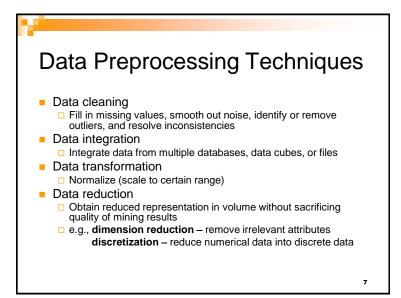


Measures of Data Quality

- A well-accepted multidimensional view:
 - Accuracy
 - Completeness
 - Consistency
 - □ Timeliness, believability, value added, interpretability
 - Accessibility
- Broad categories:
 - Intrinsic (inherent)
 - Contextual
 - Representational
 - Accessible



Outline

- Motivation
- Data cleaning
- Data integration and transformation
- Data reduction
- Discretization and hierarchy generalization
- Summary

Data Cleaning

"Data cleaning is the number one problem in data warehousing"—DCI survey

Tasks

Fill in missing values

Identify outliers and smooth out noises

Correct inconsistent data

Resolve redundancy caused by data integration

9

Missing data

Ignore the tuple with missing values

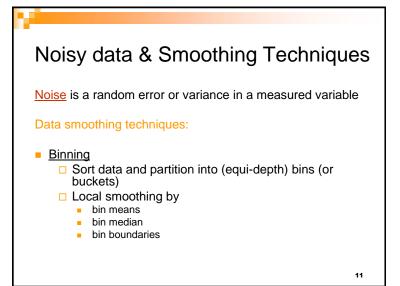
e.g., in classification when class label is missing — not effective when the % of missing values per attribute varies considerably.

Fill in the missing value manually — tedious + infeasible?
Fill in the missing value automatically with

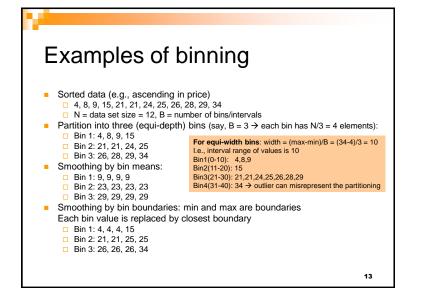
global constant e.g., "unknown" — a new class?
attribute mean
attribute mean for all samples of the <u>same class</u>
most probable value e.g., regression-based or inference-based such as Bayesian formula or decision tree (Ch 7)

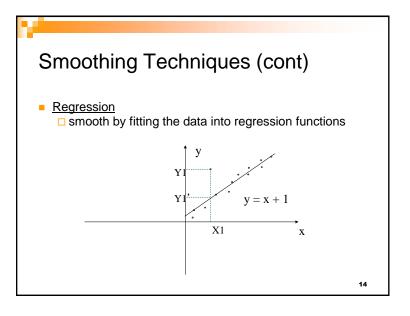
Which of these three techniques biases the data?

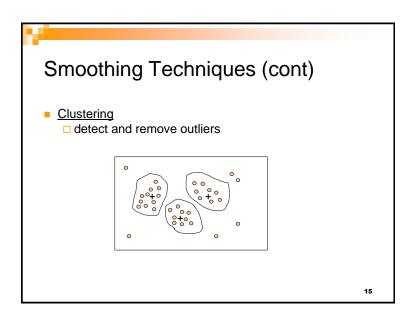
10



<section-header>









Data Preprocessing

- Why preprocess the data?
- Data cleaning
- Data integration and transformation
- Data reduction
- Discretization and hierarchy generation
- Summary

17

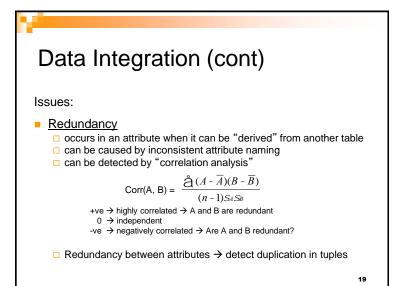
Data Integration

Data integration

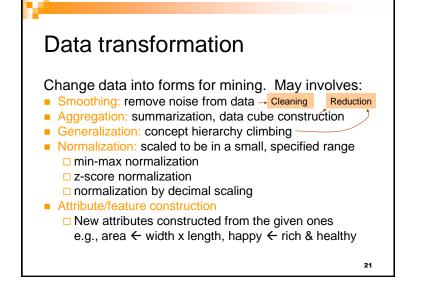
combines data from multiple sources into a coherent store

Issues:

- Schema integration how to identify matching of entities from multiple data sources → Entity identification problem e.g., A.customer-id = B.customer-num
 - □ Use metadata to help avoid integration errors



