relationship between various semantics of logic programming and
other more recent discoveries (see for instance [44]) These engines are of course
applicable only to programs with finite Herbrand universes. Their efficiency and
power combined with so called answer sets programming paradigm [64], [56] lead
to the development of A-Prolog based solutions for various problems in several
knowledge intensive domains [77,7,25].

This paper is an attempt to introduce the reader to some recent developments
in theory and practice of A-Prolog. In section 2 we briefly review the syntax
and the semantics of the basic version of A-Prolog. In section 3 A-Prolog will
be used to gradually construct a knowledge base which will demonstrate some
knowledge of the notion of orphan. The main goal of this, rather long, example

v

is to familiarize the reader with basic methodology of representing knowledge in
A-Prolog. Section 4 contains some recent results from the mathematical theory
of the language. The selection, of course, strongly reflects personal taste of the
author and the limitations of space and time. Many first class recent results are
not even mentioned. I hope however that the amount of material is sufficient
to allow the reader to form a first impression and to get some appreciation of
the questions involved. Section 5 contains a brief introduction to two extensions
of the basic language: A-Prolog with disjunction and A-Prolog with sets. The
latter is the only part of this paper which was neither published nor discussed
in a broad audience. Again the purpose is primarily to illustrate the power of
the basic semantics and the ease of adding extensions to the language. Finally,
section 6 deals with more advanced knowledge representation techniques and
more complex reasoning problems. There are several other logical languages and
reasoning methods which can be viewed as alternatives to A-Prolog (see for
instance [1,12,40]). They were developed in approximately the same time frame
as A-Prolog share the same roots and a number of basic ideas. The relationship
and mutual fertilization between these approaches is a fascinated subject which
goes beyond the natural boundaries of this paper.

2 Syntax and Semantics of the Language

In this section we give a brief introduction to the syntax and semantics of a
comparatively simple variant of A-Prolog. Two more powerful dialects will be
discussed in sections 5. The syntax of the language is determined by a signature
o consisting of types, types(o) = {9, ..., Tm}, object constants

obj(t,0) = {co,...,cm} for each type 7, and typed function and predicate con-
stants func(o) = {fo,..., fx} and pred(c) = {po,. .., pn}. We will assume that
the signature contains symbols for integers and for the standard relations of
arithmetic. Terms are built as in typed first-order languages; positive literals (or
atoms) have the form p(t4,...,t,), where t’s are terms of proper types and p
is a predicate symbol of arity n; negative literals are of the form —p(t1,...,t,).
In our further discussion we often write p(ti,...,t,) as p(t). The symbol — is
called classical or strong negation.? Literals of the form p(f) and —p(%) are called
contrary. By [we denote a literal contrary to l. Literals and terms not containing
variables are called ground. The sets of all ground terms, atoms and literals over

? Logic programs with two negations appeared in [31] which was strongly influenced
by the epistemic interpretation of logic programs given below. Under this view —p
can be interpreted as “believe that p is false” which explains the term “classical
negation” used by the authors. Different view was advocated in [67,87] where the
authors considered logic programs without negation as failure but with —. They
demonstrated that in this context logic programs can be viewed as theories of a
variant of intuitionistic logic with strong negation due to [63]. For more recent work
on this subject see [68]. I believe that both views proved to be fruitful and continue
to play an important role in our understanding of A-Prolog. A somewhat different
view on the semantics of programs with two negations can be found in [1].

\%

o will be denoted by terms(o), atoms(o) and lit(c) respectively. For a set P of
predicate symbols from o, atoms(P, o) (lit(P, o)) will denote the sets of ground
atoms (literals) of o formed with predicate symbols from P. Consistent sets of
ground literals over signature o, containing all arithmetic literals which are true
under the standard interpretation of their symbols, are called states of o and
denoted by states(o).

A rule of A-Prolog is an expression of the form
lo<1ly,....Lp,not lyyi1,...,n0t L, (1)

where n > 1, [;’s are literals, [y is a literal or the symbol L, and not is a logical
connective called negation as failure or default negation. An expression not [says
that there is no reason to believe in I. An extended literal is an expression of the
form [or not | where [is a literal. A rule (1) is called a constraint if [p =L.

Unless otherwise stated, we assume that the I's in rules (1) are ground. Rules
with variables (denoted by capital letters) will be used only as a shorthand for
the sets of their ground instantiations. This approach is justified for the so called
closed domains, i.e. domains satisfying the domain closure assumption [72] which
asserts that all objects in the domain of discourse have names in the language
of II. Even though the assumption is undoubtedly useful for a broad range of
applications, there are cases when it does not properly reflect the properties of
the domain of discourse. Semantics of A-Prolog for open domains can be found
in [8], [41].

A pair (o,IT) where o is a signature and IT is a collection of rules over o is
called a logic program. (We often denote such pair by its second element IT. The
corresponding signature will be denoted by o(IT).)

The following notation will be useful for the further discussion. A set

not l;,...,not I,y will be denoted by not {l;,...,lLi1r}. If r is a rule of type
(1) then head(r) = {lp}, pos(r) = {l1,...,lm}, neg(r) = {lms1,---,ln}, and
body(r) = pos(r), not neg(r). The head, L, of a constraint rule will be frequently
omitted. Finally, head(II) = |, . head(r). Similarly, for pos and neg.

We say that a literal I € lit(o) is true in a state X of o if [€ X; I is false in X
if Il € X; Otherwise, [is unknown. | is false in X.

The answer set semantics of a logic program II assigns to II a collection of
answer sets — consistent sets of ground literals over signature o(IT) corresponding
to beliefs which can be built by a rational reasoner on the basis of rules of II.
In the construction of these beliefs the reasoner is assumed to be guided by the
following informal principles:

— He should satisfy the rules of I7, understood as constraints of the form: If
one believes in the body of a Tule one must belief in its head.

— He cannot believe in L (which is understood as falsity).

— He should adhere to the rationality principle which says that one shall not
believe anything he is not forced to believe.

VI

The precise definition of answer sets will be first given for programs whose rules
do not contain default negation. Let IT be such a program and let X be a state
of o(II). We say that X is closed under II if, for every rule head < body of II,
head is true in X whenever body is true in X. (For a constraint this condition
means that the body is not contained in X.)

Definition 1. (Answer set — part one)
A state X of o(II) is an answer set for IT if X is minimal (in the sense of
set-theoretic inclusion) among the sets closed under II.

It is clear that a program without default negation can have at most one answer
set. To extend this definition to arbitrary programs, take any program II, and
let X be a state of o(II). The reduct, IIX, of II relative to X is the set of rules

lo(—ll,...,lm

for all rules (1) in I7 such that I, 41,...,l, ¢ X. Thus ITX is a program without
default negation.

Definition 2. (Answer set — part two)
A state X of o(IT) is an answer set for IT if X is an answer set for ITX.

(The above definition differs slightly from the original definition in [31], which
allowed the inconsistent answer set, lit(c). Answer sets defined in this paper
correspond to consistent answer sets of the original version.)

Definition 3. (Entailment)
A program IT entails a literal I (II |= 1) if [belongs to all answer sets of IT.
The IT’s answer to a query [is yesif II =1, noif IT |= [, and unknown otherwise.

Consider for instance a logic program?®

p(a) « not q(a).
Iy < p(b) <+ not q(b).

q(a).

It has one answer set {g(a), p(b)} and thus answers yes and unknown to queries
g(a) and q(b) respectively. If we expand I1y by a rule

—q(X) + not q(X). (2)

the resulting program II; would have the answer set S = {q(a), —¢(b),p(b)} and
hence its answer to the query ¢(b) would be no.

Rule (2), read as “if there is no reason to believe that X satisfies q then it does
not” is called the closed world assumption for q [72]. It guarantees that the
reasoner’s beliefs about g are complete, i.e. for any ground term ¢ and every
answer set S of the corresponding program, ¢(t) € S or —¢(t) € S.

3 Unless otherwise specified we assume that signature of a program consists of symbols
occurring in it.

VII

The programs may have one, many, or zero answer sets. It is easy to check for
instance that programs

IIs = {p < not p} and II, = {p. -p.}

have no answer sets while program IT5
e(0).
e(s(s(X))) « not e(X).
p(s(X)) <« e(X),
not p(X).
p(X) « e(X),
not p(s(X)).
has an infinite collection of them.

In some cases a knowledge representation problem consists in representing a
(partial) definition of new relations between objects of the domain in terms of
the old, known relations. Such a definition can be mathematically described
by logic programs viewed as functions from states of some input signature o;
(given relations) into states of some output signature o; (defined relations).
More precisely [10].

Definition 4. (Ip-functions)
A four-tuple f = <H(f)a Ji(f)’ Uo(f)> dom(f)> where

1. II(f) is a logic program (with some signature o),

2. o;(f) and o,(f) are sub-signatures of o, called the input and output signa-
tures of f respectively,

3. dom(f) is a collection of states of o;(f)

is called Ip-function if for any X € dom(f) program II(f)U X is consistent, i.e.,
has an answer set.

For any X € dom(f), f(X)={l:1¢€lit(oo(f)),II(f)UX =1}

We finish our introduction to A-Prolog by recalling the following propositions
which will be useful for our further discussion. To the best of my knowledge
Proposition 1 first appeared in [54].

Proposition 1. For any answer set S of a logic program II:
(a) For any ground instance of a rule of the type (1) from IT,
if {ll,...,lm} C S and {lm+1,...,ln}ﬁS = [then lhesS.

(b) If Iy € S, then there exists a ground instance of a rule of the type (1) from
IT such that {ly,...,ln} € S and {lymt1,-.-,0n} NS =0.

4 This view is similar to that of databases where one of the most important knowledge
representation problems consists in defining the new relations (views) in terms of
the basic relations stored in the database tables. Unlike our case, however, databases
normally assume the completeness of knowledge and hence only need to represent
positive information. As a result, database views can be defined as functions from
sets of atoms to sets of atoms.

