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Motivation

 Real-world data are 
 incomplete: missing important attributes, or attribute 

values, or values giving aggregate data
e.g., Age = “”

 noisy: erroneous data or outliers
e.g., Age = “2000”

 inconsistent: discrepancies in codes or names or 
duplicate data

e.g., Age = “20” Birthday = “03/07/1960”

Sex = “F” Sex = “Female”
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How did this happen?

 Incomplete data
 Data are not available when collected

 Data are not considered important to record

 Errors: forgot to record, delete to eliminate inconsistent, equipment 

malfunctions

 Noisy data
 Data collected/entered incorrectly due to faulty equipment, human 

or computer errors

 Data transmitted incorrectly due to technology limitations (e.g., 
buffer size)

 Inconsistent data
 Different naming conventions in different data sources

 Functional dependency violation
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Relevance to data mining

 Bad data  bad mining results  bad decisions

 duplicate or missing data may cause incorrect or even 

misleading statistics.

 consistent integration of quality data  good warehouses 

 Data preprocessing aims to improve

Quality of data and thus mining results

 Efficiency and ease of data mining process 
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Measures of Data Quality

 A well-accepted multidimensional view:
 Accuracy

Completeness

Consistency

 Timeliness, believability, value added, interpretability

 Accessibility

 Broad categories:
 Intrinsic (inherent)

Contextual

Representational

 Accessible
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Data Preprocessing Techniques

 Data cleaning
 Fill in missing values, smooth out noise, identify or remove 

outliers, and resolve inconsistencies

 Data integration
 Integrate data from multiple databases, data cubes, or files

 Data transformation
 Normalize (scale to certain range) 

 Data reduction
 Obtain reduced representation in volume without sacrificing 

quality of mining results 

 e.g., dimension reduction  remove irrelevant attributes

discretization  reduce numerical data into discrete data 
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Data Cleaning

“Data cleaning is the number one problem in 
data warehousing”—DCI survey

 Tasks
 Fill in missing values

 Identify outliers and smooth out noises 

Correct inconsistent data

Resolve redundancy caused by data integration
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Missing data

 Ignore the tuple with missing values
e.g., in classification when class label is missing — not effective 
when the % of missing values per attribute varies considerably.

 Fill in the missing value manually — tedious + infeasible?

 Fill in the missing value automatically with

 global constant e.g., “unknown” — a new class?

 attribute mean

 attribute mean for all samples of the same class

most probable value e.g., regression-based or inference-

based such as Bayesian formula or decision tree (Ch 7)

Which of these three techniques biases the data?
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Noisy data & Smoothing Techniques

Noise is a random error or variance in a measured variable

Data smoothing techniques:

 Binning

 Sort data and partition into (equi-depth) bins (or 
buckets)

 Local smoothing by
 bin means

 bin median

 bin boundaries
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Simple Discretization: Binning

 Equal-depth (frequency) partitioning:
 Divides the range into N intervals, each containing approximately 

same number of samples

 Good data scaling

 Managing categorical attributes can be tricky

 Equal-width (distance/value range) partitioning:
 Divides the range into N intervals of equal value range (width)

 if A and B are the lowest and highest values of the attribute, the 
width of intervals will be: W = (B –A)/N.

 Results: 
 The most straightforward, but outliers may dominate presentation

 Skewed data is not handled well.
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Examples of binning

 Sorted data (e.g., ascending in price)
 4, 8, 9, 15, 21, 21, 24, 25, 26, 28, 29, 34

 N = data set size = 12, B = number of bins/intervals 

 Partition into three (equi-depth) bins (say, B = 3  each bin has N/3 = 4 elements):