<section-header><section-header><section-header><section-header><section-header><list-item><list-item><list-item>



Data normalization

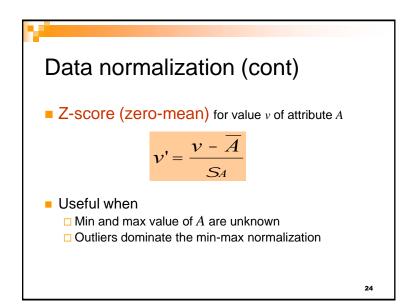
Transform data to be in a specific range

Useful in

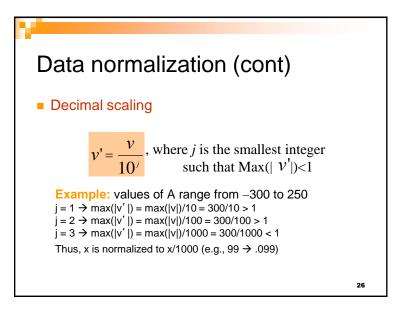
- □ Neural net back propagation speedup learning
- Distance-based mining method (e.g., clustering) prevent attributes with initial large ranges from outweighing those with initial small ranges
- Three techniques: min-max, z-score and decimal scaling

22

Data normalization (cont) **.** Min-max: The given attribute value range, $[min, max] \neq [min', max']$ $y' = \frac{v - min}{max - min} (max' - min') + min'$ **.** Can detect "out of bound" data **.** Outliers may dominate the normalization

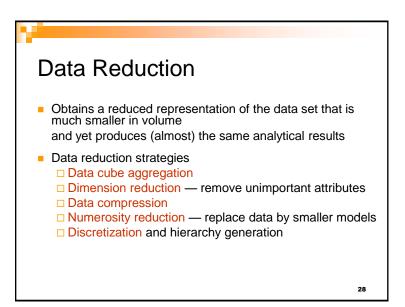


		(=/	ampl	•)			
v	v'			v			
0.18	-0.84	Avg	0.68	v 20	26	Avg	34.
0.60	-0.04	sdev	0.59	40	.20	sdev	55.
0.52	-0.14	Sucv	0.00		.55	3467	
0.25	-0.72			70	4		
0.80	0.20			32	05		
0.55	-0.22			8	48		
0.92	0.40			5	53		
0.21	-0.79			15	35		
0.64	-0.07			250	3.87		
0.20	-0.80			32	05		
0.63	-0.09			18	30		
0.70	0.04			10	44		
0.67	-0.02			-14	87		
0.58	-0.17			22	23		
0.98	0.50			45	.20		
0.81	0.22			60	.47		
0.10	-0.97			-5	71		
0.82	0.24			7	49		
0.50	-0.30			2	58		
3.00	3.87			4	55		



Outline

- Motivation
- Data cleaning
- Data integration and transformation
- Data reduction
- Discretization and hierarchy generation
- Summary



Data Cube Aggregation

- Aggregation gives summarized data represented in a smaller volume than initial data
 - E.g., total monthly sales (12 entries) vs. total annual sales (one entry)
- Each <u>cell</u> of a data cube holds an aggregate data value ~ a <u>point</u> in a multi-dimensional space
- Base cuboid ~ an entity of interest should be a useful unit
- Aggregate to cuboids at a higher level (of lattice) further reduces the data size
- Should use the *smallest* cuboid relevant to OLAP queries

29

31

Dimension Reduction

Goal:

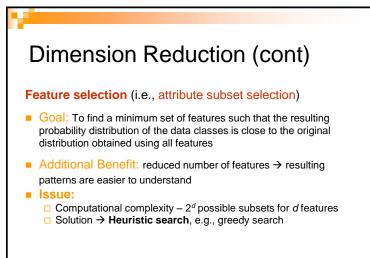
 To detect/remove irrelevant/redundant attributes/dimensions of the data

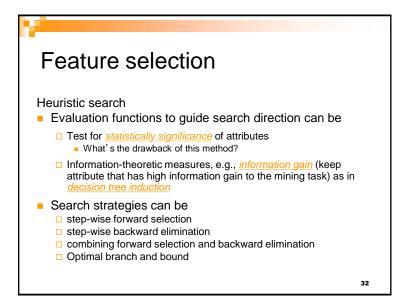
Example: Mining to find customer's profile for marketing a product

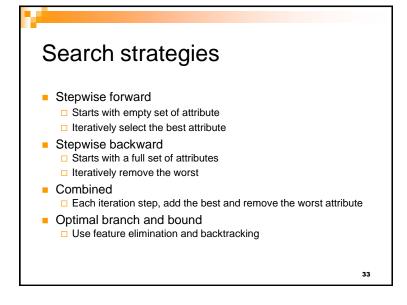
- □ CD' s: age vs. phone number
- Grocery items: Can you name three relevant attributes?