VIII

The next proposition (a variant of a similar observation from [31]) shows how
programs of A-Prolog can be reduced to general logic programs, i.e. programs
containing neither — nor 1. We will need the following notation:

For any predicate p occurring in II, let p’ be a new predicate of the same arity.
The atom p’(f) will be called the positive form of the negative literal —p(%).
Every positive literal is, by definition, its own positive form. The positive form
of a literal | will be denoted by /™. ITT stands for the general logic program
obtained from IT by replacing each rule (1) by

l[{<—lf,...,l;‘;,not l;;H,...,not It

and adding the rules

< p(®),p'(?)
for every atom p(t) of o(II). For any set S of literals, ST stands for the set of
the positive forms of the elements of S.

Proposition 2. A consistent set S C lit(o(II)) is an answer set of IT if and
only if ST is an answer set of IIT.

Proposition 2 suggests the following simple way of evaluating queries in A-Prolog.
To obtain an answer for query p, run queries p and p’ on the program IIT. If
IT*’s answer to p is yes then II's answer to p is yes. If II™’s answer to p’ is yes
then II’s answer to p is no. Otherwise the answer to p is unknown. (The method
of course works only if the corresponding inference engine terminates).

3 Defining Orphans - a Case Study

In this section we give a simple example of representing knowledge in A-Prolog.
We will be dealing with a class of “personnel” systems whose background knowl-
edge consist of collections of personal records of people. Such collections will be
referred to as databases. There are multiple ways of designing such records. To
keep a presentation concise we fix an artificially simple signature o; containing
names of people, a special constant nil (read as unknown person), and the pred-
icate symbols person(P), father(F, P), mather(M, P), child(P), dead(P). We
assume that every person in the domain has a database record not containing
false information, names of the parents of the live people are known and prop-
erly recorded, while unknown parents are represented by nil, and that the death
records and children’s records are complete.The set of databases satisfying these
assumptions will be denoted by Cy. Typical records of a database from Cj look
as follows:

person(john). person(mike). person(kathy).
father(mike, john). |father(sam,mike). |father(nil,kathy).
mother(kathy, john).|mother(mary, mike).|/mother(pat, kathy).
dead(mike). dead(kathy).
child(john).

IX

The first record describes a child, John, whose parents are Mike and Kathy. Since
the death of John is not recorded he must be alive. Similarly, we can conclude
that Mike and Kathy were adults when they died, and that the name of Kathy’s
father is unknown.

Let us assume that we are confronted with a problem of expanding databases
from Cjy. In particular we need to familiarize the system with a notion of an
orphan - a child whose parents are dead. In slightly more precise terms we need
to define a function which takes a database X € Cy describing personal records
of people from some domain and returns the set of the domain’s orphans.

The problem can be solved by introducing an lp-function fy with dom(fy) = Cy,
II(fo) consisting of rules:

(r1. orphan(P) + child(P),
not dead(P),
parents_dead(P).

1(fo) r2. parents_dead(P) + father(F, P).
mother(M, P),
dead(F),
dead(M).

\

with father, mother, dead and child being predicate symbols of o;(fo), orphan
being the only predicate symbol of o, (fy), and both signatures sharing the same
object constants. It is not difficult to convince oneself that, since X contains
complete information about the live people of the domain, set fo(X) consists
exactly of the domain’s orphans.

Program II(fy) has many attractive mathematical and computational proper-
ties. For instance it is easy to check that, for any database X € Cy, the pro-
gram Ry = II(fo) U X is acyclic [3], i.e. there is a function || || from ground
atoms of o(Rp) to natural numbers ® such that for any atom [occurring in the
body of a rule with the head ly, ||lo|| > ||I||- Acyclic general logic programs have
unique answer sets which can be computed by a bottom-up evaluation [3]. More-
over, acyclicity of Ry together with some results from [4, 79] guarantee that the
SLDNF resolution based interpreter of Prolog will always terminate on atomic
queries and (under the ’right’ interpretation) produce the intended answers. The
reference to the 'right’ interpretation is of course vague and deserves some com-
ments. Suppose that, according to the database, Xy, containing records about
John and Mary, John is an orphan and Mary is not. Given program R the Pro-
log interpreter will answer queries orphan(john) and orphan(mary) by yes and
no respectively. Since the closed world assumption is built in the semantics of
“classical” logic programming, the second answer can be (correctly) interpreted
as saying that Mary is not an orphan. It is important to realize however that,

® Functions from ground literals to ordinals are called level mappings. They often play
an important role in characterizing various properties of logic programs.

X

from the standpoint of the semantics of A-Prolog, this interpretation is incorrect.
Since neither orphan(mary) nor —orphan(mary) is entailed by the program the
answer to the query orphan(mary) should be unknown. To get the correct an-
swer we need to complete the rules of Iy by explicitly defining non-orphans.
This can be done by adding a simple rule encoding the corresponding closed
world assumption:

r3. —orphan(P) < person(P),
not orphan(P).

It may be instructive at this point to modify our notion of a database X by
explicitly defining its negative information. For relations dead and child and it
easy: we just need to explicitly encode the closed world assumptions:

rd. —child(P) + person(P),
not child(P).

r5. —dead(P) <+ person(P),
not dead(P).

Even though we typically have complete information about the parents of people
from the database this is not always the case. We can express this fact by the
following default with exceptions:

r6. —father(F, P) + person(F),
person(P),
not father(F, P),
not ab(d(F, P)).
r7. ab(d(F,P)) <« father(nil, P).

Here d(F, P) is used to name the default; statement ab(d(F, P)) says that this
default is not applicable to F' and P. If we assume that Bob is a person in our
database we will be able to use the default to show that Bob is not the father
of John. For Kathy, however, the same question will remain undecided.

Rules (r6) and (r7) can be viewed as a result of the application of the general
methodology of representing defaults in A-Prolog. More detailed discussion of
this methodology can be found in [8]. A more general approach which provides
means for specifying priorities between defaults is discussed [36], [23], [39].

Let X € Cj. Since X contains the complete records of parents of every live
person p the rules (r6) and (r7) allow us to conclude that for every person r
different from the father of P the answer to query father(r,p) will be no. For
dead people more negative knowledge can be extracted from the database by
common-sense rules like:

r8. ~—father(F,P) < mother(F,Q).

r9. ~father(F,P) <« descendant(F,P).

r10. descendent(P, P).

rll. descendent(D, P) «+ parent(P,C),
descendant(D, C).

XI

Consider an lp-function

g = (I1(g),0i(fo),0i(fo), Co)

where II(g) consists of rules (r4)-(rll), together with the obvious definition of
relation parent and the rules extracting negative information for mothers. The
function computes the completion of a database X € Cy by the corresponding
negative information. By Cy we denote the collection of completions of elements
of Cy. Consider

II(f) = I(fo) U (3)
and lp-functions R
f = (I(fo) U (r3),0i(fo), 00(f0), Co)

and
h= <H(f) U H(g)aai(fO)’UO(fO)’ CO)

Using the Splitting Lemma (see the next section) it is not difficult to show that,
for any X € Cy, h(X) = f(g9(X)), i.e. h = f o g. (Notice that, since II(g)
is nonmonotonic, its consequences can be modified by addition of IT(f) and
so such a proof is necessary. Fortunately, it follows immediately from a fairly
general theorem from [28].)

Due to the use of default negation, h is also elaboration tolerant w.r.t. some
modifications of the background knowledge such as addition of new people and
recording of deaths and changes in the adulthood status. The latter for instance
can be accomplished by simply removing, say, a record child(john) from the
background knowledge X described above, at which point John will seize to be
an orphan. A program will continue to work correctly as far as the update of
the background knowledge still belongs to the class Cy.

When our knowledge of the domain cannot be captured by databases from Cy
or Cy the situation may become substantially more complex. Let us for instance
consider a modification of our informal knowledge base by removing from it
the closed world assumption for property of being a child (cwa(child)). Now the
record of a person p can contain a statement child(p) or a statement —child(p),
or no information about p being a child at all. (In the latter case we say that
p’s age is unknown.) A new class of databases will be denoted by C;. As before,
every database X of C; contains atoms alive(p), father(f,p), mother(m,p) for
every live person p of the domain. We still have the closed world assumption for
alive and no false information in the X’s records. Our goal is still to teach our
knowledge base about the orphans, i.e. to construct an lp-function which takes a
database X € C; and returns the set of domain’s orphans. It is easy to see that
completions of databases from C; with respect to missing negative information
about relations other than child can be defined as values of the lp-function g’
obtained from g by removing cwa(child) from II(g). We denote the set of all such
completions by Ci. As expected, however, program f does not work correctly
with databases from C’l — the closed world assumption for orphans will force the

XII

program to erroneously conclude that everyone whose age is not known is not
an orphan.

The problem of finding a uniform way of modifying logic programs which would
reflect the removal of some of its closed world assumptions was addressed in
[10], [28]. The authors’ approach is based on the notion of interpolation of a
logic program. To be more precise we will need some additional terminology.

Let F be an lp-function, O be a set of predicate symbols from o;(F) and D =
dom(F) be closed with respect to O, i.e., X € D contains [or [for every literal
I € 1it(O). For any set X of input literals we define the set c(X, O) of its covers
- X € ¢(X, 0) if it satisfies the following properties:

1. X € D;

2. XCX ;

3. for every input literal [¢ lit(0),l € X iff | € X.

By D we denote the set of states of ¢;(F) such that
X= () X
Xee(X,0)

Definition 5. We say that an Ip-function Fis an O-interpolation of F' if

dom(F) = D
FxX)= (] FX)
Xee(X,0)

0i(F) = 03(F) and 0,(F) = 0,(F)

Let us go back to function f from our example and consider O = {child},
program

(1. may_be_child(P) < not —child(P).

2. parents_dead(P) < father(F, P).
mother(M, P),
dead(F),
dead(M).