 Bin 1: 4, 8, 9, 15

 Bin 2: 21, 21, 24, 25

 Bin 3: 26, 28, 29, 34

 Smoothing by bin means:
 Bin 1: 9, 9, 9, 9

 Bin 2: 23, 23, 23, 23

 Bin 3: 29, 29, 29, 29

 Smoothing by bin boundaries: min and max are boundaries

Each bin value is replaced by closest boundary
 Bin 1: 4, 4, 4, 15

 Bin 2: 21, 21, 25, 25

 Bin 3: 26, 26, 26, 34

For equi-width bins: width = (max-min)/B = (34-4)/3 = 10

I.e., interval range of values is 10

Bin1(0-10):   4,8,9

Bin2(11-20): 15

Bin3(21-30): 21,21,24,25,26,28,29

Bin4(31-40): 34  outlier can misrepresent the partitioning
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Smoothing Techniques (cont)

 Regression

 smooth by fitting the data into regression functions

x

y

y = x + 1

X1

Y1

Y1’
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Smoothing Techniques (cont)

 Clustering

 detect and remove outliers
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Smoothing Techniques (cont)

 Combined computer and human inspection

 Automatically detect suspicious values 

e.g., deviation from known/expected value above 

threshold

Manually select actual “surprise” vs. “garbage”
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Data Integration

Data integration
combines data from multiple sources into a coherent store

Issues:

 Schema integration - how to identify matching of entities from 

multiple data sources  Entity identification problem

e.g., A.customer-id  B.customer-num

 Use metadata to help avoid integration errors
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Data Integration (cont)

Issues:

 Redundancy
 occurs in an attribute when it can be “derived” from another table 

 can be caused by inconsistent attribute naming 

 can be detected by “correlation analysis”

+ve  highly correlated  A and B are redundant

0   independent

-ve   negatively correlated  Are A and B redundant?

 Redundancy between attributes  detect duplication in tuples

Corr(A, B) = 
BAn

BBAA
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Data Integration (cont)

Issues:

 Data value conflicts

 For the same real world entity, attribute values from different sources 

are different

 Possible reasons: different representations, coding or scales

e.g., weight values in: metric vs. British units

cost values: include tax vs. exclude tax

 Detection and resolving these conflicts require careful data 
integration
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Data transformation 

Change data into forms for mining.  May involves:
 Smoothing: remove noise from data 

 Aggregation: summarization, data cube construction

 Generalization: concept hierarchy climbing

 Normalization: scaled to be in a small, specified range

min-max normalization

 z-score normalization

 normalization by decimal scaling

 Attribute/feature construction

New attributes constructed from the given ones

e.g., area  width x length, happy  rich & healthy

Cleaning Reduction
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Data normalization

 Transform data to be in a specific range

 Useful in 
Neural net back propagation – speedup learning

Distance-based mining method (e.g., clustering) –

prevent attributes with initial large ranges from 

outweighing those with initial small ranges 

 Three techniques: min-max, z-score and decimal 

scaling
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Data normalization (cont)

 Min-max:

For a given attribute value range, 
[min, max]  [min´, max´]

Can detect “out of bound” data

Outliers may dominate the normalization

min'min'max'
minmax

minv
v +-

-

-
= )('
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Data normalization (cont)

 Z-score (zero-mean) for value v of attribute A

 Useful when 

Min and max value of A are unknown

Outliers dominate the min-max normalization

A

Av
v

s

-
='
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Z-Score (Example)

v v’ v v’

0.18 -0.84 Avg 0.68 20 -.26 Avg 34.3

0.60 -0.14 sdev 0.59 40 .11 sdev 55.9

0.52 -0.27 5 .55

0.25 -0.72 70 4

0.80 0.20 32 -.05

0.55 -0.22 8 -.48

0.92 0.40 5 -.53

0.21 -0.79 15 -.35

0.64 -0.07 250 3.87

0.20 -0.80 32 -.05

0.63 -0.09 18 -.30

0.70 0.04 10 -.44

0.67 -0.02 -14 -.87

0.58 -0.17 22 -.23

0.98 0.50 45 .20

0.81 0.22 60 .47

0.10 -0.97 -5 -.71

0.82 0.24 7 -.49

0.50 -0.30 2 -.58

3.00 3.87 4 -.55
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Data normalization (cont)