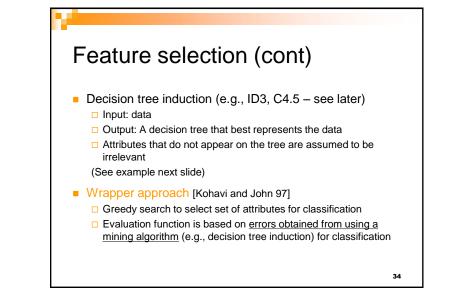
Motivation:

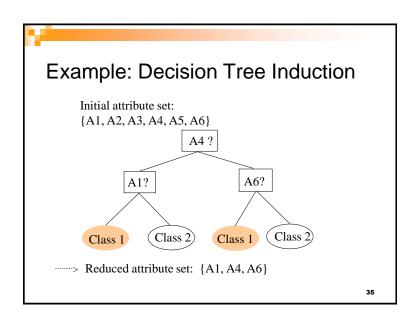
 Irrelevant attributes → poor mining results & larger volume of data → slower mining process

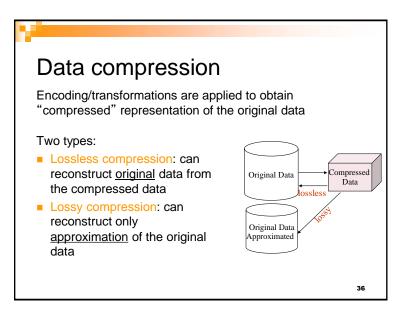












- Two important lossy data compression techniques:
 Wavelet
 - Principal components

37

39

Wavelet Transformation

38

 Discrete wavelet transform (DWT) – a linear signal processing technique that transforms,

vector of data \rightarrow vector of coeffs (of the same length)

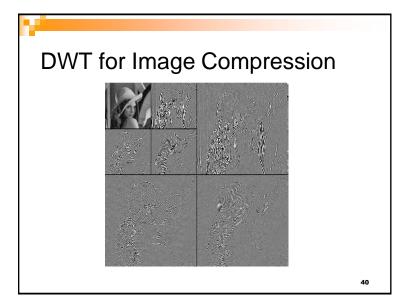
- Popular wavelet transforms: Haar2, Daubechie4 (the number is associated to properties of coeffs)
- Approximation of data can be retained by storing only a small fraction of the strongest of the wavelet coefficients
 Approximated data – noises removed without losing features
- Similar to discrete Fourier transform (DFT), however
 DWT more accurate (for the same number of coefficients)
 DWT requires less space

Wavelet Transformation

 Method (sketched):

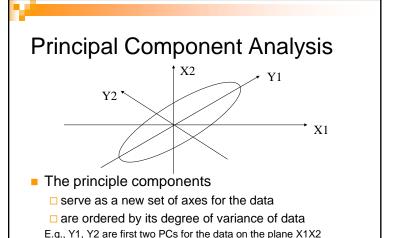
 Data vector length, L, must be an integer power of 2 (padding with 0s, when necessary)
 Each transform has 2 functions: smoothing, difference
 Apply the transform to pairs of data (low and high frequency contents), resulting in two set of data of length L/2 – repeat recursively, until reach the desired length
 Select values from data sets from the above iterations to be the wavelet coefficients of the transformed data
 Apply the *inverse* of the DWT used to a set of wavelet coefficients to reconstruct approximation of the original data
 Good results on sparse, skewed or ordered attribute data

- better results than JPEG compression



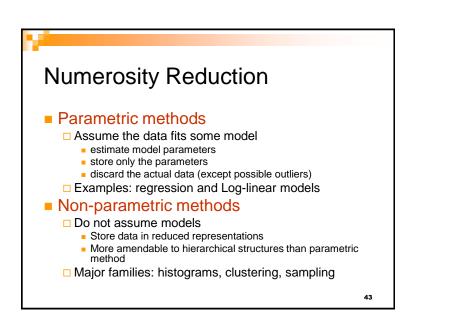
Principal Component Analysis

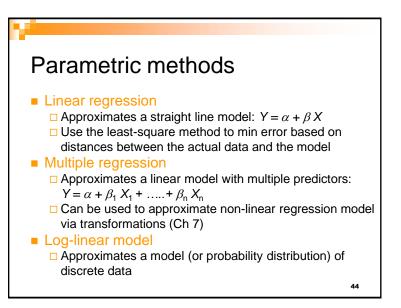
- The original data set (N k-dimensional vectors) is reduced to data set of N vectors on c *principal components* (kdimensional orthogonal vectors that can be best used to represent the data) i.e., N × k → N × c, where c ≤ k
 - Each data vector is a linear combination of the c principal component vectors (not necessary a subset of initial attribute set)
- Works for numeric data only
- Inexpensive computation used when the number of dimensions is large