II(f) | 3. orphan(P) + child(P),
not dead(P),
parents_dead(P).

4. may_be_orphan(P) + may_be_child(P),
not dead(P),
parents_dead(P).

| 5. ~orphan(P) + not may_be_orphan(P).

and Ip-function

~ ~ ~

f= <H(f)’ai(f)’00(f)’ Cl)

XIIT
The rules of I1(f) are obtained by the general algorithm from [10] which, under
certain conditions, translates lp-functions described by general logic programs
into their interpolations. In the next section we use the mathematical theory of
A-Prolog to prove that f is indeed a {child}-interpolation of f.

In the conclusion of this section we illustrate how A-Prolog can be used to
represent

(a) simple priorities between defaults;
(b) statements about the lack of information.

To do that, let us supply our program with knowledge about some fictitious le-
gal regulations. The first regulation says that orphans are entitled to assistance
according to special government program 1, while the second says that all chil-
dren who are not getting any special assistance are entitled to program 0. Legal
regulations always come with exceptions and hence can be viewed as defaults.
We represent both regulations by the following rules:

entitled(P, 1) + orphan(P),
not ab(d; (P)),
not —entitled(P,1).

entitled(P,0) « child(P),
—dead(P),
not ab(dz2(P)),
not —entitled(P,0).

ab(d2(P)) « orphan(P).

The first two rules are standard representations of defaults. The last rule says
that the default ds is not applicable to orphans. Notice that if Joe is a child and
it is not known whether he is an orphan or not then Joe will receive benefits
from program 0 but not from program 1. This case of insufficient documentation
can be detected by the following rule:

check_status(P) < person(P),
not —orphan(P),
not orphan(P).

Though simple, the program above illustrates many interesting features of A-
Prolog: recursive rules, the use of default negation for representing defaults with
exceptions, the use of both negations in formulating the closed world assump-
tions, the ability to discriminate between falsity and the absence of information,
and to produce conclusions based on such absence. The program can be used
together with various inference engines of A-Prolog, thus making it (efficiently)
executable. In section 6 we will demonstrate how A-Prolog can be used to repre-
sent change and causal relations. First, however, we briefly discuss mathematical
theory of A-Prolog.

XIV

4 Mathematics of A-Prolog

In this section we review several important properties of programs of A-Prolog.
Our goal of course is not to give a serious introduction into the mathematics of A-
Prolog. By now the theory is well developed, contains many interesting results,
and probably deserves a medium size textbook. Instead we concentrate on a
few important discoveries and discuss their relevance to constructing knowledge
bases.

4.1 Splitting Lemma

The structure of answer sets of a program I7 can sometimes be better understood
by “splitting” the program into parts. We say that a set U of literals splits a
program IT if, for every rule r of II, pos(r) Uneg(r) C U whenever head(r) € U.
If U splits II then the set of rules in I whose heads belong to U will be called
the base of II (relative to U). We denote the base of II by by (II). The rest of
the program (called the top of IT) will be denoted by ¢y (IT).

Consider for instance a program II; consisting of the rules

q(a) < not q(b),

q(b) + not q(a),

r(a) + q(a).
r(a) < q(b)
Then, U = {q(a),q(b)} is a splitting set of II;, by (II1) consists of the first two

rules while ¢ (I1;) consists of the last two.

Let U be a splitting set of a program IT and consider X C U. For each rule
r € II satisfying property

pos(r)NU C X and (neg(r)NU)NX =0
take the rule 7' such that
head(r') = head(r), pos(r') = pos(r) \ U, neg(r') = neg(r) \ U

The resulting program, ey (11, X), is called partial evaluation of IT with respect
to U and X.

A solution to IT with respect to U is a pair (X,Y’) of sets of literals such that:

— X is an answer set for by (II);
— Y is an answer set for ey (ty (1), X);
— X UY is consistent.

Lemma 1. (Splitting Lemma)

Let U be a splitting set for a program II. A set S of literals is a consistent
answer set for IT if and only if S = X UY for some solution (X,Y’) to II w.r.t.
U.

XV

The Splitting Lemma has become an important tool for establishing existence
and other properties of programs of A-Prolog. To demonstrate its use let us
consider a class of finite stratified programs. A finite general logic program IT is
called stratified if there is a level mapping || || of IT such that if r € I then

1. For any I € pos(r), ||I|| < ||head(r)|];
2. For any I € neg(r) |[l]| < [|head(r)]|.

This is a special case of the notion of stratified logic program introduced in [2].
The results of that paper together with those from [29] imply that a stratified
program has exactly one answer set. For finite stratified programs this can be
easily proven by induction on the number of levels of I with the use of the
Splitting Lemma. If IT has one level (i.e. ||l|| = O for every | € o(II)) then IT
does not contain default negation and hence, by [85] has exactly one minimal
Herbrand model which, by definition, coincides with the II’s answer set. If the
highest level of an atom from o(IT) is n + 1 then it suffices to notice that atoms
with smaller levels form a splitting set U of II. By inductive hypothesis, by (IT)
has exactly one answer set, X, ey(IT, X) is a program without not and hence
has one and only answer set Y. By Splitting Lemma X UY is the only answer
set of II.

The Splitting Lemma can be generalized to programs with a monotone, contin-
uous sequence of splitting sets. This more powerful version can be used to prove
the uniqueness of answer set for locally stratified logic programs [69], existence
of answer sets for order-consistent logic programs of [26], etc.

The above results, combined with Proposition 2 can be used to establish exis-
tence and uniqueness of answer sets of programs with —. Consider for instance
lp-function A from the previous section and a set X of literals from Cy. To show
that IT(h) U X has the unique answer set let us notice that the corresponding
general logic program (I1(h) U X)™ is stratified, and therefore has the unique
answer set ST. To show that the corresponding set S is consistent we need to
check that there is no atom p(t) such that p(t), (-p(¢))* € S*. By Proposition 1
we have that this could only happen if for some people f and p, father(f,p) and
mother(f,p) or father(f,p) and descendent(f,p) were in ST. It is not difficult
to check that this is impossible since, according to our assumption, Cy contains
correct factual information. This, by Proposition 2, implies that IT(h) U X has
the unique answer set S.

The discussion in this section follows [50], in which authors gave a clear expo-
sition of the idea of splitting in the domain of logic programs. Independently,
similar results were obtained in [16]. There is a very close relationship between
splitting of logic programs and splitting of autoepistemic and default theories
[34,15, 84].

4.2 Signed Programs

In this section we introduce the notion of signing of a program of A-Prolog. The
notion of signing for finite general logic programs was introduced by Kunen [46],

XVI

who used it as a tool in his proof that, for a certain class of program, two different
semantics of logic programs coincide. Turner, in [82], extends the definition to
the class of logic programs with two kinds of negation and investigates properties
of signed programs. We will need some terminology.

The absolute value of a literal I (symbolically, |I|) is I if [is positive, and [
otherwise.

Definition 6. A signing of logic program II is a set S C atoms(o(II)) such
that

1. for any rule

lp + ll,...,lm,not lm+1,...,not ln
from I1, either
ol s llm| € S and [lonstls-- - |ln] & S
or
|l0|’7|lm| g S and |lm+1|a"')|ln| €S

)
2. for any atom [€ S, -l does not appear in I1.

A program is called signed if it has a signing. Obviously, programs without
default negation are signed with the empty signing. Program

p(a) « not q(a).
p(b) <+ not q(b).
q(a).
is signed with signing {q(a), q(b)}.
Program II; with signature o = {{a,b,c}, {p, ¢,r,ab}} and the rules
q(X) <« p(X),
not ab(X).

—¢(X) + r(X).
ab(X) <« not —-r(X).

is signed with a signing atoms(ab, o).

Signed programs enjoy several important properties which make them attractive
from the standpoint of knowledge representation. In particular,

1. Signed general logic programs are consistent, i.e. have an answer set. Simple
consistency conditions can also be given for signed programs with classical
negation.

XVII

2. If II is consistent then the set of consequences of the program under answer
set semantics coincides with its set of consequences under well-founded se-
mantics [86]. Notice, that this result shows that inference engines such as
SLG [14] which compute the well founded semantics of logic programs, can
also be used to compute the consequences of such programs under the answer
set semantics.

The following theorem gives another important property of signed programs:

An lp-function F is called monotonic if for any X,Y € dom(F), F(X) C F(Y).

Theorem 1. (Monotonicity Theorem, Turner)
If an lp-function F' has a signing S such that S N (lit(o;(F)) U lit(o,(F))) = 0
then F' is monotonic.

Ezample 1. Consider an lp-function f; with o;(f1) = {{a,b,c},{p,7}}, 0o(f1) =
{{a,b,c}, {q}}, dom(f1) consisting of consistent sets of literals in o;, and program
IT; above as II(f;). It is easy to see that Ip-function f; satisfies the condition
of theorem 1, and hence is monotonic. It’s worth noticing, that logic program
II(f1) is nonmonotonic. Addition of extra rules (or facts) about ab can force us
to withdraw previous conclusions about g. Monotonicity is however preserved
for inputs from o;.

Discussion of the importance of this property for knowledge representation can
be found in [47].

4.3 Interpolation

In the previous section we mentioned the notion of interpolation F of an lp-
function F. The switch from F to F reflects the removal from the informal
knowledge base represented by II(F') some of its closed world assumptions. The
notion of signing plays an important role in the following theorem (a variant of
the result from [10]) which facilitates the construction of F.

Let F be an lp-function with IT(F) not containing -, O be a set of predicate
symbols from o;(F) and the domain D of F be closed with respect to O, i.e.,
X € D contains [or [for every literal I € lit(O). By o we denote the set of
predicate symbols of IT(F') depending on O. More precisely, o is the minimal set
of predicate symbols such that O C o and if the body of a rule of II(F) with
head p(t) contains an atom formed by a predicate symbol from o, then p € 0. To
define F' we expand the signature o of II(F') by a new atom, m,, (read as “may
be p”) for every predicate symbol p, and consider a mapping, «, from extended
literals of IT(F) into literals of the new signature &:

1. if p € o then a(p(t)) = mp(t) and a(not p(t)) = —p(t).
2. Otherwise, a(e) =e.