 Decimal scaling

Example: values of A range from 300 to 250
j = 1  max(|v’|) = max(|v|)/10 = 300/10 > 1

j = 2  max(|v’|) = max(|v|)/100 = 300/100 > 1

j = 3  max(|v’|) = max(|v|)/1000 = 300/1000 < 1 

Thus, x is normalized to x/1000 (e.g., 99  .099)

j

v
v

10
'= , where j is the smallest integer     

such that Max(|     |)<1'v
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Data Reduction 

 Obtains a reduced representation of the data set that is 
much smaller in volume 

and yet produces (almost) the same analytical results

 Data reduction strategies

Data cube aggregation

Dimension reduction — remove unimportant attributes

Data compression

Numerosity reduction — replace data by smaller models

Discretization and hierarchy generation
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Data Cube Aggregation

 Aggregation gives summarized data represented in a 
smaller volume than initial data

E.g., total monthly sales (12 entries) vs. total annual sales (one entry)

 Each cell of a data cube holds an aggregate data value ~ a 

point in a multi-dimensional space

 Base cuboid ~ an entity of interest – should be a useful unit 

 Aggregate to cuboids at a higher level (of lattice) further 

reduces the data size

 Should use the smallest cuboid relevant to OLAP queries 
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Dimension Reduction

Goal:

 To detect/remove irrelevant/redundant 

attributes/dimensions of the data

Example: Mining to find customer’s profile for marketing a product

 CD’s: age vs. phone number

 Grocery items: Can you name three relevant attributes?

Motivation:

 Irrelevant attributes  poor mining results & larger 

volume of data  slower mining process
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Dimension Reduction (cont)

Feature selection (i.e., attribute subset selection)

 Goal: To find a minimum set of features such that the resulting 

probability distribution of the data classes is close to the original 

distribution obtained using all features

 Additional Benefit: reduced number of features  resulting 

patterns are easier to understand

 Issue:
 Computational complexity – 2d possible subsets for d features

 Solution  Heuristic search, e.g., greedy search

32

Feature selection

Heuristic search

 Evaluation functions to guide search direction can be

 Test for statistically significance of attributes 
 What’s the drawback of this method?

 Information-theoretic measures, e.g., information gain (keep 
attribute that has high information gain to the mining task) as in
decision tree induction

 Search strategies can be
 step-wise forward selection

 step-wise backward elimination

 combining forward selection and backward elimination

 Optimal branch and bound
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Search strategies

 Stepwise forward

 Starts with empty set of attribute

 Iteratively select the best attribute

 Stepwise backward
 Starts with a full set of attributes

 Iteratively remove the worst

 Combined
 Each iteration step, add the best and remove the worst attribute

 Optimal branch and bound
 Use feature elimination and backtracking
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Feature selection (cont)

 Decision tree induction (e.g., ID3, C4.5 – see later)

 Input: data

 Output: A decision tree that best represents the data

 Attributes that do not appear on the tree are assumed to be 

irrelevant

(See example next slide)

 Wrapper approach [Kohavi and John 97] 

 Greedy search to select set of attributes for classification

 Evaluation function is based on errors obtained from using a 

mining algorithm (e.g., decision tree induction) for classification 
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Initial attribute set:

{A1, A2, A3, A4, A5, A6}

A4 ?

A1? A6?