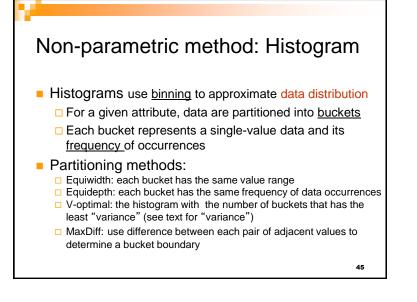


Variance of data based on Y1 axis is higher than those of Y2

42







Histograms (cont)

- Example of Max-diff: 1,1,2,2,2,3,5,5,7,8,8,9
 - A bucket boundary is established between each pair of pairs having 3 largest differences:
 - 1,1,2,2,2,3 5,5,7,8,8 9
- Histograms are effective for approximating
 - □ Sparse vs. dense data
 - Uniform vs. skewed data
- For multi-dimensional data, histograms are typically effective up to five dimensions

Non-parametric method: Clustering

- Partition data objects into clusters so data objects within the same cluster are "similar"
- "quality" of a cluster can be measured by
 - Max distance between two objects in the cluster
 - Centroid distance average distance of each cluster object from the centroid of the cluster
- Actual data are reduced to be represented by clusters
- Some data can't be effectively clustered e.g., smeared data
- Can have hierarchical clusters
- Further detailed techniques and definitions in Ch 8

47

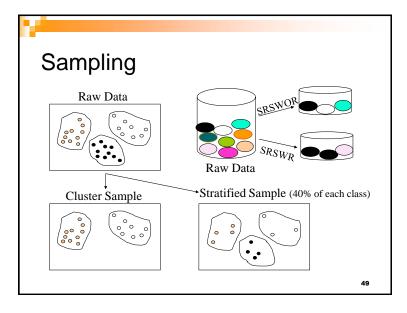
Non-parametric methods: Sampling

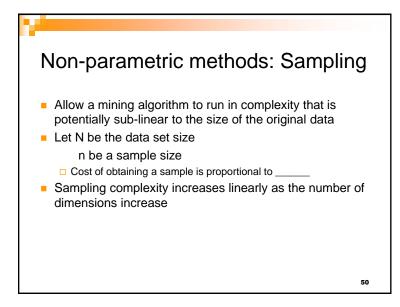
Data reduction by finding a representative data sample

Sampling techniques:

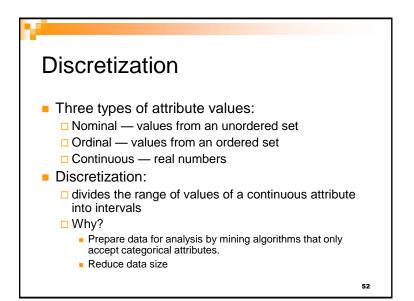
- Simple Random Sampling (SRS)
 - WithOut Replacement (SRSWOR)
 - With Replacement (SRSWR)
- Cluster Sample:
 - Data set are clustered into M clusters
 - Apply SRS to randomly select m of the M clusters
- Stratified sample adaptive sampling method
 - Apply SRS to each class (or stratum) of data to ensure that a sample will have representative data from each class

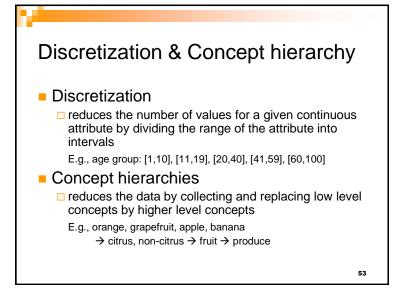
When should we use stratified sampling?