XVIII

If E is a set of extended literals then a(F) = {a(e) : e € E}.

If r is a rule of the form
ly + pos,not neg

then by a(r) we denote the rules:

a(lp) < a(pos), not neg
lo <+ pos,a(not neg)

By f we denote the Ip-function with dom(F) = dom(F), o:i(F) = oi(F),
0o(F) = 0,(F), and II(F') consisting of the rules:

1. For any predicate symbol p € O add the rule
m_p(X) « not —p(X).
2. For any predicate symbol p € o\ O add the rule
—p(X) < not my(X).
3. Replace every rule r € IT by a(r).

Theorem 2. (Interpolation theorem) B
Let F and O be as above. If II(F) is signed then F is an interpolation of F.

Let us now demonstrate how these results can be used to prove properties of the
lp-functions f and f from section 3.

Proposition 3. f is the interpolation of f.

Proof (sketch). 5

(a) Let O = {child} and D = dom(f). Using definitions of C1 and D it is not
difficult to show that C’l = D. ’~I‘o chec~k the first condition of Definition 5 we
need to prove that for any X € D, (II(f) UX)" has an answer set. This follows
from the fact that this program is stratified. Moreover stratifiability implies that
this answer set is unique. Let us denote it by A*. Using Proposition 1 we can
check that if orphan(p) € A* then so is may_be_orphan(p) and therefore AT
does not contain (—orphan(p))™. By Proposition 2 we conclude that A is the
answer set of IT(f) U X, i.e., X € dom(f).

(b) Let U be a set of literals formed by predicate symbols of the program II(f)
different from orphan and child. Obviously, for any X € D, U is a splitting set
of IT(f) U X. The base of this program, consisting of definition of parents_dead
and and X NU contains no default negation. This, together with consistency of
X, implies that the base has exactly one answer set. Let us denote it by Ay .

Now consider an Ip-function r with

I(r) = ev (11(f), Av) (3)

XIX

o;(r) formed by predicate child and objects constants of the domain, o,(r) =
o-0(f), and the domain consisting of complete and consistent sets of literals
formed by child. From definition of our operator ~ it is easy to see that

I(7) = ey (I1(f), Av) (4)

It is not difficult to check that IT(r) is signed with a signing consisting of atoms
formed by the predicate symbol “may_be” therefore, by Theorem 2,

)= (]) ()

Yec(Y,0)
By Splitting Lemma we can conclude that
f(X)=7(Y) where Y = X N lit(0) (6)

and that, for every Xe (X, 0),

f(X) =#(Y) where ¥ = X N 1it(0) (7)
Finally let us notice that
X € ¢(X,0)iff Y € ¢(Y,0) (8)

which, together with (5) — (6) implies

= N @ (9)

XGC(X,O)

We hope that the discussion in this section will help a reader to get a feel for some
of the mathematics of A-Prolog. The following sections contain several other
useful mathematical results which may help to better see the variety of questions
related to A-Prolog. Meanwhile we turn to the question of the extensions of the
basic variant of A-Prolog.

5 Extensions of A-Prolog

There are several important extensions of A-Prolog (see for instance [38,52,
66]). We will briefly discuss two of such extensions: disjunctive A-Prolog (DA-
Prolog) [70,31], and A-Prolog with sets (ASET-Prolog). DA-Prolog has been
studied for a substantial amount of time. It has a non-trivial theory and efficient
implementation. ([61] surveys alternative ways of introducing disjunction in logic
programming). ASET-Prolog is still in its developing stage.

XX

5.1 A-Prolog with Disjunction

A program of DA-Prolog consists of rules of the form
lpor ... orlg < lgt1,...Lm,n0t Lpta,...,no0t L, (10)

The definition of an answer set of a disjunctive program is obtained by making
a small change in the definition of what it means for a set X of literals to be
closed under program II. We now say that X is closed under II if, for every rule
head < body of II, at least one of literals in the head is true in X whenever body
is true in X. The rest of definitions 1 and 2 remain unchanged. The following
simple examples illustrate the definition:

A program II; consisting of the rules:

p1 or pa.
q < Pp1-
q < pa2-
has two answer sets, {p1,q} and {p2,¢}. The program I,:

Pp1 or pa.
q < not p;.
q < not pa.

has the same answer sets. And the program

Pp1 Or pa.
q < not p;.
q < not pa.
—|p1,
has the answer set {—p1,p2,q}

There are several systems capable of reasoning in DA-Prolog. Some of them
use the top-down or bottom-up methods of answering queries similar to those
in non-disjunctive logic programs [78,5]. A different approach is taken by the
dlv system [20] which takes as an input a program of DA-Prolog with a finite
Herbrand Universe and computes the answer sets of this program.

Knowledge Representation in DA-Prolog

The following examples demonstrate the use of disjunction for knowledge repre-
sentation and reasoning.

Ezample 2. Let us consider the following scenario: A preliminary summer teach-
ing schedule of a computer science department is described by a relation
teaches(prof,class). The preliminary character of the schedule is reflected by
the following uncertainty in the database

teaches(mike, java) or teaches(john, java).

and by the absence of the closed world assumption for teaches. Now assume that
in summer semesters the department normally teaches at most one course on

XXI

computer languages. Intuitively this implies that no course on the C language
will be offered. To make such a conclusion possible we expand our database by
the following information:

lang(java).
lang(c).
of fered(C) < teaches(P,C).
—-of fered(C1) + lang(C1),
lang(C2),
of fered(C2),
C1# 02,
not of fered(C1).

The last statement is a standard representation of a default. The resulting pro-
gram has two answer sets. In one Java is taught by Mike, in another one by John.
In both cases however the C language is not offered. The example demonstrates
the ability of DA-Prolog to represent reasoning by cases and to nicely combine
disjunction with defaults. (For comparison of these properties with the use of
disjunction in Reiter’s default logic see [33]).

The next example from [13] demonstrates the expressive power of the language.

Ezxample 8. Suppose a holding owns some companies producing a set of prod-
ucts. Each product is produced by at most two companies. We will use a relation
produced_by(P,Cy,C2) which holds if a product P produced by companies C;
and (5. The holding below consists of four companies producing four products
and can be represented as follows:

produced_by(pl,b,s). produced_by(p2, f,b).
produced_by(p3,b,b). produced_by(p4, s,p).

This slightly artificial representation, which requires a company producing a
unique product to be repeated twice (as in the case of p3), is used to simplify
the presentation.

Suppose also that we are given a relation controlled_by(C1,Cs,C3,Cy4) which
holds if companies C5, C3, C4 control company C. In our holding, b and s control
f, which is represented by

controlled_by(f,b, s, s)

Suppose now that the holding needs to sell some of the companies and that its
policy in such situations is to maintain ownership of so called strategic compa-
nies, i.e. companies belonging to a minimal (with respect to the set theoretic
inclusion) set S satisfying the following conditions:

1. Companies from S produce all the products.
2. S is closed under relation controlled_by, i.e. if companies C5, C5, Cy belong
to S then so is C;.

XXII

It is easy to see that for the holding above the set {b, s} is not strategic while
the set {b,s, f} is.

Suppose now that we would like to write a program which, given a holding of
the above form, computes sets of its strategic companies. This can be done by
the rules

1. strat(C1) or strat(Cs) < produced_by(P, C1,C2)

2. strat(Ch) + controlled_by(C1,Cs,Cs5,Cy),
strat(Ca),
strat(Cs),
strat(Cy).

defining the relation strat(C). Let IT be a program consisting of rules (1), (2)
and an input database X of the type described above. The first rule guarantees
that, for every answer set A of II and every product p, there is a company ¢
producing p such that an atom strat(c) € A. The second rule ensures that for
every answer set of IT the set of atoms of the form strat(c) belonging to this set
is closed under the relation controlled_by. Minimality of this set follows from the
minimality condition in the definition of answer set. It is not difficult to check
that answer sets of II correspond one-to-one to strategic sets of the holding
described by an input database. The dlv reasoning system can be asked to find
an answer set of IT and display atoms of the form strat from it.

Complexity and Expressiveness

The above problem can be viewed as an example of a classical search problem
P given by a finite collection dom(P) of possible input databases and a function
P(X) defining solutions of P for every input X from dom(P). An algorithm
solves a search problem P if for each X € dom(P) it returns no if P(X) is
empty and one of the elements of P(X) otherwise. Solution of the corresponding
decision problem requires an algorithm which checks if P(X) is empty or not.
This observation suggests the following approach to solving a search and decision
problem P:

1. Encode input instances and solutions of P by collections of literals from
signatures o; and o,. (Make sure that the corresponding encoding e is poly-
nomial).

2. Construct a program IT such that for every X € dom(P) restrictions of
answer sets of IT U X on lit(o,) correspond to P(X).

If we are successful we say that II is a uniform logic programming solution of P.
It is natural to characterize the class of problems which can be solved by this
method. First some notation: By FA-Prolog and FDA-Prolog we mean restric-
tions of A-Prolog and DA-Prolog to languages with finite Herbrand universes.

Theorem 3. (Complexity results)

1. The problem of deciding whether a program of FA-Prolog has an answer set
is NP-complete [55].

XXIII

2. A decision problem P can be solved by a uniform program of FA-Prolog iff
it is in the class NP [75]

3. A decision problem P can be solved by a uniform program of FDA-Prolog
iff it is in the complexity class X [13]

It is interesting to note that the problem from example 3 is X1 complete [19]
and therefore the use of disjunction is essential. The above theorem shows that
for decision problems we have a complete answer. The problem remains open for
arbitrary search problems but it is clear that both, FA-Prolog and FDA-Prolog
can capture a rather large number of such problems. For instance, according

o [66], FA-Prolog can solve “all search problems , whose associated decision
problems are in NP, that we considered so far”.