Class 1 Class 2 Class 1 Class 2

> Reduced attribute set:  {A1, A4, A6}

Example: Decision Tree Induction
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Data compression

Two types:

 Lossless compression: can 

reconstruct original data from 

the compressed data 

 Lossy compression: can 

reconstruct only 

approximation of the original 

data

Original Data Compressed 
Data

lossless

Original Data
Approximated

Encoding/transformations are applied to obtain 

“compressed” representation of the original data
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Data Compression (cont)

 String compression
 There are extensive theories and well-tuned algorithms

 Typically lossless

 Allow limited data manipulation

 Audio/video compression
 Typically lossy compression, with progressive refinement

 Sometimes small fragments of signal can be reconstructed 

without reconstructing the whole

 Time sequence is not audio – think of data collection
 Typically short and vary slowly with time

 Two important lossy data compression techniques:
 Wavelet

 Principal components

38

Wavelet Transformation 

 Discrete wavelet transform (DWT)  a linear signal 
processing technique that transforms,

vector of data  vector of coeffs (of the same length)

 Popular wavelet transforms: Haar2, Daubechie4 
(the number is associated to properties of coeffs)

 Approximation of data can be retained by storing only a 

small fraction of the strongest of the wavelet coefficients

 Approximated data – noises removed without losing features

 Similar to discrete Fourier transform (DFT), however 
 DWT more accurate (for the same number of coefficients)

 DWT requires less space 

Haar2 Daubechie4
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Wavelet Transformation 

 Method (sketched):

 Data vector length, L, must be an integer power of 2 

(padding with 0s, when necessary)

 Each transform has 2 functions: smoothing, difference

 Apply the transform to pairs of data (low and high frequency 
contents), resulting in two set of data of length L/2 – repeat 
recursively, until reach the desired length

 Select values from data sets from the above iterations to be the 
wavelet coefficients of the transformed data

 Apply the inverse of the DWT used to a set of wavelet 

coefficients to reconstruct approximation of the original data

 Good results on sparse, skewed or ordered attribute data

– better results than JPEG compression 

Haar2 Daubechie4
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DWT for Image Compression
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Principal Component Analysis

 The original data set (N k-dimensional vectors) is reduced 

to data set of N vectors on c principal components (k-

dimensional orthogonal vectors that can be best used to 

represent the data) i.e., N k  N  c, where c ≤ k

 Each data vector is a linear combination of the c principal 

component vectors (not necessary a subset of initial attribute set)

 Works for numeric data only 

 Inexpensive computation - used when the number of 

dimensions is large 

42

X1

X2
Y1

Y2

Principal Component Analysis

 The principle components 

 serve as a new set of axes for the data

 are ordered by its degree of variance of data

E.g., Y1, Y2 are first two PCs for the data on the plane X1X2 

Variance of data based on Y1 axis is higher than those of Y2  
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Numerosity Reduction

 Parametric methods
 Assume the data fits some model 

 estimate model parameters 

 store only the parameters

 discard the actual data (except possible outliers)

 Examples: regression and Log-linear models

 Non-parametric methods
Do not assume models

 Store data in reduced representations

 More amendable to hierarchical structures than parametric 
method

Major families: histograms, clustering, sampling 
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Parametric methods 

 Linear regression
 Approximates a straight line model: Y =  +  X

Use the least-square method to min error based on 

distances between the actual data and the model

 Multiple regression
 Approximates a linear model with multiple predictors: 

Y =  + 1 X1 + …..+ n Xn  

Can be used to approximate non-linear regression model 

via transformations (Ch 7)

 Log-linear model
 Approximates a model (or probability distribution) of 

discrete data
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Non-parametric method: Histogram

 Histograms use binning to approximate data distribution

 For a given attribute, data are partitioned into buckets

 Each bucket represents a single-value data and its 

frequency of occurrences

 Partitioning methods:
 Equiwidth: each bucket has the same value range

 Equidepth: each bucket has the same frequency of data occurrences

 V-optimal: the histogram with  the number of buckets that has the 

least “variance” (see text for “variance”)

 MaxDiff: use difference between each pair of adjacent values to 

determine a bucket boundary 
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Histograms (cont)

 Example of Max-diff: 1,1,2,2,2,3,5,5,7,8,8,9 

 A bucket boundary is established between each pair of pairs 

having 3 largest differences:

1,1,2,2,2,3 | 5,5,7,8,8 | 9

 Histograms are effective for approximating 

 Sparse vs. dense data

Uniform vs. skewed data

 For multi-dimensional data, histograms are 

typically effective up to five dimensions
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Non-parametric method: Clustering

 Partition data objects into clusters so data objects within 

the same cluster are “similar”

 “quality” of a cluster can be measured by

Max distance between two objects in the cluster

Centroid distance – average distance of each cluster 

object from the centroid of the cluster

 Actual data are reduced to be represented by clusters

 Some data can’t be effectively clustered e.g., smeared data

 Can have hierarchical clusters  

 Further detailed techniques and definitions in Ch 8
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Non-parametric methods: Sampling

Data reduction by finding a representative data sample

Sampling techniques:

 Simple Random Sampling (SRS)

 WithOut Replacement (SRSWOR)

 With Replacement (SRSWR)

 Cluster Sample: 

 Data set are clustered into M clusters

 Apply SRS to randomly select m of the M clusters

 Stratified sample - adaptive sampling method 

 Apply SRS to each class (or stratum) of data to ensure that a 
sample will have representative data from each class

When should we use stratified sampling?
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Raw Data

Sampling

Raw Data 

Stratified Sample (40% of each class)Cluster Sample 
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Non-parametric methods: Sampling

 Allow a mining algorithm to run in complexity that is 

potentially sub-linear to the size of the original data

 Let N be the data set size

n be a sample size

 Cost of obtaining a sample is proportional to ______ 

 Sampling complexity increases linearly as the number of 

dimensions increase
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Discretization

 Three types of attribute values:
Nominal — values from an unordered set

Ordinal — values from an ordered set

Continuous — real numbers

 Discretization: 
 divides the range of values of a continuous attribute 

into intervals

Why?
 Prepare data for analysis by mining algorithms that only 

accept categorical attributes.

 Reduce data size 
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Discretization & Concept hierarchy

 Discretization 
 reduces the number of values for a given continuous 

attribute by dividing the range of the attribute into 
intervals

E.g., age group: [1,10], [11,19], [20,40], [41,59], [60,100]

 Concept hierarchies 
 reduces the data by collecting and replacing low level 

concepts by higher level concepts

E.g., orange, grapefruit, apple, banana 

 citrus, non-citrus  fruit  produce
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Entropy

 Shannon’s information theoretic measure - approx. 
information captured from m1,…,mn

 For a r.v. X,

Example: Toss a balanced coin: H H T H T T H ….

X = {H, T}

P(H) = P(T) = ½

Ent (X) = – ½ log2(½) – ½ log2(½) = – log2(½) = – (0 – 1) = 1

What if the coin is a two-headed coin? 

))((log)(}),..,({ 21 i

i

in mpmpmmEnt å-=

)(log)()( 2 xpxpXEnt
x

å-=

Ent(X) = 0 ~ information captured from X is certain
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Entropy-based discretization

 For an attribute value set S, each labeled with a class in C

and pi is a probability that class i is in S, then

Example: 

S = {(1, A), (1, B), (3, A), (5, B), (5, B)} 

Ent(S) = – 2/5 log2(2/5) – 3/5 log2(3/5) ~

Information (i.e., classification) captured by data values of S

i

Ci

i ppSEnt 2log)( å
Î

-=

Form of element: (Data value, class in C), where C = {A, B}
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Entropy-based discretization (cont)

Goal: to discretize an attribute value set S in ways that it maximize 

information captured by S to classify classes in C

 If S is partitioned by T into two intervals S1 (–∞, T) and S2 [T, ∞), the 

expected class information entropy induced by T is

 Information gain: Gain(S, T) = Ent(S) – I(S, T)

Idea:

 Find T (among possible data points) that minimizes I(S, T) (i.e., max 

information gain)