Outline Motivation Data cleaning Data integration and transformation Data reduction Discretization and hierarchy generation Summary





Entropy

 Shannon's information theoretic measure - approx. information captured from m₁,...,m_n

 $Ent(\{m_1,..,m_n\}) = - \stackrel{\circ}{\exists} p(m_i)\log_2(p(m_i))$

• For a r.v. X, $Ent(X) \stackrel{i}{=} - \stackrel{a}{\supset} p(x) \log_2 p(x)$

Example: Toss a balanced $coin^{x}$: H H T H T T H

 $\begin{array}{l} X = \{H, T\} \\ \mathsf{P}(H) = \mathsf{P}(T) = \frac{1}{2} \\ \mathsf{Ent} (X) = -\frac{1}{2} \log_2(\frac{1}{2}) - \frac{1}{2} \log_2(\frac{1}{2}) = -\log_2(\frac{1}{2}) = -(0-1) = 1 \end{array}$

54

What if the coin is a two-headed coin? $Ent(X) = 0 \sim information captured from X is certain$

Entropy-based discretization

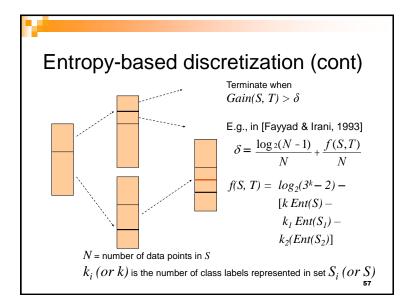
For an attribute value set S, each labeled with a class in C and p_i is a probability that class i is in S, then

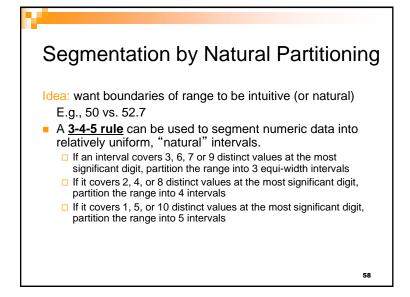
$$Ent(S) = -\mathop{a}_{i\bar{i}} p_i \log_2 p_i$$

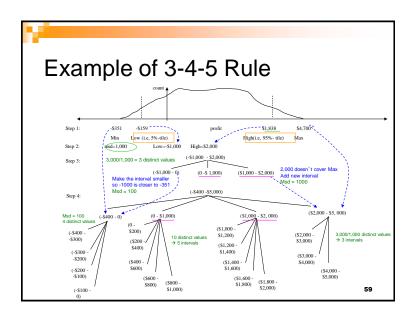
Example: Form of element: (Data value, class in C), where C = {A, B}

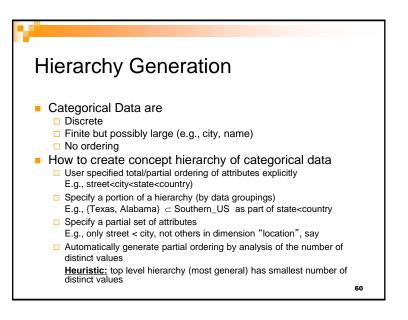
$$\begin{split} &S = \{(1, A), (1, B), (3, A), (5, B), (5, B)\} \\ &Ent(S) = -\frac{2}{5} \log_2(2/5) - \frac{3}{5} \log_2(3/5) \sim \\ &Information (i.e., classification) captured by data values of S \end{split}$$

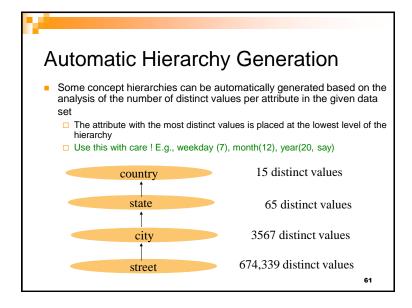
Entropy-based discretization (cont)
 Goal: to discretize an attribute value set S in ways that it maximize information captured by S to classify classes in C If S is partitioned by T into two intervals S1 (-∞, T) and S2 [T, ∞), the expected class information entropy induced by T is
$I(S,T) = \frac{ S_1 }{ S } Ent(S_1) + \frac{ S_2 }{ S } Ent(S_2)$ Information gain: $Gain(S, T) = Ent(S) - I(S, T)$
Idea:
 Find T (among possible data points) that minimizes I(S, T) (i.e., max information gain)
 Recursively find new T to the partitions obtained until some stopping criterion is met, e.g., <i>Gain(S, T) > δ</i>
$ ightarrow$ may reduce data size and improve classification accuracy $_{56}$

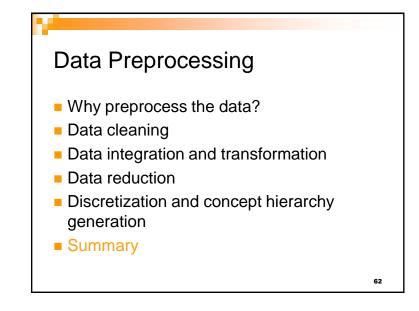












<section-header><list-item><list-item><list-item><list-item><list-item><list-item>