5.2 A-Prolog with Sets

In this section we introduce a new extension, ASET-Prolog, of A-Prolog which
simplifies representation and reasoning with sets of terms and with functions
from such sets to natural numbers. The language does not yet have a com-
plete implementation. Fortunately, its semantics is very close to the semantics of
choice rules of [66], which makes it possible to run a large numbers of programs
of ASET-Prolog using smodels reasoning system. (In fact, ASET-Prolog is an
attempt to simplify and slightly generalize the original work of [66]). We start
by defining the syntax and semantics of the language. To simplify the presenta-
tion we limit ourself to a language £ without — and assume that £ has a finite
Herbrand universe. Atoms of £ will be called L-atoms. We expand £ by two new
types of atoms:

1. An s-atom is a statement of the form
{z : p(@)} C{z : ¢(@)}. (11)
where 7 is the list of all free variables occurring in the corresponding atom.

The statement says that p is a subset of q.
2. An f-atom is a statement of the form

{z :p(@)} <nor {7 :p(@)} =n (12)

where | | denotes the cardinality of the corresponding set. (The general de-
scription of the language allows other functions on sets except the | |.)

Let us denote the new language by S.

A program of ASET-Prolog (parameterized by a background language S) is a
collection of rules of the form

lo+ U1,y lm,not lyyy1,...,n0t 1y, (13)
where [y, ...,l, are atoms of S and [is either L-atom or s-atom of S.

To give a semantics of ASET-Prolog we generalize the notion of stable model of
A-Prolog. First we need the following terminology.

Let S be a set of ground atoms of S.

XXIV

1. An L-atom atom [of S is true in S if [€ S.

2. An s-atom (11) is true in S if for any sequence ¢ of ground terms of £, either
p(t) € Sorgqt)€S.

3. An f-atom (12) is true in S if cardinality of the set {¢ : p(f) € S} satisfies
the corresponding condition.

We say that S satisfies an atom [of S and write S |= 1 if [is true in S; not [is
satisfied by S if S |~ [. As in the definition of stable models, we consider rules
of a program II with free variables to be schemas denoting the set of ground
instances of these rules (i.e., the result of replacing free variables of IT by terms
of §). Unless stated otherwise IT is assumed to be grounded.

Definition 7. (Stable models of ASET-Prolog)
Let S be a collection of ground atoms. By se(I, S) (read as “the set elimination
of IT with respect to S”) we mean the program obtained from II by:

1. removing from IT all the rules whose bodies contain s-atoms or f-atoms not
satisfied by S;

2. removing all remaining s-atoms and f-atoms from the bodies of the rules;

3. replacing rules of the form [<— I" where [is an s-atoms not satisfied by S by
rules « I

4. Replacing the remaining rules of the form: {Z : p(Z)} C {Zz : q(T} + I' by
the rules p(t) <+ I for each p(t) from S.

We say that S is a stable model of IT if it is a stable model of se(II, S).
Let us now give several examples of the use of ASET-Prolog.

Ezample 4. (Computing the cardinality of sets)
We are given a complete list of statements of the form located_in(C, S) (read as
“a city C is located in a state S”), e.g.,

located in(austin, tz).
located_in(lubbock, tx).
located_in(sacramento, ca).

Suppose that we need to define a relation num(N, S) which holds iff N is the
number of cities located in a state S. This can be done with the following rule
of ASET-Prolog;:

num(N, S) «+ |{X : located_in(X,S)}| = N.
After grounding, this rule will turn into the rules

num(i, tz) < |{X : located_in(X,tz)}| = i.
num(i, ca) < |{X : located_in(X, ca)}| = i.

where ¢’s are integers from 0 to some maximum integer m. (Notice, that the
variable X is bounded and hence it is not replaced by any term.) It is easy to
check that the program has exactly one stable model A and that A contains the
above facts and the atoms num(2, tz) and num(1, ca).

XXV

The next three examples are taken from [66]. They demonstrates the use of rules
of the form:

{Z : p@}C{z : q(T} T (14)

with s-atoms in the heads. Rules of this form are called selection rules and are
read as follows: “ If I" holds in a set S of beliefs of an agent then any subset
of the set {f : ¢(f) € S} may be the extent of p(Z) in 5”5. The next example
demonstrates the use of selection rules:

Ezample 5. (Cliques)
Suppose we have a graph defined by the set of facts of the form node(X) and
edge(X,Y)

node(a).

node(b).

node(c).

edge(a, b)

We would like to define a relation clique(X), i.e. to write a program IT of ASET-
Prolog such that for any graph G represented as above, the set of nodes NV is a
clique of G iff there is a stable model S of IT UG such that an atom clique(t) € S
iff t € N. Recall that a set of nodes of a graph G is called a clique if every two
nodes from this set are connected by an edge of G. This can be easily expressed
by the following rules:

{X : cique(X)} C{X : node(X)}.
+ clique(X), cligue(Y), X # Y,not edge(X,Y).

Answer sets of the program consisting of graph G combined with the first rule
correspond to arbitrary subsets of nodes of G. Adding the constraint eliminates
those which do not form a clique.

The next example demonstrates how selection rules combined with cardinality
constraints can allow selection of subsets of given cardinality.

Ezample 6. (Coloring the graphs)
Suppose we have a graph G defined by the set of facts of the form node(X) and
edge(X,Y) as in example (5) together with a set C of colors

color(red). color(green).

We would like to color the graph in a way which guarantees that no two neighbor-
ing nodes have the same color. To this end we introduce a program I7 defining a
relation colored(Node, Color) such that every coloring will be represented by the
atoms of the form colored(n, c) from some stable model of IT UG U C. Program

% By the extent of p(Z) in S we mean the set of ground terms such that p(f) € S.

XXVI

IT will consist of the following rules:

{C : colored(X,C)} C {C : color(C)} + node(X).
+« |{C : colored(X,C)}| = N,
N#£1
+ colored(X,C),
colored(Y,C),
edge(X,Y).

The first rule allows the selection of arbitrary sets of colors for a given node X.
The second limits the selection to one color per node. The third eliminates the
selections which color neighbors by the same color. The selections left after this
pruning correspond to acceptable colorings.

The next example illustrates the use of s-atoms in the body of rules.

Ezample 7. (Checking the course prerequisites)
Suppose that we have a record of courses passed by a student, s, given by a
collection of atoms

passed(s,cl). passed(s,c2). passed(s,c3).
and a list of prerequisites for each class
prereq(cl,cd). prereq(c2,cd). prereq(cd,ch).

Our goal is to express the following rule: A student S is allowed to take class C
if he passed all the prerequisites for C and didn’t pass C yet. This rule can be
written as

(a) can_take(S,C) + {X : prereq(X,C)} C {X : passed(S, X)},
not passed(S, C).

It is easy to check that the stable model M of this program, IT, consists of the
above facts and an atom can_take(s, c4). Indeed, after grounding the above rule
will turn into rules:

can_take(s,c;) « {X : prereq(X,c;)} C {X : passed(s, X)},
not passed(s, c;).

where 0 < ¢ < 5. (We are of course assuming that the variables are properly
typed). The s-literals in the bodies of the rules are satisfied for i = 1,2,3, and 4
and are not satisfied for i=5. So se(II, M) consists of the facts and rules

can_take(s, ¢;) < not passed(s, ¢;).

where i = 1..4. It is easy to check that M is the only stable model of this program.

XXVII

A careful reader probably noticed that the same example could be formalized
in A-Prolog without the use of s-atoms. This can be done by introducing a new
predicate symbol not_ready(S, C) read as “a student .S is not yet ready to take
a class C” and by replacing rule (a) above by the following two rules:

(b) not_ready(S,C) «+ prereq(X,C)
not passed(S, X).

(¢) can_take(S,C) + not not_ready(S, C)
not passed(S, C).

The following proposition shows that this is not an accident. First we need some
notation. Let IT be a logic program over signature o containing a rule

lo I, {X : p(X)} C{X : ¢(X)} I2 (15)

By IT* we denote the program obtained from IT by replacing rule 15 by the rules
d + p(X),not ¢(X). (16)

lo « In,not d, I 17)

where d is formed with a predicate symbol not belonging to o.

Proposition 4.

1. For any stable model S of II there is a stable model S* of II* such that
S = S*nlit(o).

2. If S* is a stable model of IT* then S = S* N lit(o) is a stable model of II.
This proposition shows that allowing s-atoms in the bodies of rules does not add
to the expressive power of A-Prolog. It allows however a more compact repre-
sentation with fewer predicate symbols. To some extent the above proposition
can help to explain why stable models of programs of A-Prolog with s-terms in
the bodies of their rules do not have the anti-chain property enjoyed by stable
models of “pure” A-Prolog. The following example demonstrates that this is
indeed the case.

Ezample 8. Consider the following program I
p(a).

g(a) «— {X : p(X)} C{X : ¢(X)}.

which has two models, S; = {p(a)} and S2 = {p(a), ¢(a)}. (Since S; C S; the
set of models of IT does not form an anti-chain.) It is easy to check however that
the models of IT* are {p(a),d} and {p(a), g(a)} which, thanks to the presence of
a new atom d, do form an anti-chain.

As mentioned before selection rules of ASET-Prolog are closely related to choice
rules of [66, 76] which have a form

m{p(X) : ¢(X)In+ T (18)

XXVIII

Even though the general semantics of choice rules is somewhat complicated,
sometimes such rules can be viewed as a shorthand for several rules of ASET-
Prolog. More precisely, let us consider a program II containing rule (18) and
assume that no other rule of IT contains p in the head. Let ITt+ be a program
obtained from IT by replacing rule (18) by rules:

{X = p(X)}CH{X : ¢(X)} < T
—n<[{X : p(X)}
<X p(X)}H <m

Proposition 5. Let II and II™" be as above. Then S is a stable model of II
in the sense of [66] iff S is a stable model of ASET-Prolog program II*T.