 Recursively find new T to the partitions obtained until some stopping 

criterion is met, e.g., Gain(S, T) > δ

 may reduce data size and improve classification accuracy

)()(),( 2

2

1

1

SEnt
S

S
SEnt

S

S
TSI +=
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Entropy-based discretization (cont)
Terminate when

Gain(S, T) > δ

E.g., in [Fayyad & Irani, 1993]

 = 

f(S, T) =  log2(3
k – 2) –

[k Ent(S) –

k1 Ent(S1) –

k2(Ent(S2)]

N

TSf

N

N ),()1(log 2
+

-

N = number of data points in S

ki (or k) is the number of class labels represented in set Si (or S)
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Segmentation by Natural Partitioning

Idea: want boundaries of range to be intuitive (or natural) 

E.g., 50 vs. 52.7

 A 3-4-5 rule can be used to segment numeric data into 
relatively uniform, “natural” intervals.
 If an interval covers 3, 6, 7 or 9 distinct values at the most 

significant digit, partition the range into 3 equi-width intervals

 If it covers 2, 4, or 8 distinct values at the most significant digit, 
partition the range into 4 intervals

 If it covers 1, 5, or 10 distinct values at the most significant digit, 
partition the range into 5 intervals
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Example of 3-4-5 Rule

(-$400 -$5,000)

(-$400 - 0)

(-$400 -

-$300)

(-$300 -

-$200)

(-$200 -

-$100)

(-$100 -

0)

(0 - $1,000)

(0 -

$200)

($200 -

$400)

($400 -

$600)

($600 -

$800) ($800 -

$1,000)

($2,000 - $5, 000)

($2,000 -

$3,000)

($3,000 -

$4,000)

($4,000 -

$5,000)

($1,000 - $2, 000)

($1,000 -

$1,200)

($1,200 -

$1,400)

($1,400 -

$1,600)

($1,600 -

$1,800)
($1,800 -

$2,000)

msd=1,000 Low=-$1,000 High=$2,000Step 2:

Step 4:

Step 1: -$351 -$159 profit $1,838 $4,700

Min         Low (i.e, 5%-tile) High(i.e, 95%- tile)        Max

count

(-$1,000  - $2,000)

(-$1,000 - 0) (0 -$ 1,000)

Step 3:

($1,000 - $2,000)

3,000/1,000 = 3 distinct values

Make the interval smaller 

so -1000 is closer to -351

Msd = 100

2,000 doesn’t cover Max

Add new interval

Msd = 1000

Msd = 100

4 distinct values

10 distinct values

 5 intervals

3,000/1,000 distinct values

 3 intervals
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Hierarchy Generation 

 Categorical Data are
 Discrete

 Finite but possibly large (e.g., city, name)

 No ordering

 How to create concept hierarchy of categorical data
 User specified total/partial ordering of attributes explicitly 

E.g., street<city<state<country)

 Specify a portion of a hierarchy (by data groupings)

E.g., {Texas, Alabama}  Southern_US  as part of state<country

 Specify a partial set of attributes

E.g., only street < city, not others in dimension “location”, say

 Automatically generate partial ordering by analysis of the number of 

distinct values

Heuristic: top level hierarchy (most general) has smallest number of 
distinct values
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Automatic Hierarchy Generation

 Some concept hierarchies can be automatically generated based on the 
analysis of the number of distinct values per attribute in the given data 

set

 The attribute with the most distinct values is placed at the lowest level of the 
hierarchy

 Use this with care ! E.g., weekday (7), month(12), year(20, say)

country

state

city

street

15 distinct values

65 distinct values

3567 distinct values

674,339 distinct values
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Summary

 Data  preparation is a big issue for both 

warehousing and mining

 Data preparation includes

Data cleaning and data integration

Data transformation and normalization

Data reduction - feature selection,discretization

 A lot a methods have been developed but 

still an active area of research
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