(Proofs of both propositions will appear in the forthcoming paper on ASET-
Prolog.)

6 Reasoning in Dynamic Domains

Let us now consider domains containing agents capable of performing actions and
reasoning about their effects. Such domains are often called dynamic domains
or dynamic systems. We will base their description on the formalism of action
languages [35], which can be thought of as formal models of the part of the
natural language that are used for describing the behavior of dynamic domains.
A theory in an action language normally consists of an action description and
a history description [9], [51]. The former contains the knowledge about effects
of actions, the latter consists of observations of an agent. Some discussion of
architecture of autonomous agents build on action languages and A-Prolog can
be found in [11]

6.1 Specifying Effects of Actions

An action description language contains propositions which describe the effects
of actions on states of the system modeled by sets of fluents — statements whose
truth depends on time. Fluent f is true in a state ¢ iff f € 0. Mathematically, an
action description — a collection of statements in an action description language
- defines a transition system with nodes corresponding to possible states and
arcs labeled by actions from the given domain. An arc (o1, a, 02) indicates that
execution of an action a in state o7 may result in the domain moving to the state
03. We call an action description deterministic if for any state o; and action a
there is at most one such successor state o5. By a path of a transition system T' we
mean a sequence 0y, a’, o1, .. .,a", o, such that for any 1 < i < n, (04, a* !, 0441)
is an arc of T'; 0y and o, are called initial and final states of the path respectively.
Due to the size of the diagram, the problem of finding its concise specification is
not trivial and has been a subject of research for some time. Its solution requires
the good understanding of the nature of causal effects of actions in the presence
of complex interrelations between fluents. An additional level of complexity is

XXIX

added by the need to specify what is not changed by actions. The latter, known
as the frame problem, is often reduced to the problem of finding a concise and
accurate representation of the inertia axiom — a default which says that things
normally stay as they are [60]. The search for such a representation substantially
influenced AT research during the last twenty years. An interesting account of
history of this research together with some possible solutions can be found in
[74]. In this paper we limit our attention to an action description language B [35]
which signature X' consist of two disjoint, non-empty sets of symbols: the set F
of fluents and the set A of elementary actions. A set {ay,...,an} of elementary
actions is called a compound action. It is interpreted as a collection of elementary
actions performed simultaneously. By actions we mean both elementary and
compound actions. By fluent literals we mean fluents and their negations. By [
we denote the fluent literal complementary to [. A set S of fluent literals is called
complete if, for any f € F, f € S or =f € S. An action description of B(X) is a
collection of propositions of the form

1. causes(ae,lo, [l1,---,s]),
2. caused(ly, [l1,...,1,]), and
3. impossible_if(a,[l1,--.,1n])

where a. and a are elementary and arbitrary actions respectively and lg,...,[,
are fluent literals from X'. The first proposition says that, if the elementary action
a. were to be executed in a situation in which Iy,...,[, hold, the fluent literal
lp will be caused to hold in the resulting situation. Such propositions are called
dynamic causal laws. (The restriction on a. being elementary is not essential and
can be lifted. We require it to simplify the presentation). The second proposi-
tion, called a static causal law, says that, in an arbitrary situation, the truth of
fluent literals, Iy, ..., [, is sufficient to cause the truth of . The last proposition
says that action a cannot be performed in any situation in which [y, ...,[, hold.
Notice that here a can be compound, e.g. impossible_if({a1,a2},[|) means
that elementary actions a; and as cannot be performed concurrently. To de-
fine the transition diagram, 7', given by an action description A of B we use
the following terminology and notation. A set S of fluent literals is closed un-
der a set Z of static causal laws if S includes the head, Iy, of every static
causal law such that {l1,...,l,} C S. The set Cnz(S) of consequences of S
under Z is the smallest set of fluent literals that contains S and is closed un-
der Z. E(ac,0) stands for the set of all fluent literals [y for which there is a
dynamic causal law causes(ae,lo,[l1,---,1s]) in A such that [l,...,l,] C o.
E(a,0) = U, cq E(ae,0). The transition system 7' = (S,R) described by an
action description A is defined as follows:

1. S is the collection of all complete and consistent sets of fluent literals of X
closed under the static laws of A,

2. R is the set of all triples (o, a,c”) such that A does not contain a proposition
of the form impossible_if(a,|[l1,...,1l,]) such that [I1,...,l,] C o and

o' =Cnz(E(a,0)U(cNd’)) (19)

XXX

where Z is the set of all static causal laws of A. The argument of Cn(Z)
in (19) is the union of the set F(a,o) of the “direct effects” of a with the
set 0 No’ of facts that are “preserved by inertia”. The application of Cn(Z)
adds the “indirect effects” to this union.

The above definition is from [57] and is the product of a long investigation of the
nature of causality. (See for instance, [49, 81].) The following theorem (a version
of the result from [83]) shows the remarkable relationship between causality
and beliefs of rational agents as captured by the notion of answer sets of logic
programs. First we need some terminology. We start by describing an encoding 7
of causal laws of B into a program of A-Prolog suitable for execution by smodels:

1. 7(causes(a,lg,[l1-..1s])) is the collection of atoms d-law(d), head(d,lp),
action(d, a) and prec(d,i,1;) for 1 < i < n, and prec(d,m + 1,nil) (where d
is a new term used to name the corresponding law.)

2. 7(caused(ly,[l1 -..1,])) is the collection of atoms s_law(d), head(d, ly),
prec(d, i,1;) for 1 < i <mn, and prec(d, m + 1,nil).

3. T(impossible_if([a1,...,ak),[l1..-1s])) is a constraint

« h(ly,T),...,h(l,, T),0ccurs(ay,T),...,occurs(ag,T).

Here T ranges over integers, occurs(a, t) says that action a occurred at moment £,
and h(l,t) means that fluent literal [holds at ¢. Finally, for any action description
A

7(A) = {r(law) : law € A} (20)
¢(A) = 7(A) UII(1) (21)
where II(1) is an instance of the following program
1. h(L,T") + dlaw(D),
head(D, L),
action(D, A),
occurs(A,T),
prec_h(D,T).
2. h(L,T) + slaw(D),
head(D, L),
II(N) prec_h(D,T).

3. all_.h(D, K, T) < prec(D, K.nil).
4. all.h(D, K, T) + prec(D, K, P),

h(P,T),
all_h(D, K’
5. prec.h(D,T) <+ all_h(D,1,T).
6. h(L, T") « h(L,T),
L not h(L,T").

Here D, A, L are variables for the names of laws, actions, and fluent literals re-
spectively, T, T" are consecutive time points from interval [0, N] and K, K’ stand

XXXI

for consecutive integers. The first two rules describe the meaning of dynamic and
static causal laws, rules (3), (4), (5) define what it means for preconditions of
law D to succeed, and rule (6) represents the inertia axiom from [60].

Theorem 4. For any action a and any state o, a state o’ is a successor state
of a on o iff there is an answer set S of

¢(A)U{Rr(,0) : I € o} U{occurs_at(a;,0) : a; € a}
such that, o’ = {l : h(l,1) € S}.

The theorem establishes a close relationship between the notion of causality and
the notion of rational beliefs of an agent. The systematic study of the relationship
between entailment in action theories and in A-Prolog started in [32], where the
authors formulated the problem and obtained some preliminary results. For more
advanced result see [83].

6.2 Planning in A-Prolog

Now we will show how the above theory can be applied to classical planning
problems of AI [80], [24], [53],[58]. Let us consider for instance the blocks world
problem which can be found in most introductory AI textbooks:

The domain consists of a set of cubic blocks sitting on a table. The blocks can be
stacked, but only one block can fit directly on top of another. A robot arm can
pick up a block and move it to another position, either on the table or on top of
another block. The arm can only pick up one block at a time, so it cannot pick
up a block that has another one on it. The goal will always be to build one or
more stacks of blocks, specified in terms of what blocks are on top of what other
blocks.

To build a formal representation of the domain let us introduce names by, ..., b,
for blocks and t for the table. We use a fluent on(B, L) to indicate that block B
is on location L and an action move(B, L) which moves block B to a position
L. The corresponding types will be described as follows:

block(b1). ... block(by).
loc(t).
loc(L) + block(L).
fluent(on(B, L)) < block(B),
loc(L).
act(move(B, L)) « block(B),
loc(L).

The executability conditions for action move are defined by the rules:

XXXII

impossible_if (move(B, L),[on(A, B)]) <+ block(B),
block(A),
loc(L).

impossible_if (move(B1, B2), [on(A, Bs)]) < block(B),
block(Bs),
block(A).

impossible_if(move(B, B), []).
The action’s direct effect is represented by a dynamic causal law,

causes(move(B, L),on(B,L),[]) + block(B),
loc(L).

The static causal law,

caused(—on(B, Ly), [on(B, L1)]) < block(B),
loc(Ly),
loc(Ls).
Ly # Ly

guarantees the uniqueness of a block’s location. It is easy to see that the result-
ing program has a unique answer set, S. Atoms from S, formed by predicates
impossible_if, causes, and caused, form an action description, A4, of action
language B which defines the transition diagram, 7', of the blocks wold domain.

For simplicity we restrict ourselves to a planning problem of the following type:

Given an initial node, oy, of the diagram, a non-negative integer n, and a col-
lection Xy of goal nodes find a path of length less than or equal to n from oq to
one of the elements of Xy. The path determines the agent’s plan — a sequence
of actions it needs to perform in order to achieve its goal. We will refer to such
plans as solutions of the planning problem.

We assume that an initial state, og, is defined by a collection I of formulas of
the form h(l,0), and that the goal is given by a collection, G, of statements
9(lo),- - -, 9(lx) which specifies what fluent literals must be true in a goal state.
For instance, I may be

h(on(a,t),0). h(on(b,a),0). h(on(c,t),0).

and the goal may be

g(on(b,t)). g(on(a,d)).

A planning problem defined in this way will be denoted by (A, I, G, n).

The actual planning is done with the help of a program we call a planning
module. The simplest planning module, PMj, consists of the goal constraints
and the possible plans generator. Constraints may be defined as follows:

XXXIII

fails(T) <+ 0<T<n,

9(F),
not h(F,T)

succeeds(T) + 0<T <n
not fails(T).
succeeds <+ succeeds(T).

< not succeeds.

fails(T) holds if at least one of the fluent literals from the goal does not hold at
time T'; succeeds holds when all the goals are satisfied at some moment of time
0 < T < n. The last constraint requires the goal to be achievable in at most n
steps.

The generator of the planning module may consists of the rules
0{occurs(A,T) : act(A)}1 + 0<T < n.
act_occur(T) <+ occurs(A,T).

+ succeeds(T),
0TI\ <T
not act_occurs(T).
+ succeeds(T),
T<Ti<n
act_occurs(T).

We use the choice rule of [66] to guarantee that every answer set of a program
containing the planning module will contain at most one occurrence of the state-
ment occurs(a,t) for every moment 0 < ¢t < n. The two constraints guarantee
that at least one action occurs at any moment of time before the goal is achieved
and that no actions occur afterwards. (As mentioned in section 5, the choice rule
above can be viewed as a shorthand for a selection rule of ASET-Prolog or for
a collection of rules of A-Prolog.) We will also need the rules

h(F,0) < not h(—F,0).
h(—F,0) < not h(F,0).

sometimes called the awareness azioms, which say that for every fluent f, either
f or =f should be included in the beliefs of a reasoning agent. (If the agent’s
information about the initial situation is complete this axiom can be omitted).

Let P = (A, I,G,n) be a planning problem and consider
Plan(P) =1(A)UIUGU PM, (22)

Using theorem 4 it is not difficult to show that

Proposition 6. A sequence aj,...,a; (0 < k < n) is a solution of a planning
problem P with a deterministic action description iff there is an answer set S of
Plan(P) such that

XXXIV

1. for any 0 < i < k, occurs(a;,i — 1) € S
2. S contains no other atoms formed by occurs.

The proposition reduces the process of finding solutions of planning problems to
that of finding answer sets of programs of A-Prolog. To apply it to our blocks
world we need to show that the corresponding action description, A, is deter-
ministic. This immediately follows from the following proposition:

Proposition 7. If every static causal law of an action description A of B has
at most one precondition then A is deterministic.

A-Prolog’s inference engines like smodels, dlv, and ccalc are sufficiently powerful
to make this method work for comparatively large applications. For instance in
[7] the authors used this method for the development of a decision support sys-
tem to be used by the flight controllers of the space shuttle. One of the system’s
goals was to find the emergency plans for performing various shuttle maneu-
vers in the presence of multiple failures of the system’s equipment. Efficiency
wise, performance of the planner was more than satisfactory (in most cases the
plans were found in a matter of seconds.) This is especially encouraging since
performance of A-Prolog satisfiability solvers is improving at a very high rate.

The system is implemented on top of smodels. It includes a knowledge base
containing information about the relevant parts of the shuttle and its maneuvers,
and of the actions available to the controllers. The effects of actions are given in
an action description language B. The corresponding action description contains
a large number of static causal laws. It is interesting to notice that these laws,
which are not available in more traditional planning languages like [71], played
a very important role in the system design. We are not sure that a concise,
elaboration tolerant, and clear description of the effects of controller’s actions
could be achieved without their use.

The system’s planning module is based on the same generate and test idea as
P M, but contains a number of constraints prohibiting certain combinations of
actions. Constraints of this sort substantially improve the quality of plans as
well as the efficiency of the planner [37].

To illustrate the idea let us show how this type of heuristic information can be
used in blocks world planning. The rules, R, below express “do not destroy a
good tower” heuristic suggested in [6]. It ensures that the moves of blocks which
satisfy the planner’s goal are immediately cut from its search space.

h(ok(t),T) <+ 0<T<n.

h(ok(B1),T) + 0<T <n,

g(on(B1, By)),
(On(BlaBQ)vT)a
h(ok(Bz),T).

+ occurs(move(B, L), T),

h(ok(B),T).

XXXV

The first two rules define a fluent ok(B) which holds at moment T if all the
blocks of the tower with the top B have positions specified by the planner’s
goal. The last rule prohibits movements of the ok blocks. The planning module
P M, consisting of PMj, combined with the R rules above, returns better plans
than PM, and is substantially more efficient. In a sense R-rules can be viewed
as a declarative specification of control information limiting the search space of
the planner. (It is interesting to note that in [6] a similar effect was achieved by
expanding the original action description language with a variant of temporal
logic. The use of A-Prolog makes this unnecessary).

7 Acknowledgments

There are many people who directly or indirectly contributed to this publication
by creating its subject matter and influencing its author, and I would like to
thank all of them. Special thanks however are due to Bob Kowalski. If it were
not for his paper [42] I (almost accidently) read in the early eighties I probably
would not get interested in logic programming and would have never had a
chance to become familiar with this wonderful field of research. For that, and
for the opportunity to learn from Bob’s work during the last twenty years, I am
very grateful.

References

1. J. Alferes and L. Pereira. Reasoning With Logic Programming. Springer Verlag,
1996.

2. K. Apt, H. Blair, and A. Walker. Towards a theory of declarative knowledge. In
J. Minker, editor, Foundations of Deductive Databases and Logic Programming,
pages 89-148. Morgan Kaufmann, San Mateo, CA., 1988.

3. K. Apt and M. Bezem. Acyclic programs. New Generation Computing, 9(3,4):335—
365, 1991.

4. K. Apt and A. Pellegrini. On the occur-check free logic programs. ACM Transac-
tion on Programming Languages and Systems, 16(3):687-726, 1994.

5. C. Aravindan, J. Dix, and I. Niemela. Dislop: A research project on disjunctive
logic programming, AI communications, 10 (3/4):151-165.

6. F. Bacchus and F. Kabanza. Planning for Temporally Extended Goals. Annals of
Mathematics and Artificial Intelligence, 22:1-2, 5-27.

7. M. Balduccini, M. Barry, M. Gelfond, M. Nogueira, and R. Watson An A-Prolog
decision support system for the Space Shuttle. Lecture Notes in Computer Science -
Proceedings of Practical Aspects of Declarative Languages’01, (2001), 1990:169-183

8. C. Baral and M. Gelfond. Logic programming and knowledge representation. Jour-
nal of Logic Programming, 19,20:73-148, 1994.

9. C. Baral, M. Gelfond, and A. Provetti. Representing Actions: Laws, Observations
and Hypothesis. Journal of Logic Programming, 31(1-3):201-243, May 1997.

10. C. Baral, M. Gelfond, and O. Kosheleva. Expanding queries to incomplete
databases by interpolating general logic programs. Journal of Logic Programming,
vol. 35, pp 195-230, 1998.

XXXVI

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

C. Baral and M. Gelfond. Reasoning agents in dynamic domains. In J Minker,
editor, Logic Based AI pp. 257279, Kluwer, 2000.

A. Bondarenko, P.M. Dung, R. Kowalski, F. Toni, An abstract, argumentation-
theoretic approach to default reasoning. Artificial Intelligence 93(1-2) pages 63-101,
1997.

M. Cadoli, T. Eiter, and G. Gottlob. Default logic as a query language. IEEE
Transactions on Knowledge and Data Engineering, 9(3), pages 448-463, 1997.

W. Chen, T. Swift, and D. Warren. Efficient top-down computation of queries
under the well-founded semantics. Journal of Logic Programming, 24(3):161-201,
1995.

P. Cholewinski. Stratified Default Logic. In Computer Science Logic, Springer
LNCS 933, pages 456-470, 1995.

P. Cholewinski. Reasoning with Stratified Default Theories. In Proc. of 3rd Int’l
Conf. on Logic Programming and Nonmonotonic Reasoning, pages 273-286, 1995.
P. Cholewinski, W. Marek, and M. Truszczynski. Default Reasoning System
DeReS. In Int’l Conf. on Principles of Knowledge Representation and Reason-
ing, 518-528. Morgan Kauffman, 1996.

A. Colmerauer, H. Kanoui, R. Pasero, and P. Russel. Un systeme de communication
homme-machine en francais. Technical report, Groupe de Intelligence Artificielle
Universitae de Aix-Marseille, 1973.

T. Eiter and G. Gottlob. Complexity aspects of various semantics for disjunctive
databases. In Proc. of PODS-93, pages 158-167, 1993.

T. Eiter, N. Leone, C. Mateis., G. Pfeifer and F. Scarcello. A deductive system for
nonmonotonic reasoning, Procs of the LPNMR’97, 363-373, 1997

T. Eiter, W. Faber, N. Leone. Declarative problem solving in DLV. In J Minker,
editor, Logic Based AI, 79-103 Kluwer, 2000.

K. Clark. Negation as failure. In Herve Gallaire and J. Minker, editors, Logic and
Data Bases, pages 293-322. Plenum Press, New York, 1978.

J. Delgrande and T. Schaub. Compiling reasoning with and about preferences into
default logic. In Proc. of IJCAI 97, 168-174, 1997.

Y. Dimopoulos, B. Nebel, and J. Koehler. Encoding planning problems in non-
monotonic logic programs. Lecture Notes in Artificial Intelligence - Recent Ad-
vances in AI Planning, Proc. of the 4th European Conference on Planning, ECP’97,
1348:169-181, 1997

E. Erdem, V. Lifschitz, and M. Wong. Wire routing and satisfiability planning.
Proc. of CL-2000, 822-836, 2000.

Frangois Fages. Consistency of Clark’s completion and existence of stable models.
Journal of Methods of Logic in Computer Science, 1(1):51-60, 1994.

M. Fitting. A Kripke-Kleene semantics for logic programs. Journal of Logic Pro-
gramming, 2(4):295-312, 1985.

M. Gelfond and A. Gabaldon. Building a knowledge base: an example. Annals of
mathematics and artificial Intelligence, 25:165-199.

M. Gelfond. On stratified autoepistemic theories. In Proc. AAAI-87, pages 207-
211, 1987.

M. Gelfond and V. Lifschitz. The stable model semantics for logic programming.
In R. Kowalski and K. Bowen, editors, Logic Programming: Proc. of the Fifth Int’l
Conf. and Symp., pages 1070-1080, 1988.

M. Gelfond and V. Lifschitz. Classical negation in logic programs and disjunctive
databases. New Generation Computing, pages 365-387, 1991.

M. Gelfond and V. Lifschitz. Representing Actions and Change by Logic Programs.
Journal of Logic Programming, 17:301-323.

33

34.

35.

36.

37.

38.

39.

40.

41.

42.

43.
44.

45.

46.

47.
48.

49.

50.

51.

52.

53.

54.

55.

XXXVII

M. Gelfond, V Lifschitz, H. Przymusinska, and M. Truszczynski. Disjunctive de-
faults. In J. Allen, R. Fikes, and E. Sandewall, editors, Principles of Knowledge
Representation and Reasoning: Proc. of the Second Int’l Conf., pages 230-237,
1991.

M. Gelfond, H. Przymusinska. On Consistency and Completeness of Autoepistemic
Theories, Fundamenta Informaticae, vol. 16, Num. 1, pp. 59-92, 1992.

M. Gelfond and V. Lifschitz. Action Languages. Electronic Transactions on Arti-
ficial Intelligence, Vol. 2, 193-210, 1998 http://www.ep.liu.se/ej/etai/1998/007
M. Gelfond and T. Son. Reasoning with prioritized defaults. In J. Dix,
L. M. Pereira, T. Przymusinski, editors, Lecture Notes in Artificial Intelligence,
1471, pp 164-224, 1998.

Y. Huang, H. Kautz and B. Selman. Control Knowledge in Planning: Benefits and
Tradeoffs. 16th National Conference of Artificial Intelligence (AAAI’99), 511-517.
K. Inoue and C. Sakama. Negation as Failure in the Head. Journal of Logic
Programming, 35(1):39-78, 1998.

C. Sakama and K. Inoue Prioritized Logic Programming and its Application to
Commonsense Reasoning, Artificial Intelligence 123(1-2):185-222, Elsevier, 2000.
A. C. Kakas, R. Kowalski, F. Toni, The Role of Abduction in Logic Programming,
Handbook of Logic in Artificial Intelligence and Logic Programming 5, pages 235-
324, D.M. Gabbay, C.J. Hogger and J.A. Robinson eds., Oxford University Press
(1998).

M. Kaminski. A note on the stable model semantics of logic programs. Artificial
Intelligence, 96(2):467-479, 1997.

R. Kowalski. Predicate logic as a programming language. Information Processing
74, pages 569-574, 1974.

R. Kowalski. Logic for Problem Solving. North-Holland, 1979.

C. Koch and N. Leone Stable model checking made easy. In proc. of IJCAI’99,
1999.

K. Kunen. Negation in logic programming. Journal of Logic Programming,
4(4):289-308, 1987.

K. Kunen. Signed data dependencies in logic programs. Journal of Logic Program-
ming, 7(3):231-245, 1989.

V. Lifschitz. Restricted Monotonicity. In proc. of AAA-938, pages 432-437, 1993
V. Lifschitz. Foundations of logic programming. In Gerhard Brewka, editor, Prin-
ciples of Knowledge Representation, pages 69—128. CSLI Publications, 1996.

V. Lifschitz. On the logic of causal explanation. Artificial Intelligence, 96:451-465,
1997.

V. Lifschitz and H. Turner. Splitting a logic program. In Pascal Van Hentenryck,
editor, Proc. of the Eleventh Int’l Conf. on Logic Programming, pages 23-38, 1994.
V. Lifschitz, Two components of an action language. Annals of Math and Al
21(2-4):305-320, 1997.

V. Lifschitz and L. Tang and H. Turner, Nested expressions in logic programs.
Annals of Math and AI Vol. 25, pages 369-389, 1999

V. Lifschitz. Action languages, Answer Sets, and Planning. In The Logic Program-
ming Paradigm: a 25-Year Perspective, 357-353, Spring-Verlag, 1999.

W. Marek and V.S. Subrahmanian. The relationship between logic program seman-
tics and non—monotonic reasoning. In G. Levi and M. Martelli, editors, Proc. of
the Sixzth Int’l Conf. on Logic Programming, pages 600—617, 1989.

W. Marek, and M. Truszczynski. Autoepistemic Logic. Journal of the ACM, 38,
pages 588619, 1991.

XXXVIIL

56.

57.

58.

59.

60.

61.
62.
63.

64.

65.

66.

67.

68.

69.

70.

71.

72.

73.

74.

75.

76.

W. Marek, and M. Truszczynski. Stable models and an alternative logic pro-
gramming paradigm. In The Logic Programming Paradigm: a 25- Year Perspective,
375-398, Spring-Verlag. 1999.

N. McCain and H. Turner. Causal theories of action and change. In Proc. of AAAI
pages 460—-465, 1997.

N. McCain and H. Turner. Satisfiability planning with causal theories. In Proc. of
KR, pages 212-223, 1998.

J. McCarthy. Programs with common sense. In Proc. of the Teddington Confer-
ence on the Mechanization of Thought Processes, pages 75-91, London, 1959. Her
Majesty’s Stationery Office.

J. McCarthy and P. Hayes. Some philosophical problems from the standpoint of
artificial intelligence. In B. Meltzer and D. Michie, editors, Machine Intelligence,
volume 4, pages 463-502. Edinburgh University Press, Edinburgh, 1969.

J. Minker Overview of disjunctive logic programming. Annals of mathematics and
artificial Intelligence, 12:1-24, 1994.

R. Moore. Semantical Considerations on Nonmonotonic Logic. Artificial Intelli-
gence, 25(1):75-94, 1985.

D. Nelson. Constructible falsity. Journal of Symbolic Logic, 14:16-26, 1949.

I. Niemela. Logic Programming with stable model semantics as a constraint pro-
gramming paradigm. In proceedings of the workshop on computational aspects of
nonmonotonic reasoning, pp 72-79, Trento, Italy, 1998.

I. Niemela and P. Simons. Smodels — an implementation of the stable model
and well-founded semantics for normal logic programs. In Proc. 4th international
conference on Logic programming and non-monotonic reasoning, pages 420429,
1997.

I. Niemela and P. Simons. Extending the Smodels system with cardinality and
weight constraints. In J Minker, editor, Logic Based AI, pp. 491-522, Kluwer,
2000.

D. Pearce and G. Wagner. Reasoning with negative information 1 — strong negation
in logic programming. Technical report, Gruppe fur Logic, Wissentheorie and
Information, Freie Universitat Berlin, 1989.

D. Pearce. From here to there: Stable negation in logic programming. In D. Gabbay
and H. Wansing, editors. What is negation?, Kluwer, 1999.

T. Przymusinski. Perfect model semantics. In Proc. of Fifth Int’l Conf. and Symp.,
pages 1081-1096, 1988.

T. Przymusinski. Stable semantics for disjunctive programs. New generation com-
puting, 9(3,4):401-425, 1991.

E. Pednault. ADL: Exploring the middle ground between STRIPS and the situation
calculus. In Proc. of KR89, pages 324-332, 1987.

R. Reiter. On closed world data bases. In H. Gallaire and J. Minker, editors, Logic
and Data Bases, pages 119-140. Plenum Press, New York, 1978.

R. Reiter. A logic for default reasoning. Artificial Intelligence, 13(1,2):81-132,
1980.

M. Shanahan. Solving the frame problem: A mathematical investigation of the
commonsense law of inertia. MIT press, 1997.

J. Schlipf. The expressive powers of the logic programming semantics. Journal of
the Computer Systems and Science, 51, pages 64-86, 1995.

Simons, P. Extending the stable model semantics with more expressive rules. In
5th International Conference, LPNMR’99, 305-316.

77

78.

79.

80.

81.

82.

83.

84.
85.

86.

87.

XXXIX

T. Soininen and I. Niemela. Developing a declarative rule language for applications
in program configuration. In practical aspects of declarative languages, LNCS 1551,
pages 305-319, 1999.

D. Seipel and H. Thone. DisLog - A system for reasoning in disjunctive deductive
databases. In proc. of DAISD’9.

K. Stroetman. A Completeness Result for SLDNF-Resolution. Journal of Logic
Programming, 15:337-355, 1993.

V. Subrahmanian and C. Zaniolo. Relating stable models and AI planning domains.
In L. Sterling, editor, Proc. ICLP-95, pages 233-247. MIT Press, 1995.

M. Thielscher. Ramification and causality. Artificial Intelligence, 89(1-2):317-364,
1997.

H. Turner. Signed logic programs. In Proc. of the 1994 International Symposium
on Logic Programming, pages 61-75, 1994.

H. Turner. Representing actions in logic programs and default theories. Journal
of Logic Programming, 31(1-3):245-298, May 1997.

H. Turner. Splitting a Default Theory, In Proc. of AAAI-96, pages 645-651, 1996.
M. van Emden and R. Kowalski. The semantics of predicate logic as a programming
language. Journal of the ACM., 23(4):733-742, 1976.

A. Van Gelder, K. Ross, and J. Schlipf. The well-founded semantics for general
logic programs. Journal of ACM, 38(3):620-650, 1991.

G. Wagner. Logic programming with strong negation and inexact predicates. Jour-
nal of Logic and Computation, 1(6):835-861, 1991.

